From e3f860d466e480868c3f27474d51eecb9ced4526 Mon Sep 17 00:00:00 2001 From: Zhao-Yian <77494834+Zhao-Yian@users.noreply.github.com> Date: Fri, 10 Mar 2023 17:50:43 +0800 Subject: [PATCH] [doc] add README for group detr (#7881) * [doc] add README for group detr --- configs/group_detr/README.md | 49 ++++++++++++++++++++++++++++++++++++ 1 file changed, 49 insertions(+) create mode 100644 configs/group_detr/README.md diff --git a/configs/group_detr/README.md b/configs/group_detr/README.md new file mode 100644 index 000000000..df78c48d3 --- /dev/null +++ b/configs/group_detr/README.md @@ -0,0 +1,49 @@ +# Group DETR: Fast DETR training with group-wise one-to-many assignment +# Group DETR v2: Strong object detector with encoder-decoder pretraining + +## Introduction + +[Group DETR](https://arxiv.org/pdf/2207.13085.pdf) is an object detection model based on DETR. We reproduced the model of the paper. + +[Group DETR v2](https://arxiv.org/pdf/2211.03594.pdf) is a strong object detection model based on DINO and Group DETR. We reproduced the model of the paper. + +## Model Zoo + +| Backbone | Model | Epochs | Resolution |Box AP | Config | Download | +|:------:|:---------------:|:------:|:------:|:---------------------------------------:|:--------------------------------------------------------------------------------:|:------:| +| R-50 | dino_r50_4scale | 12 | (800, 1333) | 49.6 | [config](./group_dino_r50_4scale_1x_coco.yml) | [model](https://bj.bcebos.com/v1/paddledet/models/group_dino_r50_4scale_1x_coco.pdparams) | +| Vit-huge | dino_vit_huge_4scale | 12 | (1184, 2000) | 63.3 | [config](./group_dino_vit_huge_4scale_1x_coco.yml) | [model](https://bj.bcebos.com/v1/paddledet/models/group_dino_vit_huge_4scale_1x_coco.pdparams) | + +**Notes:** + +- Group DETR is trained on COCO train2017 dataset and evaluated on val2017 results of `mAP(IoU=0.5:0.95)`. +- Group DETRv2 requires a ViT-Huge encoder pre-trained and fine-tuned on ImageNet-1K in a self-supervised manner, a detector pre-trained on Object365, and finally it is fine-tuned on trainCOCO. Group DETRv2 is also evaluated on val2017 results of `mAP(IoU=0.5:0.95)`. +- Group DETR and Group DETRv2 are both use 4GPU to train. + +GPU multi-card training +```bash +python -m paddle.distributed.launch --gpus 0,1,2,3 tools/train.py -c configs/group_detr/group_dino_r50_4scale_1x_coco.yml --fleet --eval +``` + +```bash +python -m paddle.distributed.launch --gpus 0,1,2,3 tools/train.py -c configs/group_detr/group_dino_vit_huge_4scale_1x_coco.yml --fleet --eval +``` + +## Citations +``` +@article{chen2022group, + title={Group DETR: Fast DETR training with group-wise one-to-many assignment}, + author={Chen, Qiang and Chen, Xiaokang and Wang, Jian and Feng, Haocheng and Han, Junyu and Ding, Errui and Zeng, Gang and Wang, Jingdong}, + journal={arXiv preprint arXiv:2207.13085}, + volume={1}, + number={2}, + year={2022} +} + +@article{chen2022group, + title={Group DETR v2: Strong object detector with encoder-decoder pretraining}, + author={Chen, Qiang and Wang, Jian and Han, Chuchu and Zhang, Shan and Li, Zexian and Chen, Xiaokang and Chen, Jiahui and Wang, Xiaodi and Han, Shuming and Zhang, Gang and others}, + journal={arXiv preprint arXiv:2211.03594}, + year={2022} +} +``` -- GitLab