Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
df927768
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
694
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
df927768
编写于
1月 10, 2018
作者:
F
fengjiayi
提交者:
GitHub
1月 10, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #7269 from emailweixu/calc_gradient
Calculating gradients for partial graph
上级
5f985000
6e5eae13
变更
8
显示空白变更内容
内联
并排
Showing
8 changed file
with
302 addition
and
45 deletion
+302
-45
paddle/framework/grad_op_desc_maker.h
paddle/framework/grad_op_desc_maker.h
+5
-1
paddle/framework/op_desc.h
paddle/framework/op_desc.h
+1
-1
paddle/operators/norm_op.cc
paddle/operators/norm_op.cc
+1
-1
paddle/operators/norm_op.h
paddle/operators/norm_op.h
+1
-1
python/paddle/v2/fluid/backward.py
python/paddle/v2/fluid/backward.py
+227
-38
python/paddle/v2/fluid/layers/ops.py
python/paddle/v2/fluid/layers/ops.py
+11
-1
python/paddle/v2/fluid/layers/tensor.py
python/paddle/v2/fluid/layers/tensor.py
+31
-2
python/paddle/v2/fluid/tests/test_calc_gradient.py
python/paddle/v2/fluid/tests/test_calc_gradient.py
+25
-0
未找到文件。
paddle/framework/grad_op_desc_maker.h
浏览文件 @
df927768
...
...
@@ -87,7 +87,11 @@ class GradOpDescMakerBase {
auto
onames
=
this
->
Output
(
name
);
ret_val
.
reserve
(
onames
.
size
());
std
::
transform
(
onames
.
begin
(),
onames
.
end
(),
std
::
back_inserter
(
ret_val
),
GradVarName
);
[
this
](
const
std
::
string
&
fwd_var_name
)
->
std
::
string
{
auto
g_name
=
GradVarName
(
fwd_var_name
);
(
*
this
->
grad_to_var_
)[
g_name
]
=
fwd_var_name
;
return
g_name
;
});
return
ret_val
;
}
...
...
paddle/framework/op_desc.h
浏览文件 @
df927768
...
...
@@ -129,7 +129,7 @@ class OpDesc {
}
proto
::
OpDesc
desc_
;
// input arg name =>
out
put variable names
// input arg name =>
in
put variable names
VariableNameMap
inputs_
;
// output arg name => output variable names
VariableNameMap
outputs_
;
...
...
paddle/operators/norm_op.cc
浏览文件 @
df927768
...
...
@@ -39,7 +39,7 @@ class NormOpMaker : public framework::OpProtoAndCheckerMaker {
"M = C * H * W"
);
AddComment
(
R"DOC(
"Input shape: $(N, C, H, W)$
Sc
la
e shape: $(C, 1)$
Sc
al
e shape: $(C, 1)$
Output shape: $(N, C, H, W)$
Where
forward
...
...
paddle/operators/norm_op.h
浏览文件 @
df927768
python/paddle/v2/fluid/backward.py
浏览文件 @
df927768
from
paddle.v2.fluid
import
framework
as
framework
from
.
import
core
import
collections
import
copy
__all__
=
[
'append_backward'
]
__all__
=
[
'append_backward'
,
'calc_gradient'
]
def
_rename_arg_
(
op_descs
,
old_name
,
new_name
,
begin_idx
=
None
,
end_idx
=
None
):
...
...
@@ -65,6 +66,18 @@ def _all_in_set_(cands, s):
return
True
def
_some_in_set_
(
cands
,
s
):
"""
Test if some elements of 'cands' are in set 's'
"""
if
len
(
cands
)
==
0
:
return
False
for
c
in
cands
:
if
c
in
s
:
return
True
return
False
def
_strip_grad_suffix_
(
name
):
"""
Strip the grad suffix from the given varibale name
...
...
@@ -169,8 +182,8 @@ def _remove_no_grad_branch_(op_descs, no_grad_set):
return
op_descs
def
_append_backward_ops_
(
target
,
block
,
def
_append_backward_ops_
(
block
,
ops
,
target_block
,
no_grad_dict
,
grad_to_var
,
...
...
@@ -179,8 +192,8 @@ def _append_backward_ops_(target,
Create all grad ops, and insert them into given block
Args:
target(Variable): the target variable of forward pass
block(Block): the block where forward ops are
ops(Op): the forward operators whose backward ops need to be added
target_block(Block): the block which is going to hold new generated grad ops
no_grad_dict(dict):
key(int) block index
...
...
@@ -202,14 +215,14 @@ def _append_backward_ops_(target,
# grad_op_descs holds created grad_op, and will be appended to target_block
grad_op_descs
=
[]
program
=
block
.
program
for
op
in
reversed
(
block
.
ops
):
for
op
in
reversed
(
ops
):
grad_sub_block_list
=
[]
# If the op has its own sub-block, deal with the sub-block first
if
op
.
has_attr
(
"sub_block"
):
sub_block
=
program
.
block
(
op
.
block_attr
(
"sub_block"
))
grad_sub_block
=
program
.
create_block
(
parent_idx
=
sub_block
.
idx
)
_append_backward_ops_
(
target
,
sub_block
,
grad_sub_block
,
no_grad_dict
,
grad_to_var
,
callback
)
_append_backward_ops_
(
sub_block
,
sub_block
.
ops
,
grad_sub_block
,
no_grad_dict
,
grad_to_var
)
grad_sub_block_list
.
append
(
grad_sub_block
.
desc
)
# Getting op's corresponding grad_op
...
...
@@ -224,14 +237,6 @@ def _append_backward_ops_(target,
grad_op_descs
=
_remove_no_grad_branch_
(
grad_op_descs
,
no_grad_dict
[
block
.
idx
])
if
target_block
.
idx
==
0
:
grad_op_descs
.
insert
(
0
,
_create_op_desc_
(
"fill_constant"
,
{},
{
"Out"
:
[
_append_grad_suffix_
(
target
.
name
)]
},
{
"shape"
:
[
1
],
"value"
:
1.0
,
"dtype"
:
target
.
dtype
}))
# append op_desc in grad_op_descs to target_block
for
op_desc
in
grad_op_descs
:
new_op_desc
=
target_block
.
desc
.
append_op
()
...
...
@@ -252,7 +257,7 @@ def _append_backward_vars_(block, start_op_idx, grad_to_var, grad_info_map):
In most cases, this dict is generated by _append_backward_ops_()
grad_info_map(dict)(output argument):
key(str): forward variable name
val(tuple): a tuple of (str,
int), str is the corresponding grad name, int is the block index
val(tuple): a tuple of (str,
Block), str is the corresponding grad name, Block is the block containing grad variable
"""
for
op_idx
in
range
(
start_op_idx
,
block
.
desc
.
op_size
()):
op_desc
=
block
.
desc
.
op
(
op_idx
)
...
...
@@ -279,41 +284,63 @@ def _append_backward_vars_(block, start_op_idx, grad_to_var, grad_info_map):
_infer_var_data_type_
(
arg
,
block
)
def
_rename_grad_
(
block
,
start_op_idx
,
grad_to_var
,
target_grad_map
):
var_map
=
copy
.
copy
(
target_grad_map
)
for
op_idx
in
range
(
start_op_idx
,
block
.
desc
.
op_size
()):
op_desc
=
block
.
desc
.
op
(
op_idx
)
for
name
in
op_desc
.
input_arg_names
():
if
name
in
var_map
:
op_desc
.
rename_input
(
name
,
var_map
[
name
])
for
name
in
op_desc
.
output_arg_names
():
if
block
.
desc
.
find_var
(
name
.
encode
(
"ascii"
)):
new_name
=
"%s_%s"
%
(
name
,
core
.
unique_integer
(
name
))
op_desc
.
rename_output
(
name
,
new_name
)
var_map
[
name
]
=
new_name
for
g
,
ng
in
var_map
.
iteritems
():
if
g
in
grad_to_var
:
grad_to_var
[
ng
]
=
grad_to_var
[
g
]
grad_to_var
.
pop
(
g
)
def
_get_stop_gradients_
(
program
):
no_grad_dict
=
dict
()
assert
isinstance
(
program
,
framework
.
Program
)
for
block
in
program
.
blocks
:
assert
isinstance
(
block
,
framework
.
Block
)
block_no_grad_set
=
set
()
for
var
in
block
.
vars
.
itervalues
():
assert
isinstance
(
var
,
framework
.
Variable
)
if
var
.
stop_gradient
:
block_no_grad_set
.
add
(
_append_grad_suffix_
(
var
.
name
))
no_grad_dict
[
block
.
idx
]
=
block_no_grad_set
return
no_grad_dict
def
append_backward
(
loss
,
parameter_list
=
None
,
no_grad_set
=
None
,
callback
=
None
):
"""
Append backward part to main_program
Args:
loss(Variable): The variable generated by cost function.
parameter_list(list
): Parameters that need to be updated by optimizer.
If None, it means all parameters need to be updated.
parameter_list(list
[string]): Parameters that need to be updated by
optimizer.
If None, it means all parameters need to be updated.
no_grad_set(set): Variables that have no gradients in Block 0.
If None, the set will be generated inside the function and
contains all variables with `step_gradient=True` from all blocks
.
All variables with `step_gradient=True` from all blocks will be
automatically added
.
Return:
(list[
Variable]): list of (parameters, gradients
) pair.
(list[
(Variable,Variable)]): list of (parameter, gradient
) pair.
"""
assert
isinstance
(
loss
,
framework
.
Variable
)
program
=
loss
.
block
.
program
no_grad_dict
=
dict
()
if
no_grad_set
is
None
:
assert
isinstance
(
program
,
framework
.
Program
)
for
block
in
program
.
blocks
:
assert
isinstance
(
block
,
framework
.
Block
)
block_no_grad_set
=
set
()
for
var
in
block
.
vars
.
itervalues
():
assert
isinstance
(
var
,
framework
.
Variable
)
if
var
.
stop_gradient
:
block_no_grad_set
.
add
(
_append_grad_suffix_
(
var
.
name
))
no_grad_dict
[
block
.
idx
]
=
block_no_grad_set
elif
isinstance
(
no_grad_set
,
set
):
no_grad_dict
=
{
0
:
set
([
_append_grad_suffix_
(
name
)
for
name
in
no_grad_set
])
}
else
:
raise
ValueError
(
"'no_grad_set' should be a set or None."
)
no_grad_set
=
set
()
no_grad_set
=
copy
.
copy
(
no_grad_set
)
no_grad_dict
=
_get_stop_gradients_
(
program
)
no_grad_dict
[
0
].
update
(
map
(
_append_grad_suffix_
,
no_grad_set
))
grad_info_map
=
dict
()
root_block
=
program
.
block
(
0
)
...
...
@@ -322,8 +349,25 @@ def append_backward(loss, parameter_list=None, no_grad_set=None, callback=None):
current_block_idx
=
program
.
current_block_idx
grad_to_var
=
dict
()
_append_backward_ops_
(
loss
,
root_block
,
root_block
,
no_grad_dict
,
op_desc
=
_create_op_desc_
(
"fill_constant"
,
{},
{
"Out"
:
[
_append_grad_suffix_
(
loss
.
name
)]
},
{
"shape"
:
[
1
],
"value"
:
1.0
,
"dtype"
:
loss
.
dtype
})
root_block
.
desc
.
append_op
().
copy_from
(
op_desc
)
block_no_grad_set
=
set
(
map
(
_strip_grad_suffix_
,
no_grad_dict
[
0
]))
op_path
=
_find_op_path_
(
root_block
,
[
loss
],
[],
block_no_grad_set
)
no_grad_dict
[
0
].
update
(
map
(
_append_grad_suffix_
,
block_no_grad_set
))
_append_backward_ops_
(
root_block
,
op_path
,
root_block
,
no_grad_dict
,
grad_to_var
,
callback
)
# Because calc_gradient may be called multiple times,
# we need rename the internal gradient variables so that they have
# different names.
_rename_grad_
(
root_block
,
fwd_op_num
,
grad_to_var
,
{})
_append_backward_vars_
(
root_block
,
fwd_op_num
,
grad_to_var
,
grad_info_map
)
program
.
current_block_idx
=
current_block_idx
...
...
@@ -334,6 +378,7 @@ def append_backward(loss, parameter_list=None, no_grad_set=None, callback=None):
else
:
params
=
program
.
global_block
().
all_parameters
()
parameters
=
[
param
.
name
for
param
in
params
]
params_and_grads
=
[]
for
param
in
parameters
:
if
param
not
in
grad_info_map
:
...
...
@@ -351,3 +396,147 @@ def append_backward(loss, parameter_list=None, no_grad_set=None, callback=None):
else
:
params_and_grads
.
append
((
param_var
,
None
))
return
params_and_grads
def
_as_list
(
x
):
if
x
is
None
:
return
[]
return
list
(
x
)
if
isinstance
(
x
,
collections
.
Sequence
)
else
[
x
]
def
_find_op_path_
(
block
,
outputs
,
inputs
,
no_grad_set
):
"""
no_grad_set will also be changed
"""
input_names
=
set
([
inp
.
name
for
inp
in
inputs
])
output_names
=
set
([
out
.
name
for
out
in
outputs
])
relevant_op_flags
=
[
True
]
*
len
(
block
.
ops
)
# All the inputs of the block are used if inputs is empty,
if
inputs
:
for
i
,
op
in
enumerate
(
block
.
ops
):
if
_some_in_set_
(
op
.
desc
.
input_arg_names
(),
input_names
):
for
name
in
op
.
desc
.
output_arg_names
():
if
name
not
in
no_grad_set
:
input_names
.
add
(
name
)
else
:
relevant_op_flags
[
i
]
=
False
for
i
,
op
in
reversed
(
list
(
enumerate
(
block
.
ops
))):
if
_some_in_set_
(
op
.
desc
.
output_arg_names
(),
output_names
):
for
name
in
op
.
desc
.
input_arg_names
():
if
name
not
in
no_grad_set
:
output_names
.
add
(
name
)
else
:
relevant_op_flags
[
i
]
=
False
op_path
=
[
block
.
ops
[
i
]
for
i
in
range
(
len
(
block
.
ops
))
if
relevant_op_flags
[
i
]
]
if
inputs
:
for
op
in
op_path
:
for
name
in
op
.
desc
.
input_arg_names
():
if
name
not
in
input_names
:
no_grad_set
.
add
(
name
)
return
op_path
def
calc_gradient
(
targets
,
inputs
,
target_gradients
=
None
,
no_grad_set
=
None
):
"""
Backpropagate the graidents of targets to inputs.
Args:
targets(Variable|list[Variable]): The target variables
inputs(Variable|list[Variable]): The input variables
no_grad_set(set[string]): The names of variables that have no gradients
in Block 0. All variables with `stop_gradient=True` from all blocks
will be automatically added.
Return:
(list[Variable]): list of gradients for inputs
If an input does not affect targets, the corresponding gradient variable
will be None
"""
targets
=
_as_list
(
targets
)
inputs
=
_as_list
(
inputs
)
target_gradients
=
_as_list
(
target_gradients
)
block
=
targets
[
0
].
block
prog
=
block
.
program
block_idx
=
block
.
idx
if
not
target_gradients
:
target_gradients
=
[
None
]
*
len
(
targets
)
if
len
(
targets
)
!=
len
(
target_gradients
):
raise
ValueError
(
"Should have the same number of target_gradients as targets"
)
if
no_grad_set
is
None
:
no_grad_set
=
set
()
no_grad_set
=
copy
.
copy
(
no_grad_set
)
no_grad_dict
=
_get_stop_gradients_
(
prog
)
no_grad_dict
[
0
].
update
(
map
(
_append_grad_suffix_
,
no_grad_set
))
fwd_op_num
=
block
.
desc
.
op_size
()
target_grad_map
=
{}
for
i
,
grad
in
enumerate
(
target_gradients
):
target
=
targets
[
i
]
if
grad
is
None
:
grad_name
=
_append_grad_suffix_
(
target
.
name
)
op_desc
=
_create_op_desc_
(
"fill_constant_batch_size_like"
,
{
"Input"
:
[
target
.
name
]},
{
"Out"
:
[
grad_name
]},
{
"shape"
:
target
.
shape
,
"value"
:
1.0
,
"dtype"
:
target
.
dtype
,
'input_dim_idx'
:
0
,
'output_dim_idx'
:
0
})
block
.
desc
.
append_op
().
copy_from
(
op_desc
)
else
:
if
target
.
block
.
idx
!=
block_idx
or
target
.
block
.
program
!=
prog
:
raise
ValueError
(
"all targets must be in the same block"
)
if
target
.
shape
!=
grad
.
shape
:
raise
ValueError
(
"The shapes of target and grad are different: %s %s"
%
(
target
.
name
,
grad
.
name
))
target_grad_map
[
_append_grad_suffix_
(
target
.
name
)]
=
grad
.
name
for
input
in
inputs
:
if
input
.
block
.
program
!=
prog
:
raise
"input must be in the same program as targets"
block_no_grad_set
=
set
(
map
(
_strip_grad_suffix_
,
no_grad_dict
[
0
]))
op_path
=
_find_op_path_
(
block
,
targets
,
inputs
,
block_no_grad_set
)
no_grad_dict
[
0
].
update
(
map
(
_append_grad_suffix_
,
block_no_grad_set
))
grad_to_var
=
dict
()
grad_info_map
=
dict
()
_append_backward_ops_
(
block
,
op_path
,
block
,
no_grad_dict
,
grad_to_var
)
# Because calc_gradient may be called multiple times,
# we need rename the internal gradient variables so that they have
# different names.
_rename_grad_
(
block
,
fwd_op_num
,
grad_to_var
,
target_grad_map
)
_append_backward_vars_
(
block
,
fwd_op_num
,
grad_to_var
,
grad_info_map
)
prog
.
sync_with_cpp
()
grad_vars
=
[]
for
input_var
in
inputs
:
if
input_var
.
name
not
in
grad_info_map
:
grad_vars
.
append
(
None
)
else
:
grad_info
=
grad_info_map
[
input_var
.
name
]
grad_block
=
grad_info
[
1
]
grad_var
=
grad_block
.
var
(
grad_info
[
0
])
grad_vars
.
append
(
grad_var
)
if
len
(
grad_vars
)
==
1
:
return
grad_vars
[
0
]
else
:
return
grad_vars
python/paddle/v2/fluid/layers/ops.py
浏览文件 @
df927768
from
..registry
import
register_layer
__activations__
=
[
'abs'
,
'tanh'
,
'sigmoid'
,
'relu'
,
'sqrt'
,
'ceil'
,
'floor'
,
'log'
,
'round'
'abs'
,
'ceil'
,
'exp'
,
'floor'
,
'log'
,
'relu'
,
'round'
,
'sigmoid'
,
'sqrt'
,
'square'
,
'tanh'
,
]
__all__
=
[
...
...
python/paddle/v2/fluid/layers/tensor.py
浏览文件 @
df927768
from
..layer_helper
import
LayerHelper
from
..param_attr
import
ParamAttr
__all__
=
[
'create_tensor'
,
'cast'
,
'concat'
,
'sums'
,
'assign'
,
'create_tensor'
,
'c
reate_parameter'
,
'c
ast'
,
'concat'
,
'sums'
,
'assign'
,
'fill_constant_batch_size_like'
,
'fill_constant'
,
'ones'
,
'zeros'
]
...
...
@@ -11,6 +12,33 @@ def create_tensor(dtype, name=None):
return
helper
.
create_variable
(
name
=
helper
.
name
,
dtype
=
dtype
)
def
create_parameter
(
shape
,
dtype
,
attr
=
None
,
is_bias
=
False
,
default_initializer
=
None
):
"""
Create a parameter
Args:
shape(list[int]): shape of the parameter
dtype(string): element type of the parameter
attr(ParamAttr): attributes of the parameter
is_bias(bool): This can affect which default initializer is chosen
when default_initializer is None. If is_bias,
initializer.Constant(0.0) will be used. Otherwise,
Xavier() will be used.
default_initializer(Initializer): initializer for the parameter
Returns:
Parameter: the created parameter
"""
helper
=
LayerHelper
(
"create_parameter"
)
if
attr
is
None
:
attr
=
ParamAttr
()
return
helper
.
create_parameter
(
attr
,
shape
,
dtype
,
is_bias
,
default_initializer
)
def
cast
(
x
,
dtype
):
"""
This function takes in the input with input_dtype
...
...
@@ -180,7 +208,8 @@ def fill_constant_batch_size_like(input,
Examples:
.. code-block:: python
data = fluid.layers.fill_constant(shape=[1], value=0, dtype='int64')
data = fluid.layers.fill_constant_batch_size_like(
input=like, shape=[1], value=0, dtype='int64')
"""
helper
=
LayerHelper
(
"fill_constant_batch_size_like"
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
dtype
=
dtype
)
...
...
python/paddle/v2/fluid/tests/test_calc_gradient.py
0 → 100644
浏览文件 @
df927768
import
unittest
import
paddle.v2.fluid
as
fluid
import
paddle.v2.fluid.layers
as
layers
import
paddle.v2.fluid.framework
as
framework
import
paddle.v2.fluid.optimizer
as
optimizer
from
paddle.v2.fluid.backward
import
calc_gradient
class
TestCalcGradient
(
unittest
.
TestCase
):
def
test_calc_gradient
(
self
):
x
=
layers
.
create_parameter
(
dtype
=
"float32"
,
shape
=
[
5
,
10
])
y
=
layers
.
create_parameter
(
dtype
=
"float32"
,
shape
=
[
10
,
8
])
mul_out
=
layers
.
mul
(
x
=
x
,
y
=
y
)
mean_out
=
layers
.
mean
(
x
=
mul_out
)
a
=
calc_gradient
(
mean_out
,
mul_out
)
b
=
calc_gradient
(
mean_out
,
x
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{},
fetch_list
=
[
a
,
b
])
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录