@@ -68,6 +71,15 @@ PP-YOLOE is composed of following methods:
- If you set `--run_benchmark=True`,you should install these dependencies at first, `pip install pynvml psutil GPUtil`.
- End-to-end speed test includes pre-processing + inference + post-processing and NMS time, using **Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz**, **single Tesla V100**, **CUDA 11.2**, **CUDNN 8.2.0**, **TensorRT 8.0.1.6**.
- For the format of COCO style dataset, please refer to [format-data](https://cocodataset.org/#format-data) and [format-results](https://cocodataset.org/#format-results).
- For the evaluation metric of COCO, please refer to [detection-eval](https://cocodataset.org/#detection-eval), and install [cocoapi](https://github.com/cocodataset/cocoapi) at first.
- For the evaluation metric of VOC, please refer to [VOC2012](http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html).
### Custom dataset
1.For the annotation of custom dataset, please refer to [DetAnnoTools](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.5/docs/tutorials/data/DetAnnoTools_en.md);
2.For training preparation of custom dataset,please refer to [PrepareDataSet](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.5/docs/tutorials/data/PrepareDetDataSet_en.md).
### Training
Training PP-YOLOE+ on 8 GPUs with following command