diff --git a/paddle/function/GemmConvOp.cpp b/paddle/function/GemmConvOp.cpp index de7b70e271b38ebe3a4c38704d0cced47d010788..08eb6a54902c44bdf84bb082598f36d20d0c8822 100644 --- a/paddle/function/GemmConvOp.cpp +++ b/paddle/function/GemmConvOp.cpp @@ -134,6 +134,154 @@ public: } }; +/* + * \brief Forward calculation of convolution, optimized for mobile. + */ +template +class GemmConvMobileFunction : public ConvFunctionBase { +public: + void init(const FuncConfig& config) override { + ConvFunctionBase::init(config); + } + + void check(const BufferArgs& inputs, const BufferArgs& outputs) override { + const TensorShape& input = inputs[0].shape(); + const TensorShape& filter = inputs[1].shape(); + const TensorShape& output = outputs[0].shape(); + checkShape(input, filter, output); + } + + void calc(const BufferArgs& inputs, const BufferArgs& outputs) override { + CHECK_EQ(numInputs_, inputs.size()); + CHECK_EQ(numOutputs_, outputs.size()); + check(inputs, outputs); + // TODO(hedaoyuan): Need to define some index macros, + // to avoid useing 0 and 1. + const TensorShape& input = inputs[0].shape(); + const TensorShape& filter = inputs[1].shape(); + const TensorShape& output = outputs[0].shape(); + + real beta; + if (outputs[0].getArgType() == ADD_TO) { + beta = 1.0; + } else { + beta = 0.0; + } + + size_t batchSize = input[0]; + size_t inputChannels = input[1]; + size_t inputHeight = input[2]; + size_t inputWidth = input[3]; + size_t filterHeight = getFilterHeight(filter); + size_t filterWidth = getFilterWidth(filter); + size_t outputChannels = output[1]; + size_t outputHeight = output[2]; + size_t outputWidth = output[3]; + + real* inputData = inputs[0].data(); + real* filterData = inputs[1].data(); + real* outputData = outputs[0].data(); + bool needIm2col = isNeedIm2col(filter); + + TensorShape imShape = + TensorShape({inputChannels / groups_, inputHeight, inputWidth}); + + TensorShape colShape; + real* colData = NULL; + + size_t colHeight = inputChannels / groups_ * filterHeight * filterWidth; + size_t colWidth = outputHeight * outputWidth; + // Max col matrix height 256, Max col matrix width 1024 + size_t stepColHeight = std::min(colHeight, (size_t)256); + size_t stepColWidth = std::min(colWidth, (size_t)2048); + + if (needIm2col) { + colShape = TensorShape({inputChannels / groups_, + filterHeight, + filterWidth, + outputHeight, + outputWidth}); + + resizeBuffer(stepColHeight * stepColWidth * sizeof(real)); + colData = reinterpret_cast(memory_->getBuf()); + } + + Im2ColFunctor im2col; + GemmFunctor gemm; + size_t inputOffset = imShape.getElements(); + size_t outputOffset = + (outputChannels / groups_) * outputHeight * outputWidth; + size_t filterOffset = filter.getElements() / groups_; + + int nStride = colWidth; + int kStride = colHeight; + for (size_t i = 0; i < batchSize; i++) { + for (size_t g = 0; g < groups_; g++) { + if (needIm2col) { + real beta_ = beta; + for (size_t colHeightStart = 0; colHeightStart < colHeight; + colHeightStart += stepColHeight) { + for (size_t colWidthStart = 0; colWidthStart < colWidth; + colWidthStart += stepColWidth) { + int N = std::min(colWidth - colWidthStart, stepColWidth); + int K = std::min(colHeight - colHeightStart, stepColHeight); + // im2col + im2col(inputData + g * inputOffset, + imShape, + colData, + colShape, + strideH(), + strideW(), + paddingH(), + paddingW(), + colHeightStart, + K, + colWidthStart, + N); + + // gemm + int M = outputChannels / groups_; + gemm(CblasNoTrans, + CblasNoTrans, + M, + N, + K, + 1.0f, + filterData + g * filterOffset + colHeightStart, + kStride, + colData, + N, + beta_, + outputData + g * outputOffset + colWidthStart, + nStride); + } + beta_ = 1.0; + } + } else { + int M = outputChannels / groups_; + int N = outputHeight * outputWidth; + int K = inputChannels / groups_ * filterHeight * filterWidth; + gemm(CblasNoTrans, + CblasNoTrans, + M, + N, + K, + 1.0f, + filterData + g * filterOffset, + K, + inputData + g * inputOffset, + N, + beta, + outputData + g * outputOffset, + N); + } + } + inputData += inputChannels * inputHeight * inputWidth; + outputData += outputChannels * outputHeight * outputWidth; + } + } +}; + /* * \brief Backward input calculation of convolution. */ @@ -348,7 +496,11 @@ public: } }; +#ifdef PADDLE_MOBILE_INFERENCE +REGISTER_TYPED_FUNC(GemmConv, CPU, GemmConvMobileFunction); +#else REGISTER_TYPED_FUNC(GemmConv, CPU, GemmConvFunction); +#endif REGISTER_TYPED_FUNC(GemmConvGradInput, CPU, GemmConvGradInputFunction); REGISTER_TYPED_FUNC(GemmConvGradFilter, CPU, GemmConvGradFilterFunction); #ifdef PADDLE_WITH_CUDA