Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
df99b16a
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
df99b16a
编写于
3月 17, 2018
作者:
K
Kexin Zhao
提交者:
GitHub
3月 17, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #9167 from kexinzhao/pool2d_fp16
Add float16 support for pool 2d operator
上级
3f5705c3
dfec1df1
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
152 addition
and
102 deletion
+152
-102
paddle/fluid/operators/conv_cudnn_op.cu.cc
paddle/fluid/operators/conv_cudnn_op.cu.cc
+4
-4
paddle/fluid/operators/pool_cudnn_op.cu.cc
paddle/fluid/operators/pool_cudnn_op.cu.cc
+11
-9
paddle/fluid/operators/pool_op.cc
paddle/fluid/operators/pool_op.cc
+7
-3
python/paddle/fluid/tests/unittests/op_test.py
python/paddle/fluid/tests/unittests/op_test.py
+3
-3
python/paddle/fluid/tests/unittests/test_conv2d_op.py
python/paddle/fluid/tests/unittests/test_conv2d_op.py
+32
-37
python/paddle/fluid/tests/unittests/test_pool2d_op.py
python/paddle/fluid/tests/unittests/test_pool2d_op.py
+95
-46
未找到文件。
paddle/fluid/operators/conv_cudnn_op.cu.cc
浏览文件 @
df99b16a
...
...
@@ -28,6 +28,8 @@ using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using
ScopedFilterDescriptor
=
platform
::
ScopedFilterDescriptor
;
using
ScopedConvolutionDescriptor
=
platform
::
ScopedConvolutionDescriptor
;
using
DataLayout
=
platform
::
DataLayout
;
template
<
typename
T
>
using
ScalingParamType
=
typename
platform
::
CudnnDataType
<
T
>::
ScalingParamType
;
static
constexpr
size_t
kCONV_CUDNN_WORKSPACE_LIMIT_BYTES
=
static_cast
<
size_t
>
(
1024
)
*
1024
*
1024
;
...
...
@@ -134,8 +136,7 @@ class CUDNNConvOpKernel : public framework::OpKernel<T> {
platform
::
CUDAPlace
gpu
=
boost
::
get
<
platform
::
CUDAPlace
>
(
ctx
.
GetPlace
());
cudnn_workspace
=
paddle
::
memory
::
Alloc
(
gpu
,
workspace_size_in_bytes
);
// ------------------- cudnn conv forward ---------------------
typename
platform
::
CudnnDataType
<
T
>::
ScalingParamType
alpha
=
1.0
f
,
beta
=
0.0
f
;
ScalingParamType
<
T
>
alpha
=
1.0
f
,
beta
=
0.0
f
;
for
(
int
i
=
0
;
i
<
groups
;
i
++
)
{
PADDLE_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionForward
(
handle
,
&
alpha
,
cudnn_input_desc
,
input_data
+
i
*
group_offset_in
,
...
...
@@ -282,8 +283,7 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
platform
::
CUDAPlace
gpu
=
boost
::
get
<
platform
::
CUDAPlace
>
(
ctx
.
GetPlace
());
cudnn_workspace
=
paddle
::
memory
::
Alloc
(
gpu
,
workspace_size_in_bytes
);
// ------------------- cudnn conv backward data ---------------------
typename
platform
::
CudnnDataType
<
T
>::
ScalingParamType
alpha
=
1.0
f
,
beta
=
0.0
f
;
ScalingParamType
<
T
>
alpha
=
1.0
f
,
beta
=
0.0
f
;
if
(
input_grad
)
{
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
// Because beta is zero, it is unnecessary to reset input_grad.
...
...
paddle/fluid/operators/pool_cudnn_op.cu.cc
浏览文件 @
df99b16a
...
...
@@ -24,6 +24,8 @@ using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using
ScopedPoolingDescriptor
=
platform
::
ScopedPoolingDescriptor
;
using
DataLayout
=
platform
::
DataLayout
;
using
PoolingMode
=
platform
::
PoolingMode
;
template
<
typename
T
>
using
ScalingParamType
=
typename
platform
::
CudnnDataType
<
T
>::
ScalingParamType
;
template
<
typename
T
>
class
PoolCUDNNOpKernel
:
public
framework
::
OpKernel
<
T
>
{
...
...
@@ -78,8 +80,7 @@ class PoolCUDNNOpKernel : public framework::OpKernel<T> {
// ------------------- cudnn pool algorithm ---------------------
auto
handle
=
ctx
.
cuda_device_context
().
cudnn_handle
();
T
alpha
=
1.0
f
,
beta
=
0.0
f
;
ScalingParamType
<
T
>
alpha
=
1.0
f
,
beta
=
0.0
f
;
PADDLE_ENFORCE
(
platform
::
dynload
::
cudnnPoolingForward
(
handle
,
cudnn_pool_desc
,
&
alpha
,
cudnn_input_desc
,
input_data
,
&
beta
,
cudnn_output_desc
,
output_data
));
...
...
@@ -144,8 +145,7 @@ class PoolCUDNNGradOpKernel : public framework::OpKernel<T> {
// ------------------- cudnn pool algorithm ---------------------
auto
handle
=
ctx
.
cuda_device_context
().
cudnn_handle
();
T
alpha
=
1.0
f
,
beta
=
0.0
f
;
ScalingParamType
<
T
>
alpha
=
1.0
f
,
beta
=
0.0
f
;
if
(
input_grad
)
{
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
// Because beta is zero, it is unnecessary to reset input_grad.
...
...
@@ -162,17 +162,19 @@ class PoolCUDNNGradOpKernel : public framework::OpKernel<T> {
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_KERNEL
(
pool2d
,
CUDNN
,
::
paddle
::
platform
::
CUDAPlace
,
REGISTER_OP_KERNEL
(
pool2d
,
CUDNN
,
plat
::
CUDAPlace
,
ops
::
PoolCUDNNOpKernel
<
float
>
,
ops
::
PoolCUDNNOpKernel
<
double
>
);
REGISTER_OP_KERNEL
(
pool2d_grad
,
CUDNN
,
::
paddle
::
platform
::
CUDAPlace
,
ops
::
PoolCUDNNOpKernel
<
double
>
,
ops
::
PoolCUDNNOpKernel
<
plat
::
float16
>
);
REGISTER_OP_KERNEL
(
pool2d_grad
,
CUDNN
,
plat
::
CUDAPlace
,
ops
::
PoolCUDNNGradOpKernel
<
float
>
,
ops
::
PoolCUDNNGradOpKernel
<
double
>
);
REGISTER_OP_KERNEL
(
pool3d
,
CUDNN
,
::
paddle
::
platform
::
CUDAPlace
,
REGISTER_OP_KERNEL
(
pool3d
,
CUDNN
,
plat
::
CUDAPlace
,
ops
::
PoolCUDNNOpKernel
<
float
>
,
ops
::
PoolCUDNNOpKernel
<
double
>
);
REGISTER_OP_KERNEL
(
pool3d_grad
,
CUDNN
,
::
paddle
::
platform
::
CUDAPlace
,
REGISTER_OP_KERNEL
(
pool3d_grad
,
CUDNN
,
plat
::
CUDAPlace
,
ops
::
PoolCUDNNGradOpKernel
<
float
>
,
ops
::
PoolCUDNNGradOpKernel
<
double
>
);
paddle/fluid/operators/pool_op.cc
浏览文件 @
df99b16a
...
...
@@ -124,11 +124,15 @@ framework::OpKernelType PoolOpGrad::GetExpectedKernelType(
}
#endif
auto
input_data_type
=
framework
::
ToDataType
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
type
());
if
(
input_data_type
==
framework
::
proto
::
VarType
::
FP16
)
{
PADDLE_ENFORCE_EQ
(
library_
,
framework
::
LibraryType
::
kCUDNN
,
"float16 can only be used when CUDNN is used"
);
}
std
::
string
data_format
=
ctx
.
Attr
<
std
::
string
>
(
"data_format"
);
framework
::
DataLayout
layout_
=
framework
::
StringToDataLayout
(
data_format
);
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
type
()),
ctx
.
GetPlace
(),
layout_
,
library_
);
return
framework
::
OpKernelType
(
input_data_type
,
ctx
.
GetPlace
(),
layout_
,
library_
);
}
Pool2dOpMaker
::
Pool2dOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
...
...
python/paddle/fluid/tests/unittests/op_test.py
浏览文件 @
df99b16a
...
...
@@ -483,9 +483,9 @@ class OpTest(unittest.TestCase):
input: input numpy array
Returns:
input:
if the dtype of input is np.float16, its dtype will be
changed to np.uint16 so that the internal memory will be
reinterpreted input
as of dtype np.uint16.
input:
The dtype of input will be changed to np.uint16 if
it is originally np.float16, such that the internal memory
of input will be reinterpreted
as of dtype np.uint16.
"""
if
input
.
dtype
==
np
.
float16
:
input
.
dtype
=
np
.
uint16
...
...
python/paddle/fluid/tests/unittests/test_conv2d_op.py
浏览文件 @
df99b16a
...
...
@@ -63,12 +63,13 @@ def conv2d_forward_naive(input, filter, group, conv_param):
class
TestConv2dOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"conv2d"
self
.
use_cudnn
=
False
self
.
use_mkldnn
=
False
self
.
init_op_type
()
self
.
dtype
=
np
.
float32
self
.
init_kernel_type
()
self
.
init_group
()
self
.
init_dilation
()
self
.
init_data_type
()
self
.
init_test_case
()
conv2d_param
=
{
...
...
@@ -159,17 +160,14 @@ class TestConv2dOp(OpTest):
f_c
=
self
.
input_size
[
1
]
/
self
.
groups
self
.
filter_size
=
[
6
,
f_c
,
3
,
3
]
def
init_data_type
(
self
):
self
.
dtype
=
np
.
float32
def
init_dilation
(
self
):
self
.
dilations
=
[
1
,
1
]
def
init_group
(
self
):
self
.
groups
=
1
def
init_
op
_type
(
self
):
self
.
op_type
=
"conv2d"
def
init_
kernel
_type
(
self
):
pass
class
TestWithPad
(
TestConv2dOp
):
...
...
@@ -241,13 +239,13 @@ class TestWithInput1x1Filter1x1(TestConv2dOp):
#----------------Conv2dCUDNN----------------
class
TestCUDNN
(
TestConv2dOp
):
def
init_
op
_type
(
self
):
def
init_
kernel
_type
(
self
):
self
.
use_cudnn
=
True
self
.
op_type
=
"conv2d"
class
TestFP16CUDNN
(
TestCUDNN
):
def
init_data_type
(
self
):
class
TestFP16CUDNN
(
TestConv2dOp
):
def
init_kernel_type
(
self
):
self
.
use_cudnn
=
True
self
.
dtype
=
np
.
float16
def
test_check_output
(
self
):
...
...
@@ -258,13 +256,13 @@ class TestFP16CUDNN(TestCUDNN):
class
TestCUDNNWithPad
(
TestWithPad
):
def
init_
op
_type
(
self
):
def
init_
kernel
_type
(
self
):
self
.
use_cudnn
=
True
self
.
op_type
=
"conv2d"
class
TestFP16CUDNNWithPad
(
TestCUDNNWithPad
):
def
init_data_type
(
self
):
class
TestFP16CUDNNWithPad
(
TestWithPad
):
def
init_kernel_type
(
self
):
self
.
use_cudnn
=
True
self
.
dtype
=
np
.
float16
def
test_check_output
(
self
):
...
...
@@ -275,13 +273,13 @@ class TestFP16CUDNNWithPad(TestCUDNNWithPad):
class
TestCUDNNWithStride
(
TestWithStride
):
def
init_
op
_type
(
self
):
def
init_
kernel
_type
(
self
):
self
.
use_cudnn
=
True
self
.
op_type
=
"conv2d"
class
TestFP16CUDNNWithStride
(
TestCUDNNWithStride
):
def
init_data_type
(
self
):
class
TestFP16CUDNNWithStride
(
TestWithStride
):
def
init_kernel_type
(
self
):
self
.
use_cudnn
=
True
self
.
dtype
=
np
.
float16
def
test_check_output
(
self
):
...
...
@@ -292,13 +290,13 @@ class TestFP16CUDNNWithStride(TestCUDNNWithStride):
class
TestCUDNNWithGroup
(
TestWithGroup
):
def
init_
op
_type
(
self
):
def
init_
kernel
_type
(
self
):
self
.
use_cudnn
=
True
self
.
op_type
=
"conv2d"
class
TestFP16CUDNNWithGroup
(
TestCUDNNWithGroup
):
def
init_data_type
(
self
):
class
TestFP16CUDNNWithGroup
(
TestWithGroup
):
def
init_kernel_type
(
self
):
self
.
use_cudnn
=
True
self
.
dtype
=
np
.
float16
def
test_check_output
(
self
):
...
...
@@ -309,13 +307,13 @@ class TestFP16CUDNNWithGroup(TestCUDNNWithGroup):
class
TestCUDNNWith1x1
(
TestWith1x1
):
def
init_
op
_type
(
self
):
def
init_
kernel
_type
(
self
):
self
.
use_cudnn
=
True
self
.
op_type
=
"conv2d"
class
TestFP16CUDNNWith1x1
(
TestCUDNNWith1x1
):
def
init_data_type
(
self
):
class
TestFP16CUDNNWith1x1
(
TestWith1x1
):
def
init_kernel_type
(
self
):
self
.
use_cudnn
=
True
self
.
dtype
=
np
.
float16
def
test_check_output
(
self
):
...
...
@@ -326,13 +324,13 @@ class TestFP16CUDNNWith1x1(TestCUDNNWith1x1):
class
TestCUDNNWithInput1x1Filter1x1
(
TestWithInput1x1Filter1x1
):
def
init_
op
_type
(
self
):
def
init_
kernel
_type
(
self
):
self
.
use_cudnn
=
True
self
.
op_type
=
"conv2d"
class
TestFP16CUDNNWithInput1x1Filter1x1
(
TestCUDNNWithInput1x1Filter1x1
):
def
init_data_type
(
self
):
class
TestFP16CUDNNWithInput1x1Filter1x1
(
TestWithInput1x1Filter1x1
):
def
init_kernel_type
(
self
):
self
.
use_cudnn
=
True
self
.
dtype
=
np
.
float16
def
test_check_output
(
self
):
...
...
@@ -375,21 +373,18 @@ class TestDepthwiseConv2(TestConv2dOp):
#----------------Conv2dMKLDNN----------------
class
TestMKLDNN
(
TestConv2dOp
):
def
init_
op
_type
(
self
):
def
init_
kernel
_type
(
self
):
self
.
use_mkldnn
=
True
self
.
op_type
=
"conv2d"
class
TestMKLDNNWithPad
(
TestWithPad
):
def
init_
op
_type
(
self
):
def
init_
kernel
_type
(
self
):
self
.
use_mkldnn
=
True
self
.
op_type
=
"conv2d"
class
TestMKLDNNWithStride
(
TestWithStride
):
def
init_
op
_type
(
self
):
def
init_
kernel
_type
(
self
):
self
.
use_mkldnn
=
True
self
.
op_type
=
"conv2d"
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/tests/unittests/test_pool2d_op.py
浏览文件 @
df99b16a
...
...
@@ -78,20 +78,22 @@ def avg_pool2D_forward_naive(x,
class
TestPool2d_Op
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"pool2d"
self
.
use_cudnn
=
False
self
.
use_mkldnn
=
False
self
.
dtype
=
np
.
float32
self
.
init_test_case
()
self
.
init_global_pool
()
self
.
init_
op
_type
()
self
.
init_
kernel
_type
()
self
.
init_pool_type
()
self
.
init_ceil_mode
()
if
self
.
global_pool
:
self
.
paddings
=
[
0
for
_
in
range
(
len
(
self
.
paddings
))]
input
=
np
.
random
.
random
(
self
.
shape
).
astype
(
"float32"
)
input
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
output
=
self
.
pool2D_forward_naive
(
input
,
self
.
ksize
,
self
.
strides
,
self
.
paddings
,
self
.
global_pool
,
self
.
ceil_mode
).
astype
(
"float32"
)
self
.
inputs
=
{
'X'
:
input
}
self
.
ceil_mode
).
astype
(
self
.
dtype
)
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
input
)
}
self
.
attrs
=
{
'strides'
:
self
.
strides
,
...
...
@@ -105,7 +107,7 @@ class TestPool2d_Op(OpTest):
'data_format'
:
'AnyLayout'
# TODO(dzhwinter) : should be fix latter
}
self
.
outputs
=
{
'Out'
:
output
.
astype
(
'float32'
)
}
self
.
outputs
=
{
'Out'
:
output
}
def
test_check_output
(
self
):
if
self
.
use_cudnn
:
...
...
@@ -115,6 +117,8 @@ class TestPool2d_Op(OpTest):
self
.
check_output
()
def
test_check_grad
(
self
):
if
self
.
dtype
==
np
.
float16
:
return
if
self
.
use_cudnn
and
self
.
pool_type
!=
"max"
:
place
=
core
.
CUDAPlace
(
0
)
self
.
check_grad_with_place
(
...
...
@@ -128,8 +132,8 @@ class TestPool2d_Op(OpTest):
self
.
strides
=
[
1
,
1
]
self
.
paddings
=
[
0
,
0
]
def
init_
op
_type
(
self
):
self
.
op_type
=
"pool2d"
def
init_
kernel
_type
(
self
):
pass
def
init_pool_type
(
self
):
self
.
pool_type
=
"avg"
...
...
@@ -149,9 +153,6 @@ class TestCase1(TestPool2d_Op):
self
.
strides
=
[
1
,
1
]
self
.
paddings
=
[
0
,
0
]
def
init_op_type
(
self
):
self
.
op_type
=
"pool2d"
def
init_pool_type
(
self
):
self
.
pool_type
=
"avg"
self
.
pool2D_forward_naive
=
avg_pool2D_forward_naive
...
...
@@ -167,9 +168,6 @@ class TestCase2(TestPool2d_Op):
self
.
strides
=
[
1
,
1
]
self
.
paddings
=
[
1
,
1
]
def
init_op_type
(
self
):
self
.
op_type
=
"pool2d"
def
init_pool_type
(
self
):
self
.
pool_type
=
"avg"
self
.
pool2D_forward_naive
=
avg_pool2D_forward_naive
...
...
@@ -179,27 +177,18 @@ class TestCase2(TestPool2d_Op):
class
TestCase3
(
TestPool2d_Op
):
def
init_op_type
(
self
):
self
.
op_type
=
"pool2d"
def
init_pool_type
(
self
):
self
.
pool_type
=
"max"
self
.
pool2D_forward_naive
=
max_pool2D_forward_naive
class
TestCase4
(
TestCase1
):
def
init_op_type
(
self
):
self
.
op_type
=
"pool2d"
def
init_pool_type
(
self
):
self
.
pool_type
=
"max"
self
.
pool2D_forward_naive
=
max_pool2D_forward_naive
class
TestCase5
(
TestCase2
):
def
init_op_type
(
self
):
self
.
op_type
=
"pool2d"
def
init_pool_type
(
self
):
self
.
pool_type
=
"max"
self
.
pool2D_forward_naive
=
max_pool2D_forward_naive
...
...
@@ -207,39 +196,105 @@ class TestCase5(TestCase2):
#--------------------test pool2d--------------------
class
TestCUDNNCase1
(
TestPool2d_Op
):
def
init_
op
_type
(
self
):
def
init_
kernel
_type
(
self
):
self
.
use_cudnn
=
True
self
.
op_type
=
"pool2d"
class
TestFP16CUDNNCase1
(
TestPool2d_Op
):
def
init_kernel_type
(
self
):
self
.
use_cudnn
=
True
self
.
dtype
=
np
.
float16
def
test_check_output
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_output_with_place
(
place
,
atol
=
1e-3
)
class
TestCUDNNCase2
(
TestCase1
):
def
init_
op
_type
(
self
):
def
init_
kernel
_type
(
self
):
self
.
use_cudnn
=
True
self
.
op_type
=
"pool2d"
class
TestFP16CUDNNCase2
(
TestCase1
):
def
init_kernel_type
(
self
):
self
.
use_cudnn
=
True
self
.
dtype
=
np
.
float16
def
test_check_output
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_output_with_place
(
place
,
atol
=
1e-3
)
class
TestCUDNNCase3
(
TestCase2
):
def
init_
op
_type
(
self
):
def
init_
kernel
_type
(
self
):
self
.
use_cudnn
=
True
self
.
op_type
=
"pool2d"
class
TestFP16CUDNNCase3
(
TestCase2
):
def
init_kernel_type
(
self
):
self
.
use_cudnn
=
True
self
.
dtype
=
np
.
float16
def
test_check_output
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_output_with_place
(
place
,
atol
=
1e-3
)
class
TestCUDNNCase4
(
TestCase3
):
def
init_
op
_type
(
self
):
def
init_
kernel
_type
(
self
):
self
.
use_cudnn
=
True
self
.
op_type
=
"pool2d"
class
TestFP16CUDNNCase4
(
TestCase3
):
def
init_kernel_type
(
self
):
self
.
use_cudnn
=
True
self
.
dtype
=
np
.
float16
def
test_check_output
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_output_with_place
(
place
,
atol
=
1e-3
)
class
TestCUDNNCase5
(
TestCase4
):
def
init_
op
_type
(
self
):
def
init_
kernel
_type
(
self
):
self
.
use_cudnn
=
True
self
.
op_type
=
"pool2d"
class
TestFP16CUDNNCase5
(
TestCase4
):
def
init_kernel_type
(
self
):
self
.
use_cudnn
=
True
self
.
dtype
=
np
.
float16
def
test_check_output
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_output_with_place
(
place
,
atol
=
1e-3
)
class
TestCUDNNCase6
(
TestCase5
):
def
init_
op
_type
(
self
):
def
init_
kernel
_type
(
self
):
self
.
use_cudnn
=
True
self
.
op_type
=
"pool2d"
class
TestFP16CUDNNCase6
(
TestCase5
):
def
init_kernel_type
(
self
):
self
.
use_cudnn
=
True
self
.
dtype
=
np
.
float16
def
test_check_output
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_output_with_place
(
place
,
atol
=
1e-3
)
class
TestCeilModeCase1
(
TestCUDNNCase1
):
...
...
@@ -264,39 +319,33 @@ class TestCeilModeCase4(TestCase2):
#--------------------test pool2d MKLDNN--------------------
class
TestMKLDNNCase1
(
TestPool2d_Op
):
def
init_
op
_type
(
self
):
def
init_
kernel
_type
(
self
):
self
.
use_mkldnn
=
True
self
.
op_type
=
"pool2d"
class
TestMKLDNNCase2
(
TestCase1
):
def
init_
op
_type
(
self
):
def
init_
kernel
_type
(
self
):
self
.
use_mkldnn
=
True
self
.
op_type
=
"pool2d"
class
TestMKLDNNCase3
(
TestCase2
):
def
init_
op
_type
(
self
):
def
init_
kernel
_type
(
self
):
self
.
use_mkldnn
=
True
self
.
op_type
=
"pool2d"
class
TestMKLDNNCase4
(
TestCase3
):
def
init_
op
_type
(
self
):
def
init_
kernel
_type
(
self
):
self
.
use_mkldnn
=
True
self
.
op_type
=
"pool2d"
class
TestMKLDNNCase5
(
TestCase4
):
def
init_
op
_type
(
self
):
def
init_
kernel
_type
(
self
):
self
.
use_mkldnn
=
True
self
.
op_type
=
"pool2d"
class
TestMKLDNNCase6
(
TestCase5
):
def
init_
op
_type
(
self
):
def
init_
kernel
_type
(
self
):
self
.
use_mkldnn
=
True
self
.
op_type
=
"pool2d"
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录