diff --git a/paddle/fluid/API.spec b/paddle/fluid/API.spec index 3c588b1d16cca498c4cff4edd3494b69b8fd33cf..354ca563eb3be4c036ebb601c0278c6f41fe1c9f 100644 --- a/paddle/fluid/API.spec +++ b/paddle/fluid/API.spec @@ -49,7 +49,7 @@ paddle.fluid.initializer.BilinearInitializer.__init__ ArgSpec(args=['self'], var paddle.fluid.initializer.MSRAInitializer.__init__ ArgSpec(args=['self', 'uniform', 'fan_in', 'seed'], varargs=None, keywords=None, defaults=(True, None, 0)) paddle.fluid.initializer.force_init_on_cpu ArgSpec(args=[], varargs=None, keywords=None, defaults=None) paddle.fluid.initializer.init_on_cpu ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None) -paddle.fluid.layers.fc ArgSpec(args=['input', 'size', 'num_flatten_dims', 'param_attr', 'bias_attr', 'use_mkldnn', 'act', 'is_test', 'name'], varargs=None, keywords=None, defaults=(1, None, None, False, None, False, None)) +paddle.fluid.layers.fc ArgSpec(args=['input', 'size', 'num_flatten_dims', 'param_attr', 'bias_attr', 'act', 'is_test', 'name'], varargs=None, keywords=None, defaults=(1, None, None, None, False, None)) paddle.fluid.layers.embedding ArgSpec(args=['input', 'size', 'is_sparse', 'is_distributed', 'padding_idx', 'param_attr', 'dtype'], varargs=None, keywords=None, defaults=(False, False, None, None, 'float32')) paddle.fluid.layers.dynamic_lstm ArgSpec(args=['input', 'size', 'h_0', 'c_0', 'param_attr', 'bias_attr', 'use_peepholes', 'is_reverse', 'gate_activation', 'cell_activation', 'candidate_activation', 'dtype', 'name'], varargs=None, keywords=None, defaults=(None, None, None, None, True, False, 'sigmoid', 'tanh', 'tanh', 'float32', None)) paddle.fluid.layers.dynamic_lstmp ArgSpec(args=['input', 'size', 'proj_size', 'param_attr', 'bias_attr', 'use_peepholes', 'is_reverse', 'gate_activation', 'cell_activation', 'candidate_activation', 'proj_activation', 'dtype', 'name'], varargs=None, keywords=None, defaults=(None, None, True, False, 'sigmoid', 'tanh', 'tanh', 'tanh', 'float32', None)) @@ -62,14 +62,14 @@ paddle.fluid.layers.cross_entropy ArgSpec(args=['input', 'label', 'soft_label', paddle.fluid.layers.square_error_cost ArgSpec(args=['input', 'label'], varargs=None, keywords=None, defaults=None) paddle.fluid.layers.chunk_eval ArgSpec(args=['input', 'label', 'chunk_scheme', 'num_chunk_types', 'excluded_chunk_types'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.layers.sequence_conv ArgSpec(args=['input', 'num_filters', 'filter_size', 'filter_stride', 'padding', 'bias_attr', 'param_attr', 'act'], varargs=None, keywords=None, defaults=(3, 1, None, None, None, None)) -paddle.fluid.layers.conv2d ArgSpec(args=['input', 'num_filters', 'filter_size', 'stride', 'padding', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(1, 0, 1, None, None, None, True, False, None, None)) -paddle.fluid.layers.conv3d ArgSpec(args=['input', 'num_filters', 'filter_size', 'stride', 'padding', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(1, 0, 1, None, None, None, True, False, None, None)) +paddle.fluid.layers.conv2d ArgSpec(args=['input', 'num_filters', 'filter_size', 'stride', 'padding', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name'], varargs=None, keywords=None, defaults=(1, 0, 1, None, None, None, True, None, None)) +paddle.fluid.layers.conv3d ArgSpec(args=['input', 'num_filters', 'filter_size', 'stride', 'padding', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name'], varargs=None, keywords=None, defaults=(1, 0, 1, None, None, None, True, None, None)) paddle.fluid.layers.sequence_pool ArgSpec(args=['input', 'pool_type'], varargs=None, keywords=None, defaults=None) paddle.fluid.layers.sequence_softmax ArgSpec(args=['input', 'param_attr', 'bias_attr', 'use_cudnn'], varargs=None, keywords=None, defaults=(None, None, False)) paddle.fluid.layers.softmax ArgSpec(args=['input', 'param_attr', 'bias_attr', 'use_cudnn', 'name'], varargs=None, keywords=None, defaults=(None, None, True, None)) -paddle.fluid.layers.pool2d ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'use_mkldnn', 'name'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, False, None)) -paddle.fluid.layers.pool3d ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'use_mkldnn', 'name'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, False, None)) -paddle.fluid.layers.batch_norm ArgSpec(args=['input', 'act', 'is_test', 'momentum', 'epsilon', 'param_attr', 'bias_attr', 'data_layout', 'in_place', 'use_mkldnn', 'name', 'moving_mean_name', 'moving_variance_name', 'do_model_average_for_mean_and_var', 'fuse_with_relu'], varargs=None, keywords=None, defaults=(None, False, 0.9, 1e-05, None, None, 'NCHW', False, False, None, None, None, False, False)) +paddle.fluid.layers.pool2d ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'name'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, None)) +paddle.fluid.layers.pool3d ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'name'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, None)) +paddle.fluid.layers.batch_norm ArgSpec(args=['input', 'act', 'is_test', 'momentum', 'epsilon', 'param_attr', 'bias_attr', 'data_layout', 'in_place', 'name', 'moving_mean_name', 'moving_variance_name', 'do_model_average_for_mean_and_var', 'fuse_with_relu'], varargs=None, keywords=None, defaults=(None, False, 0.9, 1e-05, None, None, 'NCHW', False, None, None, None, False, False)) paddle.fluid.layers.beam_search_decode ArgSpec(args=['ids', 'scores', 'beam_size', 'end_id', 'name'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.layers.conv2d_transpose ArgSpec(args=['input', 'num_filters', 'output_size', 'filter_size', 'padding', 'stride', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, None, 0, 1, 1, None, None, None, True, None, None)) paddle.fluid.layers.conv3d_transpose ArgSpec(args=['input', 'num_filters', 'output_size', 'filter_size', 'padding', 'stride', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, None, 0, 1, 1, None, None, None, True, None, None)) @@ -145,21 +145,31 @@ paddle.fluid.layers.unstack ArgSpec(args=['x', 'axis', 'num'], varargs=None, key paddle.fluid.layers.sequence_enumerate ArgSpec(args=['input', 'win_size', 'pad_value', 'name'], varargs=None, keywords=None, defaults=(0, None)) paddle.fluid.layers.expand ArgSpec(args=['x', 'expand_times', 'name'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.layers.sequence_concat ArgSpec(args=['input', 'name'], varargs=None, keywords=None, defaults=(None,)) -paddle.fluid.layers.scale ArgSpec(args=['x', 'scale', 'bias', 'bias_after_scale', 'out', 'act', 'name'], varargs=None, keywords=None, defaults=(1.0, 0.0, True, None, None, None)) -paddle.fluid.layers.elementwise_add ArgSpec(args=['x', 'y', 'out', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, -1, False, None, None)) -paddle.fluid.layers.elementwise_div ArgSpec(args=['x', 'y', 'out', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, -1, False, None, None)) -paddle.fluid.layers.elementwise_sub ArgSpec(args=['x', 'y', 'out', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, -1, False, None, None)) -paddle.fluid.layers.elementwise_mul ArgSpec(args=['x', 'y', 'out', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, -1, False, None, None)) -paddle.fluid.layers.elementwise_max ArgSpec(args=['x', 'y', 'out', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, -1, False, None, None)) -paddle.fluid.layers.elementwise_min ArgSpec(args=['x', 'y', 'out', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, -1, False, None, None)) -paddle.fluid.layers.elementwise_pow ArgSpec(args=['x', 'y', 'out', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, -1, False, None, None)) +paddle.fluid.layers.scale ArgSpec(args=['x', 'scale', 'bias', 'bias_after_scale', 'act', 'name'], varargs=None, keywords=None, defaults=(1.0, 0.0, True, None, None)) +paddle.fluid.layers.elementwise_add ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)) +paddle.fluid.layers.elementwise_div ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)) +paddle.fluid.layers.elementwise_sub ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)) +paddle.fluid.layers.elementwise_mul ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)) +paddle.fluid.layers.elementwise_max ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)) +paddle.fluid.layers.elementwise_min ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)) +paddle.fluid.layers.elementwise_pow ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)) paddle.fluid.layers.uniform_random_batch_size_like ArgSpec(args=['input', 'shape', 'dtype', 'input_dim_idx', 'output_dim_idx', 'min', 'max', 'seed'], varargs=None, keywords=None, defaults=('float32', 0, 0, -1.0, 1.0, 0)) -paddle.fluid.layers.gaussian_random ArgSpec(args=['shape', 'mean', 'std', 'seed', 'dtype', 'use_mkldnn'], varargs=None, keywords=None, defaults=(0.0, 1.0, 0, 'float32', False)) +paddle.fluid.layers.gaussian_random ArgSpec(args=['shape', 'mean', 'std', 'seed', 'dtype'], varargs=None, keywords=None, defaults=(0.0, 1.0, 0, 'float32')) paddle.fluid.layers.sampling_id ArgSpec(args=['x', 'min', 'max', 'seed', 'dtype'], varargs=None, keywords=None, defaults=(0.0, 1.0, 0, 'float32')) paddle.fluid.layers.gaussian_random_batch_size_like ArgSpec(args=['input', 'shape', 'input_dim_idx', 'output_dim_idx', 'mean', 'std', 'seed', 'dtype'], varargs=None, keywords=None, defaults=(0, 0, 0.0, 1.0, 0, 'float32')) -paddle.fluid.layers.sum ArgSpec(args=['x', 'use_mkldnn'], varargs=None, keywords=None, defaults=(False,)) +paddle.fluid.layers.sum ArgSpec(args=['x'], varargs=None, keywords=None, defaults=None) paddle.fluid.layers.slice ArgSpec(args=['input', 'axes', 'starts', 'ends'], varargs=None, keywords=None, defaults=None) paddle.fluid.layers.shape ArgSpec(args=['input'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.logical_and ArgSpec(args=['x', 'y', 'out', 'name'], varargs=None, keywords=None, defaults=(None, None)) +paddle.fluid.layers.logical_or ArgSpec(args=['x', 'y', 'out', 'name'], varargs=None, keywords=None, defaults=(None, None)) +paddle.fluid.layers.logical_xor ArgSpec(args=['x', 'y', 'out', 'name'], varargs=None, keywords=None, defaults=(None, None)) +paddle.fluid.layers.logical_not ArgSpec(args=['x', 'out', 'name'], varargs=None, keywords=None, defaults=(None, None)) +paddle.fluid.layers.clip ArgSpec(args=['x', 'min', 'max', 'name'], varargs=None, keywords=None, defaults=(None,)) +paddle.fluid.layers.clip_by_norm ArgSpec(args=['x', 'max_norm', 'name'], varargs=None, keywords=None, defaults=(None,)) +paddle.fluid.layers.mean ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)) +paddle.fluid.layers.mul ArgSpec(args=['x', 'y', 'x_num_col_dims', 'y_num_col_dims', 'name'], varargs=None, keywords=None, defaults=(1, 1, None)) +paddle.fluid.layers.sigmoid_cross_entropy_with_logits ArgSpec(args=['x', 'label', 'name'], varargs=None, keywords=None, defaults=(None,)) +paddle.fluid.layers.maxout ArgSpec(args=['x', 'groups', 'name'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.layers.data ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True)) paddle.fluid.layers.open_files ArgSpec(args=['filenames', 'shapes', 'lod_levels', 'dtypes', 'thread_num', 'buffer_size', 'pass_num', 'is_test'], varargs=None, keywords=None, defaults=(None, None, 1, None)) paddle.fluid.layers.read_file ArgSpec(args=['reader'], varargs=None, keywords=None, defaults=None) @@ -222,16 +232,6 @@ paddle.fluid.layers.StaticRNN.update_memory ArgSpec(args=['self', 'mem', 'var'], paddle.fluid.layers.reorder_lod_tensor_by_rank ArgSpec(args=['x', 'rank_table'], varargs=None, keywords=None, defaults=None) paddle.fluid.layers.Print ArgSpec(args=['input', 'first_n', 'message', 'summarize', 'print_tensor_name', 'print_tensor_type', 'print_tensor_shape', 'print_tensor_lod', 'print_phase'], varargs=None, keywords=None, defaults=(-1, None, -1, True, True, True, True, 'both')) paddle.fluid.layers.is_empty ArgSpec(args=['x', 'cond'], varargs=None, keywords='ignored', defaults=(None,)) -paddle.fluid.layers.mean ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) -paddle.fluid.layers.mul ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) -paddle.fluid.layers.sigmoid_cross_entropy_with_logits ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) -paddle.fluid.layers.clip ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) -paddle.fluid.layers.clip_by_norm ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) -paddle.fluid.layers.logical_and ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) -paddle.fluid.layers.logical_or ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) -paddle.fluid.layers.logical_xor ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) -paddle.fluid.layers.logical_not ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) -paddle.fluid.layers.maxout ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) paddle.fluid.layers.sigmoid ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.layers.logsigmoid ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.layers.exp ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)) @@ -265,11 +265,11 @@ paddle.fluid.layers.anchor_generator ArgSpec(args=['input', 'anchor_sizes', 'asp paddle.fluid.layers.roi_perspective_transform ArgSpec(args=['input', 'rois', 'transformed_height', 'transformed_width', 'spatial_scale'], varargs=None, keywords=None, defaults=(1.0,)) paddle.fluid.layers.generate_proposal_labels ArgSpec(args=['rpn_rois', 'gt_classes', 'is_crowd', 'gt_boxes', 'im_info', 'batch_size_per_im', 'fg_fraction', 'fg_thresh', 'bg_thresh_hi', 'bg_thresh_lo', 'bbox_reg_weights', 'class_nums', 'use_random'], varargs=None, keywords=None, defaults=(256, 0.25, 0.25, 0.5, 0.0, [0.1, 0.1, 0.2, 0.2], None, True)) paddle.fluid.layers.generate_proposals ArgSpec(args=['scores', 'bbox_deltas', 'im_info', 'anchors', 'variances', 'pre_nms_top_n', 'post_nms_top_n', 'nms_thresh', 'min_size', 'eta', 'name'], varargs=None, keywords=None, defaults=(6000, 1000, 0.5, 0.1, 1.0, None)) -paddle.fluid.layers.iou_similarity ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) -paddle.fluid.layers.box_coder ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) -paddle.fluid.layers.polygon_box_transform ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) +paddle.fluid.layers.iou_similarity ArgSpec(args=['x', 'y', 'name'], varargs=None, keywords=None, defaults=(None,)) +paddle.fluid.layers.box_coder ArgSpec(args=['prior_box', 'prior_box_var', 'target_box', 'code_type', 'box_normalized', 'name'], varargs=None, keywords=None, defaults=('encode_center_size', True, None)) +paddle.fluid.layers.polygon_box_transform ArgSpec(args=['input', 'name'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.layers.accuracy ArgSpec(args=['input', 'label', 'k', 'correct', 'total'], varargs=None, keywords=None, defaults=(1, None, None)) -paddle.fluid.layers.auc ArgSpec(args=['input', 'label', 'curve', 'num_thresholds', 'topk'], varargs=None, keywords=None, defaults=('ROC', 4095, 1)) +paddle.fluid.layers.auc ArgSpec(args=['input', 'label', 'curve', 'num_thresholds', 'topk', 'slide_steps'], varargs=None, keywords=None, defaults=('ROC', 4095, 1, 1)) paddle.fluid.layers.exponential_decay ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,)) paddle.fluid.layers.natural_exp_decay ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,)) paddle.fluid.layers.inverse_time_decay ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,)) @@ -313,11 +313,11 @@ paddle.fluid.transpiler.RoundRobin.__init__ ArgSpec(args=['self', 'pserver_endpo paddle.fluid.transpiler.RoundRobin.dispatch ArgSpec(args=['self', 'varlist'], varargs=None, keywords=None, defaults=None) paddle.fluid.transpiler.RoundRobin.reset ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) paddle.fluid.transpiler.DistributeTranspilerConfig.__init__ -paddle.fluid.nets.simple_img_conv_pool ArgSpec(args=['input', 'num_filters', 'filter_size', 'pool_size', 'pool_stride', 'pool_padding', 'pool_type', 'global_pooling', 'conv_stride', 'conv_padding', 'conv_dilation', 'conv_groups', 'param_attr', 'bias_attr', 'act', 'use_cudnn', 'use_mkldnn'], varargs=None, keywords=None, defaults=(0, 'max', False, 1, 0, 1, 1, None, None, None, True, False)) +paddle.fluid.nets.simple_img_conv_pool ArgSpec(args=['input', 'num_filters', 'filter_size', 'pool_size', 'pool_stride', 'pool_padding', 'pool_type', 'global_pooling', 'conv_stride', 'conv_padding', 'conv_dilation', 'conv_groups', 'param_attr', 'bias_attr', 'act', 'use_cudnn'], varargs=None, keywords=None, defaults=(0, 'max', False, 1, 0, 1, 1, None, None, None, True)) paddle.fluid.nets.sequence_conv_pool ArgSpec(args=['input', 'num_filters', 'filter_size', 'param_attr', 'act', 'pool_type'], varargs=None, keywords=None, defaults=(None, 'sigmoid', 'max')) paddle.fluid.nets.glu ArgSpec(args=['input', 'dim'], varargs=None, keywords=None, defaults=(-1,)) paddle.fluid.nets.scaled_dot_product_attention ArgSpec(args=['queries', 'keys', 'values', 'num_heads', 'dropout_rate'], varargs=None, keywords=None, defaults=(1, 0.0)) -paddle.fluid.nets.img_conv_group ArgSpec(args=['input', 'conv_num_filter', 'pool_size', 'conv_padding', 'conv_filter_size', 'conv_act', 'param_attr', 'conv_with_batchnorm', 'conv_batchnorm_drop_rate', 'pool_stride', 'pool_type', 'use_cudnn', 'use_mkldnn'], varargs=None, keywords=None, defaults=(1, 3, None, None, False, 0.0, 1, 'max', True, False)) +paddle.fluid.nets.img_conv_group ArgSpec(args=['input', 'conv_num_filter', 'pool_size', 'conv_padding', 'conv_filter_size', 'conv_act', 'param_attr', 'conv_with_batchnorm', 'conv_batchnorm_drop_rate', 'pool_stride', 'pool_type', 'use_cudnn'], varargs=None, keywords=None, defaults=(1, 3, None, None, False, 0.0, 1, 'max', True)) paddle.fluid.optimizer.SGDOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'regularization', 'name'], varargs=None, keywords=None, defaults=(None, None)) paddle.fluid.optimizer.SGDOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None)) paddle.fluid.optimizer.MomentumOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'momentum', 'use_nesterov', 'regularization', 'name'], varargs=None, keywords=None, defaults=(False, None, None)) diff --git a/paddle/fluid/framework/CMakeLists.txt b/paddle/fluid/framework/CMakeLists.txt index 6d8cbe5d9e491555a94e9420995149041213ab79..190cc5fc3889005924b54cb6bfea0014f901e61a 100644 --- a/paddle/fluid/framework/CMakeLists.txt +++ b/paddle/fluid/framework/CMakeLists.txt @@ -167,15 +167,8 @@ cc_test(selected_rows_test SRCS selected_rows_test.cc DEPS selected_rows) cc_test(op_kernel_type_test SRCS op_kernel_type_test.cc DEPS place device_context framework_proto) cc_test(cow_ptr_tests SRCS details/cow_ptr_test.cc) -# cc_test(channel_test SRCS channel_test.cc) cc_test(tuple_test SRCS tuple_test.cc ) if (NOT WIN32) cc_test(rw_lock_test SRCS rw_lock_test.cc) endif (NOT WIN32) - -# disable test temporarily. -# TODO https://github.com/PaddlePaddle/Paddle/issues/11971 -# cc_test(concurrency_test SRCS concurrency_test.cc DEPS go_op channel_close_op channel_create_op -# channel_send_op channel_recv_op sum_op select_op elementwise_add_op compare_op -# conditional_block_op while_op assign_op print_op executor proto_desc) diff --git a/paddle/fluid/framework/channel.h b/paddle/fluid/framework/channel.h deleted file mode 100644 index 722bf8e8ecba0c9cbc5e3ad737dbf73148d2873c..0000000000000000000000000000000000000000 --- a/paddle/fluid/framework/channel.h +++ /dev/null @@ -1,291 +0,0 @@ -/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. */ - -#pragma once - -#include // for size_t -#include // NOLINT -#include -#include "paddle/fluid/platform/enforce.h" - -namespace paddle { -namespace framework { - -enum class ChannelAction { - SEND = 0, - RECEIVE = 1, - CLOSE = 2, -}; - -// Channel is the abstract class of buffered and un-buffered channels. -template -class Channel { - public: - virtual bool CanSend() = 0; - virtual bool CanReceive() = 0; - virtual void Send(T*) = 0; - virtual bool Receive(T*) = 0; - virtual size_t Cap() = 0; - virtual void Lock() = 0; - - virtual void Unlock() = 0; - virtual bool IsClosed() = 0; - virtual void Close() = 0; - virtual ~Channel() {} - - virtual void AddToSendQ(const void* referrer, T* data, - std::shared_ptr cond, - std::function cb) = 0; - virtual void AddToReceiveQ(const void* referrer, T* data, - std::shared_ptr cond, - std::function cb) = 0; - virtual void RemoveFromSendQ(const void* referrer) = 0; - virtual void RemoveFromReceiveQ(const void* referrer) = 0; -}; - -// Forward declaration of channel implementations. -template -class ChannelImpl; - -template -Channel* MakeChannel(size_t buffer_size) { - return new ChannelImpl(buffer_size); -} - -template -void CloseChannel(Channel* ch) { - ch->Close(); -} - -/* - * The ChannelHolder class serves two main purposes: - * 1. It acts as a unified wrapper for the different kinds of - * channels, i.e. Buffered and Unbuffered channels. This is - * similar to the ReaderHolder class. - * 2. It also helps us in TypeHiding. This is similar to the - * PlaceHolder implementations in variable.h and tensor.h. - */ -class ChannelHolder { - public: - template - void Reset(size_t buffer_size) { - holder_.reset(new PlaceholderImpl(buffer_size)); - } - - template - void Send(T* data) { - PADDLE_ENFORCE_EQ(IsInitialized(), true, - "The Channel hasn't been initialized"); - PADDLE_ENFORCE_EQ( - holder_->Type(), std::type_index(typeid(T)), - "Channel type is not same as the type of the data being sent"); - // Static cast should be safe because we have ensured that types are same - Channel* channel = static_cast*>(holder_->Ptr()); - PADDLE_ENFORCE_EQ(channel != nullptr, true, "Channel should not be null."); - channel->Send(data); - } - - template - bool Receive(T* data) { - PADDLE_ENFORCE_EQ(IsInitialized(), true, - "The Channel hasn't been initialized"); - PADDLE_ENFORCE_EQ( - holder_->Type(), std::type_index(typeid(T)), - "Channel type is not same as the type of the data being sent"); - Channel* channel = static_cast*>(holder_->Ptr()); - PADDLE_ENFORCE_EQ(channel != nullptr, true, "Channel should not be null."); - return channel->Receive(data); - } - - bool IsClosed() { - PADDLE_ENFORCE_EQ(IsInitialized(), true, - "The Channel hasn't been initialized"); - return holder_->IsClosed(); - } - - bool CanSend() { - PADDLE_ENFORCE_EQ(IsInitialized(), true, - "The Channel hasn't been initialized"); - return holder_->CanSend(); - } - - bool CanReceive() { - PADDLE_ENFORCE_EQ(IsInitialized(), true, - "The Channel hasn't been initialized"); - return holder_->CanReceive(); - } - - void close() { - PADDLE_ENFORCE_EQ(IsInitialized(), true, - "The Channel hasn't been initialized"); - holder_->Close(); - } - - size_t Cap() { - PADDLE_ENFORCE_EQ(IsInitialized(), true, - "The Channel hasn't been initialized"); - return holder_->Cap(); - } - - void Lock() { - PADDLE_ENFORCE_EQ(IsInitialized(), true, - "The Channel hasn't been initialized"); - holder_->Lock(); - } - - void Unlock() { - PADDLE_ENFORCE_EQ(IsInitialized(), true, - "The Channel hasn't been initialized"); - holder_->Unlock(); - } - - template - void AddToSendQ(const void* referrer, T* data, - std::shared_ptr cond, - std::function cb) { - PADDLE_ENFORCE_EQ(IsInitialized(), true, - "The Channel hasn't been initialized"); - Channel* channel = static_cast*>(holder_->Ptr()); - if (channel != nullptr) { - channel->AddToSendQ(referrer, data, cond, cb); - } - } - - template - void AddToReceiveQ(const void* referrer, T* data, - std::shared_ptr cond, - std::function cb) { - PADDLE_ENFORCE_EQ(IsInitialized(), true, - "The Channel hasn't been initialized"); - Channel* channel = static_cast*>(holder_->Ptr()); - if (channel != nullptr) { - channel->AddToReceiveQ(referrer, data, cond, cb); - } - } - - void RemoveFromSendQ(const void* referrer) { - PADDLE_ENFORCE_EQ(IsInitialized(), true, - "The Channel hasn't been initialized"); - holder_->RemoveFromSendQ(referrer); - } - - void RemoveFromReceiveQ(const void* referrer) { - PADDLE_ENFORCE_EQ(IsInitialized(), true, - "The Channel hasn't been initialized"); - holder_->RemoveFromReceiveQ(referrer); - } - - inline bool IsInitialized() const { return holder_ != nullptr; } - - inline const std::type_index Type() { - PADDLE_ENFORCE_EQ(IsInitialized(), true, - "The Channel hasn't been initialized"); - return holder_->Type(); - } - - private: - /** - * @note Placeholder hides type T, so it doesn't appear as a template - * parameter of ChannelHolder. - */ - struct Placeholder { - virtual ~Placeholder() {} - virtual const std::type_index Type() const = 0; - virtual void* Ptr() const = 0; - virtual bool IsClosed() = 0; - virtual bool CanSend() = 0; - virtual bool CanReceive() = 0; - virtual void RemoveFromSendQ(const void* referrer) = 0; - virtual void RemoveFromReceiveQ(const void* referrer) = 0; - virtual void Close() = 0; - virtual void Lock() = 0; - virtual void Unlock() = 0; - virtual size_t Cap() = 0; - }; - - template - struct PlaceholderImpl : public Placeholder { - explicit PlaceholderImpl(size_t buffer_size) - : type_(std::type_index(typeid(T))) { - channel_.reset(MakeChannel(buffer_size)); - } - - virtual const std::type_index Type() const { return type_; } - - virtual void* Ptr() const { return static_cast(channel_.get()); } - - virtual bool IsClosed() { - if (channel_) { - return channel_->IsClosed(); - } - return false; - } - - virtual bool CanSend() { - if (channel_) { - return channel_->CanSend(); - } - return false; - } - - virtual bool CanReceive() { - if (channel_) { - return channel_->CanReceive(); - } - return false; - } - - virtual void RemoveFromSendQ(const void* referrer) { - if (channel_) { - channel_->RemoveFromSendQ(referrer); - } - } - - virtual void RemoveFromReceiveQ(const void* referrer) { - if (channel_) { - channel_->RemoveFromReceiveQ(referrer); - } - } - - virtual void Close() { - if (channel_) channel_->Close(); - } - - virtual size_t Cap() { - if (channel_) - return channel_->Cap(); - else - return -1; - } - - virtual void Lock() { - if (channel_) channel_->Lock(); - } - - virtual void Unlock() { - if (channel_) channel_->Unlock(); - } - - std::unique_ptr> channel_; - const std::type_index type_; - }; - - // Pointer to a PlaceholderImpl object - std::unique_ptr holder_; -}; - -} // namespace framework -} // namespace paddle - -#include "paddle/fluid/framework/channel_impl.h" diff --git a/paddle/fluid/framework/channel_impl.h b/paddle/fluid/framework/channel_impl.h deleted file mode 100644 index 26d454534e1ae38c4f83376c0836a45781ea9101..0000000000000000000000000000000000000000 --- a/paddle/fluid/framework/channel_impl.h +++ /dev/null @@ -1,369 +0,0 @@ -/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. */ - -#pragma once -#include // for size_t -#include -#include // NOLINT -#include -#include "paddle/fluid/framework/channel.h" -#include "paddle/fluid/platform/enforce.h" - -namespace paddle { -namespace framework { - -template -class ChannelImpl : public paddle::framework::Channel { - friend Channel *paddle::framework::MakeChannel(size_t); - friend void paddle::framework::CloseChannel(Channel *); - - public: - virtual bool CanSend(); - virtual bool CanReceive(); - virtual void Send(T *); - virtual bool Receive(T *); - virtual size_t Cap() { return cap_; } - virtual void Lock(); - virtual void Unlock(); - virtual bool IsClosed(); - virtual void Close(); - explicit ChannelImpl(size_t); - virtual ~ChannelImpl(); - - virtual void AddToSendQ(const void *referrer, T *data, - std::shared_ptr cond, - std::function cb); - virtual void AddToReceiveQ(const void *referrer, T *data, - std::shared_ptr cond, - std::function cb); - - virtual void RemoveFromSendQ(const void *referrer); - virtual void RemoveFromReceiveQ(const void *referrer); - - private: - struct QueueMessage { - T *data; - std::shared_ptr cond; - bool chan_closed = false; - bool completed = false; - const void *referrer; // TODO(thuan): figure out better way to do this - std::function callback; - - explicit QueueMessage(T *item) - : data(item), cond(std::make_shared()) {} - - QueueMessage(T *item, std::shared_ptr cond) - : data(item), cond(cond) {} - - void Wait(std::unique_lock &lock) { - cond->wait(lock, [this]() { return completed; }); - } - - void Notify() { - completed = true; - cond->notify_all(); - } - }; - - void send_return() { - send_ctr--; - destructor_cond_.notify_all(); - } - - bool recv_return(bool value) { - recv_ctr--; - destructor_cond_.notify_all(); - return value; - } - - std::shared_ptr get_first_message( - std::deque> *queue, ChannelAction action) { - while (!queue->empty()) { - // Check whether this message was added by Select - // If this was added by Select then execute the callback - // to check if you can execute this message. The callback - // can return false if some other case was executed in Select. - // In that case just discard this QueueMessage and process next. - std::shared_ptr m = queue->front(); - queue->pop_front(); - if (m->callback == nullptr || m->callback(action)) return m; - } - return nullptr; - } - - size_t cap_; - std::recursive_mutex mu_; - bool closed_; - std::deque buf_; - std::deque> recvq; - std::deque> sendq; - std::atomic send_ctr{0}; - std::atomic recv_ctr{0}; - std::condition_variable_any destructor_cond_; -}; - -template -ChannelImpl::ChannelImpl(size_t capacity) - : cap_(capacity), closed_(false), send_ctr(0), recv_ctr(0) { - PADDLE_ENFORCE_GE(capacity, 0); -} - -template -bool ChannelImpl::CanSend() { - std::lock_guard lock{mu_}; - return !closed_ && (!recvq.empty() || buf_.size() < cap_); -} - -template -bool ChannelImpl::CanReceive() { - std::lock_guard lock{mu_}; - return !(closed_ && buf_.empty()) && (!sendq.empty() || buf_.size() > 0); -} - -template -void ChannelImpl::Send(T *item) { - send_ctr++; - std::unique_lock lock{mu_}; - - // If channel is closed, throw exception - if (closed_) { - send_return(); - lock.unlock(); - PADDLE_THROW("Cannot send on closed channel"); - } - - // If there is a receiver, directly pass the value we want - // to send to the receiver, bypassing the channel buffer if any - if (!recvq.empty()) { - std::shared_ptr m = - get_first_message(&recvq, ChannelAction::SEND); - - if (m != nullptr) { - *(m->data) = std::move(*item); - m->Notify(); - send_return(); - return; - } else { - Send(item); - send_return(); - return; - } - } - - // Unbuffered channel will always bypass this - // If buffered channel has space in buffer, - // write the element to the buffer. - if (buf_.size() < cap_) { - // Copy to buffer - buf_.push_back(std::move(*item)); - send_return(); - return; - } - - // Block on channel, because some receiver will complete - // the operation for us - auto m = std::make_shared(item); - sendq.push_back(m); - m->Wait(lock); - if (m->chan_closed) { - send_return(); - lock.unlock(); - PADDLE_THROW("Cannot send on closed channel"); - } - send_return(); -} - -template -bool ChannelImpl::Receive(T *item) { - recv_ctr++; - std::unique_lock lock{mu_}; - - // If channel is closed and buffer is empty or - // channel is unbuffered - if (closed_ && buf_.empty()) return recv_return(false); - - // If there is a sender, directly receive the value we want - // from the sender. In case of a buffered channel, read from - // buffer and move front of send queue to the buffer - if (!sendq.empty()) { - std::shared_ptr m = - get_first_message(&sendq, ChannelAction::RECEIVE); - if (buf_.size() > 0) { - // Case 1 : Channel is Buffered - // Do Data transfer from front of buffer - // and add a QueueMessage to the buffer - *item = std::move(buf_.front()); - buf_.pop_front(); - // If first message from sendq is not null - // add it to the buffer and notify it - if (m != nullptr) { - // Copy to buffer - buf_.push_back(std::move(*(m->data))); - m->Notify(); - } // Ignore if there is no first message - } else { - // Case 2: Channel is Unbuffered - // Do data transfer from front of SendQ - // If front is nullptr, then recursively call itself - if (m != nullptr) { - *item = std::move(*(m->data)); - m->Notify(); - } else { - return recv_return(Receive(item)); - } - } - return recv_return(true); - } - - // If this is a buffered channel and there are items in buffer - if (buf_.size() > 0) { - // Directly read from buffer - *item = std::move(buf_.front()); - buf_.pop_front(); - // return true - return recv_return(true); - } - - // No sender available, block on this channel - // Some receiver will complete the option for us - auto m = std::make_shared(item); - recvq.push_back(m); - m->Wait(lock); - - return recv_return(!m->chan_closed); -} - -template -void ChannelImpl::Lock() { - mu_.lock(); -} - -template -void ChannelImpl::Unlock() { - mu_.unlock(); -} - -template -bool ChannelImpl::IsClosed() { - std::lock_guard lock{mu_}; - return closed_; -} - -template -void ChannelImpl::Close() { - std::unique_lock lock{mu_}; - - if (closed_) { - // TODO(abhinavarora): closing an already closed channel should panic - lock.unlock(); - return; - } - - closed_ = true; - - // Empty the readers - while (!recvq.empty()) { - std::shared_ptr m = recvq.front(); - recvq.pop_front(); - m->chan_closed = true; - - // Execute callback function (if any) - if (m->callback != nullptr) { - m->callback(ChannelAction::CLOSE); - } - - m->Notify(); - } - - // Empty the senders - while (!sendq.empty()) { - std::shared_ptr m = sendq.front(); - sendq.pop_front(); - m->chan_closed = true; - - // Execute callback function (if any) - if (m->callback != nullptr) { - m->callback(ChannelAction::CLOSE); - } - - m->Notify(); - } -} - -template -void ChannelImpl::AddToSendQ( - const void *referrer, T *data, - std::shared_ptr cond, - std::function cb) { - std::lock_guard lock{mu_}; - auto m = std::make_shared(data, cond); - m->referrer = referrer; - m->callback = cb; - sendq.push_back(m); -} - -template -void ChannelImpl::AddToReceiveQ( - const void *referrer, T *data, - std::shared_ptr cond, - std::function cb) { - std::lock_guard lock{mu_}; - auto m = std::make_shared(data, cond); - m->referrer = referrer; - m->callback = cb; - recvq.push_back(m); -} - -template -void ChannelImpl::RemoveFromSendQ(const void *referrer) { - std::lock_guard lock{mu_}; - - for (auto it = sendq.begin(); it != sendq.end();) { - std::shared_ptr sendMsg = (std::shared_ptr)*it; - - if (sendMsg->referrer == referrer) { - it = sendq.erase(it); - } else { - ++it; - } - } -} - -template -void ChannelImpl::RemoveFromReceiveQ(const void *referrer) { - std::lock_guard lock{mu_}; - - for (auto it = recvq.begin(); it != recvq.end();) { - std::shared_ptr recvMsg = (std::shared_ptr)*it; - - if (recvMsg->referrer == referrer) { - it = recvq.erase(it); - } else { - ++it; - } - } -} - -template -ChannelImpl::~ChannelImpl() { - Close(); - // The destructor must wait for all readers and writers to complete their task - // The channel has been closed, so we will not accept new readers and writers - std::unique_lock lock{mu_}; - destructor_cond_.wait(lock, - [this]() { return send_ctr == 0 && recv_ctr == 0; }); -} - -} // namespace framework -} // namespace paddle diff --git a/paddle/fluid/framework/channel_test.cc b/paddle/fluid/framework/channel_test.cc deleted file mode 100644 index 542d791f6bbdf7d68a4786998ccc0233fff6473d..0000000000000000000000000000000000000000 --- a/paddle/fluid/framework/channel_test.cc +++ /dev/null @@ -1,1008 +0,0 @@ -/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. */ - -#include "paddle/fluid/framework/channel.h" - -#include // NOLINT -#include // NOLINT -#include "gtest/gtest.h" - -using paddle::framework::Channel; -using paddle::framework::ChannelHolder; -using paddle::framework::MakeChannel; -using paddle::framework::CloseChannel; - -TEST(Channel, ChannelCapacityTest) { - const size_t buffer_size = 10; - auto ch = MakeChannel(buffer_size); - EXPECT_EQ(ch->Cap(), buffer_size); - CloseChannel(ch); - delete ch; - - ch = MakeChannel(0); - EXPECT_EQ(ch->Cap(), 0U); - CloseChannel(ch); - delete ch; -} - -void RecevingOrderEqualToSendingOrder(Channel *ch, int num_items) { - unsigned sum_send = 0; - std::thread t([&]() { - for (int i = 0; i < num_items; i++) { - ch->Send(&i); - sum_send += i; - } - }); - std::this_thread::sleep_for(std::chrono::milliseconds(200)); - for (int i = 0; i < num_items; i++) { - int recv = -1; - EXPECT_EQ(ch->Receive(&recv), true); - EXPECT_EQ(recv, i); - } - std::this_thread::sleep_for(std::chrono::milliseconds(200)); - CloseChannel(ch); - t.join(); - unsigned expected_sum = (num_items * (num_items - 1)) / 2; - EXPECT_EQ(sum_send, expected_sum); - delete ch; -} - -TEST(Channel, SufficientBufferSizeDoesntBlock) { - const size_t buffer_size = 10; - auto ch = MakeChannel(buffer_size); - for (size_t i = 0; i < buffer_size; ++i) { - ch->Send(&i); - } - - size_t out; - for (size_t i = 0; i < buffer_size; ++i) { - EXPECT_EQ(ch->Receive(&out), true); // should not block - EXPECT_EQ(out, i); - } - CloseChannel(ch); - delete ch; -} - -// This tests that a channel must return false -// on send and receive performed after closing the channel. -// Receive will only return false after close when queue is empty. -// By creating separate threads for sending and receiving, we make this -// function able to test both buffered and unbuffered channels. -void SendReceiveWithACloseChannelShouldPanic(Channel *ch) { - const size_t data = 5; - std::thread send_thread{[&]() { - size_t i = data; - ch->Send(&i); // should not block - }}; - - std::thread recv_thread{[&]() { - size_t i; - EXPECT_EQ(ch->Receive(&i), true); // should not block - EXPECT_EQ(i, data); - }}; - - send_thread.join(); - recv_thread.join(); - - // After closing send should panic. Receive should - // also false as there is no data in queue. - CloseChannel(ch); - send_thread = std::thread{[&]() { - size_t i = data; - bool is_exception = false; - try { - ch->Send(&i); - } catch (paddle::platform::EnforceNotMet e) { - is_exception = true; - } - EXPECT_EQ(is_exception, true); - }}; - recv_thread = std::thread{[&]() { - size_t i; - // should return false because channel is closed and queue is empty - EXPECT_EQ(ch->Receive(&i), false); - }}; - - send_thread.join(); - recv_thread.join(); -} - -TEST(Channel, SendReceiveClosedBufferedChannelPanics) { - size_t buffer_size = 10; - auto ch = MakeChannel(buffer_size); - SendReceiveWithACloseChannelShouldPanic(ch); - delete ch; -} - -TEST(Channel, SendReceiveClosedUnBufferedChannelPanics) { - auto ch = MakeChannel(0); - SendReceiveWithACloseChannelShouldPanic(ch); - delete ch; -} - -TEST(Channel, ReceiveFromBufferedChannelReturnResidualValuesTest) { - const size_t buffer_size = 10; - auto ch = MakeChannel(buffer_size); - - for (size_t i = 0; i < buffer_size; ++i) { - ch->Send(&i); // sending should not block - } - - size_t out; - for (size_t i = 0; i < buffer_size / 2; ++i) { - EXPECT_EQ(ch->Receive(&out), true); // receiving should not block - EXPECT_EQ(out, i); - } - - CloseChannel(ch); - - for (size_t i = buffer_size / 2; i < buffer_size; ++i) { - EXPECT_EQ(ch->Receive(&out), - true); // receving should return residual values. - EXPECT_EQ(out, i); - } - - for (size_t i = 0; i < buffer_size; ++i) { - EXPECT_EQ(ch->Receive(&out), - false); // receiving on closed channel should return false - } - delete ch; -} - -TEST(Channel, ConcurrentSendNonConcurrentReceiveWithSufficientBufferSize) { - const size_t buffer_size = 10; - auto ch = MakeChannel(buffer_size); - std::thread t([&]() { - // Try to write more than buffer size. - for (size_t i = 0; i < 2 * buffer_size; ++i) { - if (i < buffer_size) { - ch->Send(&i); // should block after 10 iterations - } else { - bool is_exception = false; - try { - ch->Send(&i); - } catch (paddle::platform::EnforceNotMet e) { - is_exception = true; - } - EXPECT_EQ(is_exception, true); - } - } - }); - std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait 0.2 sec - CloseChannel(ch); - t.join(); - delete ch; -} - -TEST(Channel, RecevingOrderEqualToSendingOrderWithUnBufferedChannel) { - auto ch = MakeChannel(0); - RecevingOrderEqualToSendingOrder(ch, 20); -} - -TEST(Channel, RecevingOrderEqualToSendingOrderWithBufferedChannel1) { - // Test that Receive Order is same as Send Order when number of items - // sent is less than size of buffer - auto ch = MakeChannel(10); - RecevingOrderEqualToSendingOrder(ch, 5); -} - -TEST(Channel, RecevingOrderEqualToSendingOrderWithBufferedChannel2) { - // Test that Receive Order is same as Send Order when number of items - // sent is equal to size of buffer - auto ch = MakeChannel(10); - RecevingOrderEqualToSendingOrder(ch, 10); -} - -TEST(Channel, RecevingOrderEqualToSendingOrderWithBufferedChannel3) { - // Test that Receive Order is same as Send Order when number of items - // sent is greater than the size of buffer - auto ch = MakeChannel(10); - RecevingOrderEqualToSendingOrder(ch, 20); -} - -void ChannelCloseUnblocksReceiversTest(Channel *ch) { - const size_t kNumThreads = 5; - std::thread t[kNumThreads]; - bool thread_ended[kNumThreads]; - - // Launches threads that try to read and are blocked because of no writers - for (size_t i = 0; i < kNumThreads; i++) { - thread_ended[i] = false; - t[i] = std::thread( - [&](bool *p) { - int data; - EXPECT_EQ(ch->Receive(&data), false); - *p = true; - }, - &thread_ended[i]); - } - std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait 0.2 sec - - // Verify that all the threads are blocked - for (size_t i = 0; i < kNumThreads; i++) { - EXPECT_EQ(thread_ended[i], false); - } - - // Explicitly close the channel - // This should unblock all receivers - CloseChannel(ch); - - std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait 0.2 sec - - // Verify that all threads got unblocked - for (size_t i = 0; i < kNumThreads; i++) { - EXPECT_EQ(thread_ended[i], true); - } - - for (size_t i = 0; i < kNumThreads; i++) t[i].join(); -} - -void ChannelCloseUnblocksSendersTest(Channel *ch, bool isBuffered) { - const size_t kNumThreads = 5; - std::thread t[kNumThreads]; - bool thread_ended[kNumThreads]; - bool send_success[kNumThreads]; - - // Launches threads that try to write and are blocked because of no readers - for (size_t i = 0; i < kNumThreads; i++) { - thread_ended[i] = false; - send_success[i] = false; - t[i] = std::thread( - [&](bool *ended, bool *success) { - int data = 10; - bool is_exception = false; - try { - ch->Send(&data); - } catch (paddle::platform::EnforceNotMet e) { - is_exception = true; - } - *success = !is_exception; - *ended = true; - }, - &thread_ended[i], &send_success[i]); - } - std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait - - if (isBuffered) { - // If ch is Buffered, atleast 4 threads must be blocked. - int ct = 0; - for (size_t i = 0; i < kNumThreads; i++) { - if (!thread_ended[i]) ct++; - } - EXPECT_GE(ct, 4); - } else { - // If ch is UnBuffered, all the threads should be blocked. - for (size_t i = 0; i < kNumThreads; i++) { - EXPECT_EQ(thread_ended[i], false); - } - } - // Explicitly close the thread - // This should unblock all senders - CloseChannel(ch); - - std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait - - // Verify that all threads got unblocked - for (size_t i = 0; i < kNumThreads; i++) { - EXPECT_EQ(thread_ended[i], true); - } - - if (isBuffered) { - // Verify that only 1 send was successful - int ct = 0; - for (size_t i = 0; i < kNumThreads; i++) { - if (send_success[i]) ct++; - } - // Only 1 send must be successful - EXPECT_EQ(ct, 1); - } - - for (size_t i = 0; i < kNumThreads; i++) t[i].join(); -} - -// This tests that closing a buffered channel also unblocks -// any receivers waiting on the channel -TEST(Channel, BufferedChannelCloseUnblocksReceiversTest) { - auto ch = MakeChannel(1); - ChannelCloseUnblocksReceiversTest(ch); - delete ch; -} - -// This tests that closing a buffered channel also unblocks -// any senders waiting for channel to have write space -TEST(Channel, BufferedChannelCloseUnblocksSendersTest) { - auto ch = MakeChannel(1); - ChannelCloseUnblocksSendersTest(ch, true); - delete ch; -} - -// This tests that closing an unbuffered channel also unblocks -// unblocks any receivers waiting for senders -TEST(Channel, UnbufferedChannelCloseUnblocksReceiversTest) { - auto ch = MakeChannel(0); - ChannelCloseUnblocksReceiversTest(ch); - delete ch; -} - -// This tests that closing an unbuffered channel also unblocks -// unblocks any senders waiting for senders -TEST(Channel, UnbufferedChannelCloseUnblocksSendersTest) { - auto ch = MakeChannel(0); - ChannelCloseUnblocksSendersTest(ch, false); - delete ch; -} - -TEST(Channel, UnbufferedLessReceiveMoreSendTest) { - auto ch = MakeChannel(0); - unsigned sum_send = 0; - // Send should block after three iterations - // since we only have three receivers. - std::thread t([&]() { - // Try to send more number of times - // than receivers - for (int i = 0; i < 4; i++) { - try { - ch->Send(&i); - sum_send += i; - } catch (paddle::platform::EnforceNotMet e) { - } - } - }); - for (int i = 0; i < 3; i++) { - int recv; - ch->Receive(&recv); - EXPECT_EQ(recv, i); - } - std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait 0.2 sec - EXPECT_EQ(sum_send, 3U); - - CloseChannel(ch); - t.join(); - delete ch; -} - -TEST(Channel, UnbufferedMoreReceiveLessSendTest) { - auto ch = MakeChannel(0); - unsigned sum_send = 0; - unsigned sum_receive = 0; - // The receiver should block after 5 - // iterations, since there are only 5 senders. - std::thread t([&]() { - for (int i = 0; i < 8; i++) { - int recv; - ch->Receive(&recv); // should block after the fifth iteration. - EXPECT_EQ(recv, i); - sum_receive += i; - } - }); - for (int i = 0; i < 5; i++) { - ch->Send(&i); - sum_send += i; - } - std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait 0.2 sec - EXPECT_EQ(sum_send, 10U); - EXPECT_EQ(sum_receive, 10U); - // send three more elements - for (int i = 5; i < 8; i++) { - ch->Send(&i); - sum_send += i; - } - - CloseChannel(ch); - t.join(); - EXPECT_EQ(sum_send, 28U); - EXPECT_EQ(sum_receive, 28U); - delete ch; -} - -// This tests that destroying a channel unblocks -// any senders waiting for channel to have write space -void ChannelDestroyUnblockSenders(Channel *ch, bool isBuffered) { - const size_t kNumThreads = 5; - std::thread t[kNumThreads]; - bool thread_ended[kNumThreads]; - bool send_success[kNumThreads]; - - // Launches threads that try to write and are blocked because of no readers - for (size_t i = 0; i < kNumThreads; i++) { - thread_ended[i] = false; - send_success[i] = false; - t[i] = std::thread( - [&](bool *ended, bool *success) { - int data = 10; - bool is_exception = false; - try { - ch->Send(&data); - } catch (paddle::platform::EnforceNotMet e) { - is_exception = true; - } - *success = !is_exception; - *ended = true; - }, - &thread_ended[i], &send_success[i]); - } - - std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait 0.2 sec - - if (isBuffered) { - // If channel is buffered, verify that atleast 4 threads are blocked - int ct = 0; - for (size_t i = 0; i < kNumThreads; i++) { - if (thread_ended[i] == false) ct++; - } - // Atleast 4 threads must be blocked - EXPECT_GE(ct, 4); - } else { - // Verify that all the threads are blocked - for (size_t i = 0; i < kNumThreads; i++) { - EXPECT_EQ(thread_ended[i], false); - } - } - // Explicitly destroy the channel - delete ch; - std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait - - // Verify that all threads got unblocked - for (size_t i = 0; i < kNumThreads; i++) { - EXPECT_EQ(thread_ended[i], true); - } - - // Count number of successful sends - int ct = 0; - for (size_t i = 0; i < kNumThreads; i++) { - if (send_success[i]) ct++; - } - - if (isBuffered) { - // Only 1 send must be successful - EXPECT_EQ(ct, 1); - } else { - // In unbuffered channel, no send should be successful - EXPECT_EQ(ct, 0); - } - - // Join all threads - for (size_t i = 0; i < kNumThreads; i++) t[i].join(); -} - -// This tests that destroying a channel also unblocks -// any receivers waiting on the channel -void ChannelDestroyUnblockReceivers(Channel *ch) { - const size_t kNumThreads = 5; - std::thread t[kNumThreads]; - bool thread_ended[kNumThreads]; - - // Launches threads that try to read and are blocked because of no writers - for (size_t i = 0; i < kNumThreads; i++) { - thread_ended[i] = false; - t[i] = std::thread( - [&](bool *p) { - int data; - // All reads should return false - EXPECT_EQ(ch->Receive(&data), false); - *p = true; - }, - &thread_ended[i]); - } - std::this_thread::sleep_for(std::chrono::milliseconds(100)); // wait - - // Verify that all threads are blocked - for (size_t i = 0; i < kNumThreads; i++) { - EXPECT_EQ(thread_ended[i], false); - } - // delete the channel - delete ch; - std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait - // Verify that all threads got unblocked - for (size_t i = 0; i < kNumThreads; i++) { - EXPECT_EQ(thread_ended[i], true); - } - - for (size_t i = 0; i < kNumThreads; i++) t[i].join(); -} - -TEST(Channel, BufferedChannelDestroyUnblocksReceiversTest) { - size_t buffer_size = 1; - auto ch = MakeChannel(buffer_size); - ChannelDestroyUnblockReceivers(ch); -} - -TEST(Channel, BufferedChannelDestroyUnblocksSendersTest) { - size_t buffer_size = 1; - auto ch = MakeChannel(buffer_size); - ChannelDestroyUnblockSenders(ch, true); -} - -// This tests that destroying an unbuffered channel also unblocks -// unblocks any receivers waiting for senders -TEST(Channel, UnbufferedChannelDestroyUnblocksReceiversTest) { - auto ch = MakeChannel(0); - ChannelDestroyUnblockReceivers(ch); -} - -TEST(Channel, UnbufferedChannelDestroyUnblocksSendersTest) { - auto ch = MakeChannel(0); - ChannelDestroyUnblockSenders(ch, false); -} - -TEST(ChannelHolder, ChannelHolderCapacityTest) { - const size_t buffer_size = 10; - ChannelHolder *ch = new ChannelHolder(); - ch->Reset(buffer_size); - EXPECT_EQ(ch->Cap(), buffer_size); - delete ch; - - ch = new ChannelHolder(); - ch->Reset(0); - EXPECT_EQ(ch->Cap(), 0U); - delete ch; -} - -void ChannelHolderSendReceive(ChannelHolder *ch) { - unsigned sum_send = 0; - std::thread t([&]() { - for (int i = 0; i < 5; i++) { - ch->Send(&i); - sum_send += i; - } - }); - for (int i = 0; i < 5; i++) { - int recv; - EXPECT_EQ(ch->Receive(&recv), true); - EXPECT_EQ(recv, i); - } - - ch->close(); - t.join(); - EXPECT_EQ(sum_send, 10U); -} - -TEST(ChannelHolder, ChannelHolderBufferedSendReceiveTest) { - ChannelHolder *ch = new ChannelHolder(); - ch->Reset(10); - ChannelHolderSendReceive(ch); - delete ch; -} - -TEST(ChannelHolder, ChannelHolderUnBufferedSendReceiveTest) { - ChannelHolder *ch = new ChannelHolder(); - ch->Reset(0); - ChannelHolderSendReceive(ch); - delete ch; -} - -TEST(ChannelHolder, ChannelUninitializedTest) { - ChannelHolder *ch = new ChannelHolder(); - EXPECT_EQ(ch->IsInitialized(), false); - int i = 10; - bool send_exception = false; - try { - ch->Send(&i); - } catch (paddle::platform::EnforceNotMet e) { - send_exception = true; - } - EXPECT_EQ(send_exception, true); - - bool recv_exception = false; - try { - ch->Receive(&i); - } catch (paddle::platform::EnforceNotMet e) { - recv_exception = true; - } - EXPECT_EQ(recv_exception, true); - - bool is_exception = false; - try { - ch->Type(); - } catch (paddle::platform::EnforceNotMet e) { - is_exception = true; - } - EXPECT_EQ(is_exception, true); - delete ch; -} - -TEST(ChannelHolder, ChannelInitializedTest) { - ChannelHolder *ch = new ChannelHolder(); - ch->Reset(2); - EXPECT_EQ(ch->IsInitialized(), true); - // Channel should remain intialized even after close - ch->close(); - EXPECT_EQ(ch->IsInitialized(), true); - delete ch; -} - -TEST(ChannelHolder, TypeMismatchSendTest) { - // Test with unbuffered channel - ChannelHolder *ch = new ChannelHolder(); - ch->Reset(0); - bool is_exception = false; - bool boolean_data = true; - try { - ch->Send(&boolean_data); - } catch (paddle::platform::EnforceNotMet e) { - is_exception = true; - } - EXPECT_EQ(is_exception, true); - delete ch; - - // Test with Buffered Channel - ch = new ChannelHolder(); - ch->Reset(10); - is_exception = false; - int int_data = 23; - try { - ch->Send(&int_data); - } catch (paddle::platform::EnforceNotMet e) { - is_exception = true; - } - EXPECT_EQ(is_exception, true); - delete ch; -} - -TEST(ChannelHolder, TypeMismatchReceiveTest) { - // Test with unbuffered channel - ChannelHolder *ch = new ChannelHolder(); - ch->Reset(0); - bool is_exception = false; - bool float_data; - try { - ch->Receive(&float_data); - } catch (paddle::platform::EnforceNotMet e) { - is_exception = true; - } - EXPECT_EQ(is_exception, true); - delete ch; - - // Test with Buffered Channel - ch = new ChannelHolder(); - ch->Reset(10); - is_exception = false; - int int_data = 23; - try { - ch->Receive(&int_data); - } catch (paddle::platform::EnforceNotMet e) { - is_exception = true; - } - EXPECT_EQ(is_exception, true); - delete ch; -} - -void ChannelHolderCloseUnblocksReceiversTest(ChannelHolder *ch) { - const size_t kNumThreads = 5; - std::thread t[kNumThreads]; - bool thread_ended[kNumThreads]; - - // Launches threads that try to read and are blocked because of no writers - for (size_t i = 0; i < kNumThreads; i++) { - thread_ended[i] = false; - t[i] = std::thread( - [&](bool *p) { - int data; - EXPECT_EQ(ch->Receive(&data), false); - *p = true; - }, - &thread_ended[i]); - } - std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait 0.2 sec - - // Verify that all the threads are blocked - for (size_t i = 0; i < kNumThreads; i++) { - EXPECT_EQ(thread_ended[i], false); - } - - // Explicitly close the channel - // This should unblock all receivers - ch->close(); - - std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait 0.2 sec - - // Verify that all threads got unblocked - for (size_t i = 0; i < kNumThreads; i++) { - EXPECT_EQ(thread_ended[i], true); - } - - for (size_t i = 0; i < kNumThreads; i++) t[i].join(); -} - -void ChannelHolderCloseUnblocksSendersTest(ChannelHolder *ch, bool isBuffered) { - const size_t kNumThreads = 5; - std::thread t[kNumThreads]; - bool thread_ended[kNumThreads]; - bool send_success[kNumThreads]; - - // Launches threads that try to write and are blocked because of no readers - for (size_t i = 0; i < kNumThreads; i++) { - thread_ended[i] = false; - send_success[i] = false; - t[i] = std::thread( - [&](bool *ended, bool *success) { - int data = 10; - bool is_exception = false; - try { - ch->Send(&data); - } catch (paddle::platform::EnforceNotMet e) { - is_exception = true; - } - *success = !is_exception; - *ended = true; - }, - &thread_ended[i], &send_success[i]); - } - std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait - - if (isBuffered) { - // If ch is Buffered, atleast 4 threads must be blocked. - int ct = 0; - for (size_t i = 0; i < kNumThreads; i++) { - if (!thread_ended[i]) ct++; - } - EXPECT_GE(ct, 4); - } else { - // If ch is UnBuffered, all the threads should be blocked. - for (size_t i = 0; i < kNumThreads; i++) { - EXPECT_EQ(thread_ended[i], false); - } - } - // Explicitly close the thread - // This should unblock all senders - ch->close(); - - std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait - - // Verify that all threads got unblocked - for (size_t i = 0; i < kNumThreads; i++) { - EXPECT_EQ(thread_ended[i], true); - } - - if (isBuffered) { - // Verify that only 1 send was successful - int ct = 0; - for (size_t i = 0; i < kNumThreads; i++) { - if (send_success[i]) ct++; - } - // Only 1 send must be successful - EXPECT_EQ(ct, 1); - } - - for (size_t i = 0; i < kNumThreads; i++) t[i].join(); -} - -// This tests that closing a channelholder unblocks -// any receivers waiting on the channel -TEST(ChannelHolder, ChannelHolderCloseUnblocksReceiversTest) { - // Check for buffered channel - ChannelHolder *ch = new ChannelHolder(); - ch->Reset(1); - ChannelHolderCloseUnblocksReceiversTest(ch); - delete ch; - - // Check for unbuffered channel - ch = new ChannelHolder(); - ch->Reset(0); - ChannelHolderCloseUnblocksReceiversTest(ch); - delete ch; -} - -// This tests that closing a channelholder unblocks -// any senders waiting for channel to have write space -TEST(Channel, ChannelHolderCloseUnblocksSendersTest) { - // Check for buffered channel - ChannelHolder *ch = new ChannelHolder(); - ch->Reset(1); - ChannelHolderCloseUnblocksSendersTest(ch, true); - delete ch; - - // Check for unbuffered channel - ch = new ChannelHolder(); - ch->Reset(0); - ChannelHolderCloseUnblocksSendersTest(ch, false); - delete ch; -} - -// This tests that destroying a channelholder unblocks -// any senders waiting for channel -void ChannelHolderDestroyUnblockSenders(ChannelHolder *ch, bool isBuffered) { - const size_t kNumThreads = 5; - std::thread t[kNumThreads]; - bool thread_ended[kNumThreads]; - bool send_success[kNumThreads]; - - // Launches threads that try to write and are blocked because of no readers - for (size_t i = 0; i < kNumThreads; i++) { - thread_ended[i] = false; - send_success[i] = false; - t[i] = std::thread( - [&](bool *ended, bool *success) { - int data = 10; - bool is_exception = false; - try { - ch->Send(&data); - } catch (paddle::platform::EnforceNotMet e) { - is_exception = true; - } - *success = !is_exception; - *ended = true; - }, - &thread_ended[i], &send_success[i]); - } - - std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait 0.2 sec - if (isBuffered) { - // If channel is buffered, verify that atleast 4 threads are blocked - int ct = 0; - for (size_t i = 0; i < kNumThreads; i++) { - if (thread_ended[i] == false) ct++; - } - // Atleast 4 threads must be blocked - EXPECT_GE(ct, 4); - } else { - // Verify that all the threads are blocked - for (size_t i = 0; i < kNumThreads; i++) { - EXPECT_EQ(thread_ended[i], false); - } - } - // Explicitly destroy the channel - delete ch; - std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait - - // Verify that all threads got unblocked - for (size_t i = 0; i < kNumThreads; i++) { - EXPECT_EQ(thread_ended[i], true); - } - - // Count number of successfuld sends - int ct = 0; - for (size_t i = 0; i < kNumThreads; i++) { - if (send_success[i]) ct++; - } - - if (isBuffered) { - // Only 1 send must be successful - EXPECT_EQ(ct, 1); - } else { - // In unbuffered channel, no send should be successful - EXPECT_EQ(ct, 0); - } - - // Join all threads - for (size_t i = 0; i < kNumThreads; i++) t[i].join(); -} - -// This tests that destroying a channelholder also unblocks -// any receivers waiting on the channel -void ChannelHolderDestroyUnblockReceivers(ChannelHolder *ch) { - const size_t kNumThreads = 5; - std::thread t[kNumThreads]; - bool thread_ended[kNumThreads]; - - // Launches threads that try to read and are blocked because of no writers - for (size_t i = 0; i < kNumThreads; i++) { - thread_ended[i] = false; - t[i] = std::thread( - [&](bool *p) { - int data; - // All reads should return false - EXPECT_EQ(ch->Receive(&data), false); - *p = true; - }, - &thread_ended[i]); - } - std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait - - // Verify that all threads are blocked - for (size_t i = 0; i < kNumThreads; i++) { - EXPECT_EQ(thread_ended[i], false); - } - // delete the channel - delete ch; - std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait - // Verify that all threads got unblocked - for (size_t i = 0; i < kNumThreads; i++) { - EXPECT_EQ(thread_ended[i], true); - } - - for (size_t i = 0; i < kNumThreads; i++) t[i].join(); -} - -TEST(ChannelHolder, ChannelHolderDestroyUnblocksReceiversTest) { - // Check for Buffered Channel - ChannelHolder *ch = new ChannelHolder(); - ch->Reset(1); - ChannelHolderDestroyUnblockReceivers(ch); - // ch is already deleted already deleted in - // ChannelHolderDestroyUnblockReceivers - - // Check for Unbuffered channel - ch = new ChannelHolder(); - ch->Reset(0); - ChannelHolderDestroyUnblockReceivers(ch); -} - -TEST(ChannelHolder, ChannelHolderDestroyUnblocksSendersTest) { - // Check for Buffered Channel - ChannelHolder *ch = new ChannelHolder(); - ch->Reset(1); - ChannelHolderDestroyUnblockSenders(ch, true); - // ch is already deleted already deleted in - // ChannelHolderDestroyUnblockReceivers - - // Check for Unbuffered channel - ch = new ChannelHolder(); - ch->Reset(0); - ChannelHolderDestroyUnblockSenders(ch, false); -} - -// This tests that closing a channelholder many times. -void ChannelHolderManyTimesClose(ChannelHolder *ch) { - const int kNumThreads = 15; - std::thread t[kNumThreads]; - bool thread_ended[kNumThreads]; - - // Launches threads that try to send data to channel. - for (size_t i = 0; i < kNumThreads / 3; i++) { - thread_ended[i] = false; - t[i] = std::thread( - [&](bool *ended) { - int data = 10; - ch->Send(&data); - *ended = true; - }, - &thread_ended[i]); - } - - // Launches threads that try to receive data to channel. - for (size_t i = kNumThreads / 3; i < 2 * kNumThreads / 3; i++) { - thread_ended[i] = false; - t[i] = std::thread( - [&](bool *p) { - int data; - if (ch->Receive(&data)) { - EXPECT_EQ(data, 10); - } - *p = true; - }, - &thread_ended[i]); - } - - // Launches threads that try to close the channel. - for (size_t i = 2 * kNumThreads / 3; i < kNumThreads; i++) { - thread_ended[i] = false; - t[i] = std::thread( - [&](bool *p) { - if (!ch->IsClosed()) { - ch->close(); - } - *p = true; - }, - &thread_ended[i]); - } - - std::this_thread::sleep_for(std::chrono::milliseconds(100)); // wait - - // Verify that all threads are unblocked - for (size_t i = 0; i < kNumThreads; i++) { - EXPECT_EQ(thread_ended[i], true); - } - EXPECT_TRUE(ch->IsClosed()); - // delete the channel - delete ch; - for (size_t i = 0; i < kNumThreads; i++) t[i].join(); -} - -TEST(ChannelHolder, ChannelHolderManyTimesCloseTest) { - // Check for Buffered Channel - ChannelHolder *ch = new ChannelHolder(); - ch->Reset(10); - ChannelHolderManyTimesClose(ch); -} diff --git a/paddle/fluid/framework/concurrency_test.cc b/paddle/fluid/framework/concurrency_test.cc deleted file mode 100644 index bbf67f5ba92150f70cf45d49e3f4ca0a16393541..0000000000000000000000000000000000000000 --- a/paddle/fluid/framework/concurrency_test.cc +++ /dev/null @@ -1,292 +0,0 @@ -/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. */ - -#include // NOLINT - -#include "gtest/gtest.h" -#include "paddle/fluid/framework/block_desc.h" -#include "paddle/fluid/framework/channel.h" -#include "paddle/fluid/framework/executor.h" -#include "paddle/fluid/framework/op_registry.h" - -USE_NO_KERNEL_OP(go); -USE_NO_KERNEL_OP(channel_close); -USE_NO_KERNEL_OP(channel_create); -USE_NO_KERNEL_OP(channel_recv); -USE_NO_KERNEL_OP(channel_send); -USE_NO_KERNEL_OP(elementwise_add); -USE_NO_KERNEL_OP(select); -USE_NO_KERNEL_OP(conditional_block); -USE_NO_KERNEL_OP(equal); -USE_NO_KERNEL_OP(assign); -USE_NO_KERNEL_OP(while); -USE_NO_KERNEL_OP(print); - -namespace f = paddle::framework; -namespace p = paddle::platform; - -namespace paddle { -namespace framework { - -template -LoDTensor *CreateVariable(Scope *scope, const p::CPUPlace &place, - std::string name, T value) { - // Create LoDTensor of dim [1] - auto var = scope->Var(name); - auto tensor = var->GetMutable(); - tensor->Resize({1}); - T *expect = tensor->mutable_data(place); - expect[0] = value; - return tensor; -} - -void AddOp(const std::string &type, const VariableNameMap &inputs, - const VariableNameMap &outputs, AttributeMap attrs, - BlockDesc *block) { - // insert op - auto op = block->AppendOp(); - op->SetType(type); - for (auto &kv : inputs) { - op->SetInput(kv.first, kv.second); - } - for (auto &kv : outputs) { - op->SetOutput(kv.first, kv.second); - } - op->SetAttrMap(attrs); -} - -void AddCase(ProgramDesc *program, Scope *scope, p::CPUPlace *place, - BlockDesc *casesBlock, int caseId, int caseType, - std::string caseChannel, std::string caseVarName, - std::function func) { - std::string caseCondName = std::string("caseCond") + std::to_string(caseId); - std::string caseCondXVarName = - std::string("caseCondX") + std::to_string(caseId); - - BlockDesc *caseBlock = program->AppendBlock(*casesBlock); - func(caseBlock, scope); - - CreateVariable(scope, *place, caseCondName, false); - CreateVariable(scope, *place, caseCondXVarName, caseId); - CreateVariable(scope, *place, caseVarName, caseId); - - scope->Var("step_scope"); - - AddOp("equal", {{"X", {caseCondXVarName}}, {"Y", {"caseToExecute"}}}, - {{"Out", {caseCondName}}}, {}, casesBlock); - - AddOp("conditional_block", {{"X", {caseCondName}}, {"Params", {}}}, - {{"Out", {}}, {"Scope", {"step_scope"}}}, - {{"sub_block", caseBlock}, {"is_scalar_condition", true}}, casesBlock); -} - -void AddFibonacciSelect(Scope *scope, p::CPUPlace *place, ProgramDesc *program, - BlockDesc *parentBlock, std::string dataChanName, - std::string quitChanName) { - BlockDesc *whileBlock = program->AppendBlock(*parentBlock); - - CreateVariable(scope, *place, "whileExitCond", true); - CreateVariable(scope, *place, "caseToExecute", -1); - CreateVariable(scope, *place, "case1var", 0); - - CreateVariable(scope, *place, "xtemp", 0); - - // TODO(thuan): Need to create fibXToSend, since channel send moves the actual - // data, - // which causes the data to be no longer accessible to do the fib calculation - // TODO(abhinav): Change channel send to do a copy instead of a move! - CreateVariable(scope, *place, "fibXToSend", 0); - - CreateVariable(scope, *place, "fibX", 0); - CreateVariable(scope, *place, "fibY", 1); - CreateVariable(scope, *place, "quitVar", 0); - - BlockDesc *casesBlock = program->AppendBlock(*whileBlock); - std::function f = [](BlockDesc *caseBlock) {}; - - // TODO(thuan): Remove this once we change channel send to do a copy instead - // of move - AddOp("assign", {{"X", {"fibX"}}}, {{"Out", {"fibXToSend"}}}, {}, whileBlock); - - // Case 0: Send to dataChanName - std::function case0Func = [&]( - BlockDesc *caseBlock, Scope *scope) { - AddOp("assign", {{"X", {"fibX"}}}, {{"Out", {"xtemp"}}}, {}, caseBlock); - AddOp("assign", {{"X", {"fibY"}}}, {{"Out", {"fibX"}}}, {}, caseBlock); - AddOp("elementwise_add", {{"X", {"xtemp"}}, {"Y", {"fibY"}}}, - {{"Out", {"fibY"}}}, {}, caseBlock); - }; - AddCase(program, scope, place, casesBlock, 0, 1, dataChanName, "fibXToSend", - case0Func); - std::string case0Config = - std::string("0,1,") + dataChanName + std::string(",fibXToSend"); - - // Case 1: Receive from quitChanName - std::function case2Func = [&]( - BlockDesc *caseBlock, Scope *scope) { - // Exit the while loop after we receive from quit channel. - // We assign a false to "whileExitCond" variable, which will - // break out of while_op loop - CreateVariable(scope, *place, "whileFalse", false); - AddOp("assign", {{"X", {"whileFalse"}}}, {{"Out", {"whileExitCond"}}}, {}, - caseBlock); - }; - AddCase(program, scope, place, casesBlock, 1, 2, quitChanName, "quitVar", - case2Func); - std::string case1Config = - std::string("1,2,") + quitChanName + std::string(",quitVar"); - - // Select block - AddOp("select", {{"X", {dataChanName, quitChanName}}, - {"case_to_execute", {"caseToExecute"}}}, - {{"Out", {}}}, - {{"sub_block", casesBlock}, - {"cases", std::vector{case0Config, case1Config}}}, - whileBlock); - - scope->Var("stepScopes"); - AddOp("while", - {{"X", {dataChanName, quitChanName}}, {"Condition", {"whileExitCond"}}}, - {{"Out", {}}, {"StepScopes", {"stepScopes"}}}, - {{"sub_block", whileBlock}}, parentBlock); -} - -TEST(Concurrency, Go_Op) { - Scope scope; - p::CPUPlace place; - - // Initialize scope variables - p::CPUDeviceContext ctx(place); - - // Create channel variable - scope.Var("Channel"); - - // Create Variables, x0 will be put into channel, - // result will be pulled from channel - CreateVariable(&scope, place, "Status", false); - CreateVariable(&scope, place, "x0", 99); - CreateVariable(&scope, place, "result", 0); - - framework::Executor executor(place); - ProgramDesc program; - BlockDesc *block = program.MutableBlock(0); - - // Create channel OP - AddOp("channel_create", {}, {{"Out", {"Channel"}}}, - {{"capacity", 10}, {"data_type", f::proto::VarType::LOD_TENSOR}}, - block); - - // Create Go Op routine - BlockDesc *goOpBlock = program.AppendBlock(program.Block(0)); - AddOp("channel_send", {{"Channel", {"Channel"}}, {"X", {"x0"}}}, - {{"Status", {"Status"}}}, {}, goOpBlock); - - // Create Go Op - AddOp("go", {{"X", {"Channel", "x0"}}}, {}, {{"sub_block", goOpBlock}}, - block); - - // Create Channel Receive Op - AddOp("channel_recv", {{"Channel", {"Channel"}}}, - {{"Status", {"Status"}}, {"Out", {"result"}}}, {}, block); - - // Create Channel Close Op - AddOp("channel_close", {{"Channel", {"Channel"}}}, {}, {}, block); - - // Check the result tensor to make sure it is set to 0 - const LoDTensor &tensor = (scope.FindVar("result"))->Get(); - auto *initialData = tensor.data(); - EXPECT_EQ(initialData[0], 0); - - executor.Run(program, &scope, 0, true, true); - - // After we call executor.run, the Go operator should do a channel_send to - // set the "result" variable to 99. - auto *finalData = tensor.data(); - EXPECT_EQ(finalData[0], 99); -} - -/** - * This test implements the fibonacci function using go_op and select_op - */ -TEST(Concurrency, Select) { - Scope scope; - p::CPUPlace place; - - // Initialize scope variables - p::CPUDeviceContext ctx(place); - - CreateVariable(&scope, place, "Status", false); - CreateVariable(&scope, place, "result", 0); - CreateVariable(&scope, place, "currentXFib", 0); - - framework::Executor executor(place); - ProgramDesc program; - BlockDesc *block = program.MutableBlock(0); - - // Create channel OP - std::string dataChanName = "Channel"; - scope.Var(dataChanName); - AddOp("channel_create", {}, {{"Out", {dataChanName}}}, - {{"capacity", 0}, {"data_type", f::proto::VarType::LOD_TENSOR}}, block); - - std::string quitChanName = "Quit"; - scope.Var(quitChanName); - AddOp("channel_create", {}, {{"Out", {quitChanName}}}, - {{"capacity", 0}, {"data_type", f::proto::VarType::LOD_TENSOR}}, block); - - // Create Go Op routine, which loops 10 times over fibonacci sequence - CreateVariable(&scope, place, "xReceiveVar", 0); - - BlockDesc *goOpBlock = program.AppendBlock(program.Block(0)); - for (int i = 0; i < 10; ++i) { - AddOp("channel_recv", {{"Channel", {dataChanName}}}, - {{"Status", {"Status"}}, {"Out", {"currentXFib"}}}, {}, goOpBlock); - AddOp("print", {{"In", {"currentXFib"}}}, {{"Out", {"currentXFib"}}}, - {{"first_n", 100}, - {"summarize", -1}, - {"print_tensor_name", false}, - {"print_tensor_type", true}, - {"print_tensor_shape", false}, - {"print_tensor_lod", false}, - {"print_phase", std::string("FORWARD")}, - {"message", std::string("X: ")}}, - goOpBlock); - } - - CreateVariable(&scope, place, "quitSignal", 0); - AddOp("channel_send", {{"Channel", {quitChanName}}, {"X", {"quitSignal"}}}, - {{"Status", {"Status"}}}, {}, goOpBlock); - - // Create Go Op - AddOp("go", {{"X", {dataChanName, quitChanName}}}, {}, - {{"sub_block", goOpBlock}}, block); - - AddFibonacciSelect(&scope, &place, &program, block, dataChanName, - quitChanName); - - // Create Channel Close Op - AddOp("channel_close", {{"Channel", {dataChanName}}}, {}, {}, block); - AddOp("channel_close", {{"Channel", {quitChanName}}}, {}, {}, block); - - executor.Run(program, &scope, 0, true, true); - - // After we call executor.run, "result" variable should be equal to 34 - // (which is 10 loops through fibonacci sequence) - const LoDTensor &tensor = (scope.FindVar("currentXFib"))->Get(); - auto *finalData = tensor.data(); - EXPECT_EQ(finalData[0], 34); -} - -} // namespace framework -} // namespace paddle diff --git a/paddle/fluid/framework/executor.cc b/paddle/fluid/framework/executor.cc index 8d8042a0563a21dad216ffd53a474322c378ace6..70ec6e90a4d0106b7f838e51b8357798daa4b10d 100644 --- a/paddle/fluid/framework/executor.cc +++ b/paddle/fluid/framework/executor.cc @@ -14,7 +14,6 @@ limitations under the License. */ #include "paddle/fluid/framework/executor.h" -#include "paddle/fluid/framework/channel.h" #include "paddle/fluid/framework/feed_fetch_method.h" #include "paddle/fluid/framework/lod_rank_table.h" #include "paddle/fluid/framework/lod_tensor_array.h" @@ -76,15 +75,13 @@ void InitializeVariable(Variable* var, proto::VarType::Type var_type) { var->GetMutable(); } else if (var_type == proto::VarType::READER) { var->GetMutable(); - } else if (var_type == proto::VarType::CHANNEL) { - var->GetMutable(); } else if (var_type == proto::VarType::RAW) { // GetMutable will be called in operator } else { PADDLE_THROW( "Variable type %d is not in " "[LOD_TENSOR, SELECTED_ROWS, FEED_MINIBATCH, FETCH_LIST, " - "LOD_RANK_TABLE, PLACE_LIST, READER, CHANNEL, RAW]", + "LOD_RANK_TABLE, PLACE_LIST, READER, RAW]", var_type); } } diff --git a/paddle/fluid/framework/framework.proto b/paddle/fluid/framework/framework.proto index 460401df5473f8650f450a2bd247a703d91b6048..25f0ba418433571343c5b2bbfdbf9fb940eaec52 100644 --- a/paddle/fluid/framework/framework.proto +++ b/paddle/fluid/framework/framework.proto @@ -126,7 +126,6 @@ message VarType { LOD_TENSOR_ARRAY = 13; PLACE_LIST = 14; READER = 15; - CHANNEL = 16; // Any runtime decided variable type is raw // raw variables should manage their own allocations // in operators like nccl_op @@ -158,12 +157,6 @@ message VarType { message ReaderDesc { repeated LoDTensorDesc lod_tensor = 1; } optional ReaderDesc reader = 5; - message ChannelDesc { - required Type data_type = 1; - required int64 capacity = 2; - } - optional ChannelDesc channel = 6; - message Tuple { repeated Type element_type = 1; } optional Tuple tuple = 7; } diff --git a/paddle/fluid/framework/selected_rows_test.cc b/paddle/fluid/framework/selected_rows_test.cc index 5ca864cfdf7176850dd31dd42ef3306061a742cf..928e1ad8b9168e61ddc5782066a4aa29a4296a94 100644 --- a/paddle/fluid/framework/selected_rows_test.cc +++ b/paddle/fluid/framework/selected_rows_test.cc @@ -27,8 +27,11 @@ class SelectedRowsTester : public ::testing::Test { selected_rows_.reset(new SelectedRows(rows, height)); Tensor* value = selected_rows_->mutable_value(); - value->mutable_data( + auto* data = value->mutable_data( make_ddim({static_cast(rows.size()), row_numel}), place_); + for (int64_t i = 0; i < value->numel(); ++i) { + data[i] = static_cast(i); + } } protected: @@ -60,6 +63,10 @@ TEST_F(SelectedRowsTester, SerializeAndDeseralize) { ASSERT_EQ(selected_rows_->height(), dst_tensor.height()); ASSERT_EQ(selected_rows_->value().dims(), dst_tensor.value().dims()); ASSERT_EQ(selected_rows_->GetCompleteDims(), dst_tensor.GetCompleteDims()); + auto* dst_data = dst_tensor.value().data(); + for (int64_t i = 0; i < dst_tensor.value().numel(); ++i) { + ASSERT_EQ(dst_data[i], static_cast(i)); + } } TEST(SelectedRows, SparseTable) { diff --git a/paddle/fluid/framework/tuple.h b/paddle/fluid/framework/tuple.h index f6c6a1fec13d8b12efd1fa71a7a93316e484d045..508ee931c6ed7f66e09abd8f0e4b33c3d3c135fd 100644 --- a/paddle/fluid/framework/tuple.h +++ b/paddle/fluid/framework/tuple.h @@ -17,7 +17,6 @@ limitations under the License. */ #include #include #include -#include "paddle/fluid/framework/channel.h" #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/tensor.h" #include "paddle/fluid/framework/var_desc.h" diff --git a/paddle/fluid/framework/var_desc.cc b/paddle/fluid/framework/var_desc.cc index 1aa0ae0f7c1946d91736ab61236a65a45c203fe3..7e3f002b53351ba5892aaa50482b21a83db94069 100644 --- a/paddle/fluid/framework/var_desc.cc +++ b/paddle/fluid/framework/var_desc.cc @@ -88,13 +88,7 @@ std::vector> VarDesc::GetShapes() const { } void VarDesc::SetDataType(proto::VarType::Type data_type) { - switch (desc_.type().type()) { - case proto::VarType::CHANNEL: - mutable_channel_desc()->set_data_type(data_type); - break; - default: - mutable_tensor_desc()->set_data_type(data_type); - } + mutable_tensor_desc()->set_data_type(data_type); } void VarDesc::SetDataTypes( @@ -115,13 +109,7 @@ void VarDesc::SetDataTypes( } proto::VarType::Type VarDesc::GetDataType() const { - switch (desc_.type().type()) { - case proto::VarType::CHANNEL: - return channel_desc().data_type(); - break; - default: - return tensor_desc().data_type(); - } + return tensor_desc().data_type(); } std::vector VarDesc::GetDataTypes() const { @@ -134,17 +122,6 @@ std::vector VarDesc::GetDataTypes() const { return res; } -void VarDesc::SetCapacity(int64_t capacity) { - switch (desc_.type().type()) { - case proto::VarType::CHANNEL: - desc_.mutable_type()->mutable_channel()->set_capacity(capacity); - break; - default: - PADDLE_THROW("Setting 'capacity' is not supported by the type of var %s.", - this->Name()); - } -} - void VarDesc::SetLoDLevel(int32_t lod_level) { switch (desc_.type().type()) { case proto::VarType::LOD_TENSOR: @@ -214,19 +191,6 @@ std::vector VarDesc::GetLoDLevels() const { } } -const proto::VarType::ChannelDesc &VarDesc::channel_desc() const { - PADDLE_ENFORCE(desc_.has_type(), "The var's type hasn't been set."); - PADDLE_ENFORCE(desc_.type().has_type(), "The var type hasn't been set."); - switch (desc_.type().type()) { - case proto::VarType::CHANNEL: - return desc_.type().channel(); - default: - PADDLE_THROW( - "Getting 'channel_desc' is not supported by the type of var %s.", - this->Name()); - } -} - const proto::VarType::TensorDesc &VarDesc::tensor_desc() const { PADDLE_ENFORCE(desc_.has_type(), "The var's type hasn't been set."); PADDLE_ENFORCE(desc_.type().has_type(), "The var type hasn't been set."); @@ -262,20 +226,6 @@ std::vector VarDesc::tensor_descs() const { } } -proto::VarType::ChannelDesc *VarDesc::mutable_channel_desc() { - PADDLE_ENFORCE(desc_.has_type(), "The var type hasn't been set."); - PADDLE_ENFORCE(desc_.type().has_type(), "The var type hasn't been set."); - switch (desc_.type().type()) { - case proto::VarType::CHANNEL: - return desc_.mutable_type()->mutable_channel(); - default: - PADDLE_THROW( - "Getting 'mutable_channel_desc' is not supported by the type of var " - "%s.", - this->Name()); - } -} - proto::VarType::TensorDesc *VarDesc::mutable_tensor_desc() { PADDLE_ENFORCE(desc_.has_type(), "The var type hasn't been set."); PADDLE_ENFORCE(desc_.type().has_type(), "The var type hasn't been set."); diff --git a/paddle/fluid/framework/var_desc.h b/paddle/fluid/framework/var_desc.h index 9f7a21ef42b8d3e74b6e211d6254294ba1fa2341..e33849ef502fb10b913e7e28cbd0abdb8b8ff9bb 100644 --- a/paddle/fluid/framework/var_desc.h +++ b/paddle/fluid/framework/var_desc.h @@ -87,8 +87,6 @@ class VarDesc { void SetDataTypes( const std::vector &multiple_data_type); - void SetCapacity(int64_t capacity); - proto::VarType::Type GetDataType() const; std::vector GetDataTypes() const; @@ -110,10 +108,8 @@ class VarDesc { void SetPersistable(bool persistable) { desc_.set_persistable(persistable); } private: - const proto::VarType::ChannelDesc &channel_desc() const; const proto::VarType::TensorDesc &tensor_desc() const; std::vector tensor_descs() const; - proto::VarType::ChannelDesc *mutable_channel_desc(); proto::VarType::TensorDesc *mutable_tensor_desc(); std::vector mutable_tensor_descs(); diff --git a/paddle/fluid/framework/var_type.h b/paddle/fluid/framework/var_type.h index e9550dbfb976bee70741158b94b04084919e8271..3b6f1cdb8f24ab20bfc80eeeba88891d7b41d1f9 100644 --- a/paddle/fluid/framework/var_type.h +++ b/paddle/fluid/framework/var_type.h @@ -13,7 +13,6 @@ See the License for the specific language governing permissions and limitations under the License. */ #pragma once -#include "paddle/fluid/framework/channel.h" #include "paddle/fluid/framework/framework.pb.h" #include "paddle/fluid/framework/lod_rank_table.h" #include "paddle/fluid/framework/lod_tensor.h" @@ -41,8 +40,6 @@ inline proto::VarType::Type ToVarType(std::type_index type) { return proto::VarType_Type_SELECTED_ROWS; } else if (IsType(type)) { return proto::VarType_Type_READER; - } else if (IsType(type)) { - return proto::VarType_Type_CHANNEL; } else { PADDLE_THROW("ToVarType:Unsupported type %s", type.name()); } @@ -66,9 +63,6 @@ inline void VisitVarType(const framework::Variable& var, Visitor visitor) { case proto::VarType_Type_READER: visitor(var.Get()); return; - case proto::VarType_Type_CHANNEL: - visitor(var.Get()); - return; default: PADDLE_THROW("Not supported visit type, %d", ToVarType(var.Type())); } diff --git a/paddle/fluid/inference/analysis/analysis_pass.h b/paddle/fluid/inference/analysis/analysis_pass.h index b6edb5529ace2ad5bd1b35bfbee1f7a744457cc3..13805ea4acf936b242bcd86b2faf89813753a9fe 100644 --- a/paddle/fluid/inference/analysis/analysis_pass.h +++ b/paddle/fluid/inference/analysis/analysis_pass.h @@ -41,12 +41,6 @@ class AnalysisPass { // all passes have run. virtual bool Finalize() { return false; } - // Get a Pass appropriate to print the Node this pass operates on. - virtual AnalysisPass *CreatePrinterPass(std::ostream &os, - const std::string &banner) const { - return nullptr; - } - // Create a debugger Pass that draw the DFG by graphviz toolkit. virtual AnalysisPass *CreateGraphvizDebugerPass() const { return nullptr; } diff --git a/paddle/fluid/inference/api/api_impl_tester.cc b/paddle/fluid/inference/api/api_impl_tester.cc index fc1364b80ac1ee2d304eb2fe429eae5f56967516..d0426aeb98690da5b8ffe475a222dea9ed950a89 100644 --- a/paddle/fluid/inference/api/api_impl_tester.cc +++ b/paddle/fluid/inference/api/api_impl_tester.cc @@ -21,6 +21,12 @@ limitations under the License. */ #include "paddle/fluid/inference/api/api_impl.h" #include "paddle/fluid/inference/tests/test_helper.h" +#ifdef __clang__ +#define ACC_DIFF 4e-3 +#else +#define ACC_DIFF 1e-3 +#endif + DEFINE_string(dirname, "", "Directory of the inference model."); namespace paddle { @@ -99,8 +105,8 @@ void MainWord2Vec(bool use_gpu) { float* lod_data = output1.data(); for (int i = 0; i < output1.numel(); ++i) { - EXPECT_LT(lod_data[i] - data[i], 1e-3); - EXPECT_GT(lod_data[i] - data[i], -1e-3); + EXPECT_LT(lod_data[i] - data[i], ACC_DIFF); + EXPECT_GT(lod_data[i] - data[i], -ACC_DIFF); } } @@ -144,7 +150,7 @@ void MainImageClassification(bool use_gpu) { float* data = static_cast(outputs[0].data.data()); float* lod_data = output1.data(); for (size_t j = 0; j < len / sizeof(float); ++j) { - EXPECT_NEAR(lod_data[j], data[j], 1e-3); + EXPECT_NEAR(lod_data[j], data[j], ACC_DIFF); } } @@ -199,7 +205,7 @@ void MainThreadsWord2Vec(bool use_gpu) { float* ref_data = refs[tid].data(); EXPECT_EQ(refs[tid].numel(), static_cast(len / sizeof(float))); for (int i = 0; i < refs[tid].numel(); ++i) { - EXPECT_NEAR(ref_data[i], data[i], 1e-3); + EXPECT_NEAR(ref_data[i], data[i], ACC_DIFF); } }); } @@ -251,7 +257,7 @@ void MainThreadsImageClassification(bool use_gpu) { float* ref_data = refs[tid].data(); EXPECT_EQ((size_t)refs[tid].numel(), len / sizeof(float)); for (int i = 0; i < refs[tid].numel(); ++i) { - EXPECT_NEAR(ref_data[i], data[i], 1e-3); + EXPECT_NEAR(ref_data[i], data[i], ACC_DIFF); } }); } diff --git a/paddle/fluid/operators/CMakeLists.txt b/paddle/fluid/operators/CMakeLists.txt index 9c67df7bdfb2c4e5d1c9fe60676c412ab11b4fa5..fa41266d62f5bdab2afe07439b604f147ad0fa20 100644 --- a/paddle/fluid/operators/CMakeLists.txt +++ b/paddle/fluid/operators/CMakeLists.txt @@ -313,11 +313,6 @@ op_library(save_combine_op DEPS lod_tensor) op_library(load_combine_op DEPS lod_tensor) op_library(concat_op DEPS concat) -# FIXME(thuan): Move CSP operators to paddle/fluid/framework/operators/concurrency -add_subdirectory(concurrency) -op_library(channel_send_op DEPS concurrency) -op_library(channel_recv_op DEPS concurrency) - list(REMOVE_ITEM GENERAL_OPS ${DEPS_OPS}) foreach(src ${GENERAL_OPS}) diff --git a/paddle/fluid/operators/auc_op.cc b/paddle/fluid/operators/auc_op.cc index dfaa7456f917c1308984b361afed752f96ea6f59..0784920064a879963cd9725cd9acf4cec7b874ce 100644 --- a/paddle/fluid/operators/auc_op.cc +++ b/paddle/fluid/operators/auc_op.cc @@ -36,11 +36,16 @@ class AucOp : public framework::OperatorWithKernel { "Out and Label should have same height."); int num_pred_buckets = ctx->Attrs().Get("num_thresholds") + 1; + int slide_steps = ctx->Attrs().Get("slide_steps"); + + PADDLE_ENFORCE_GE(num_pred_buckets, 1, "num_thresholds must larger than 1"); + PADDLE_ENFORCE_GE(slide_steps, 0, "slide_steps must be natural number"); ctx->SetOutputDim("AUC", {1}); - ctx->SetOutputDim("BatchAUC", {1}); - ctx->SetOutputDim("StatPosOut", {num_pred_buckets}); - ctx->SetOutputDim("StatNegOut", {num_pred_buckets}); + + slide_steps = slide_steps == 0 ? 1 : slide_steps; + ctx->SetOutputDim("StatPosOut", {slide_steps, num_pred_buckets}); + ctx->SetOutputDim("StatNegOut", {slide_steps, num_pred_buckets}); } protected: @@ -62,6 +67,7 @@ class AucOpMaker : public framework::OpProtoAndCheckerMaker { AddInput("Label", "A 2D int tensor indicating the label of the training data. " "shape: [batch_size, 1]"); + // TODO(typhoonzero): support weight input AddInput("StatPos", "Statistic value when label = 1"); AddInput("StatNeg", "Statistic value when label = 0"); @@ -69,18 +75,19 @@ class AucOpMaker : public framework::OpProtoAndCheckerMaker { AddOutput("AUC", "A scalar representing the " "current area-under-the-curve."); - AddOutput("BatchAUC", "The AUC for current batch"); + AddOutput("StatPosOut", "Statistic value when label = 1"); AddOutput("StatNegOut", "Statistic value when label = 0"); AddAttr("curve", "Curve type, can be 'ROC' or 'PR'.") .SetDefault("ROC"); - AddAttr("num_thresholds", - "The number of thresholds to use when discretizing the" - " roc curve.") + AddAttr( + "num_thresholds", + "The number of thresholds to use when discretizing the roc curve.") .SetDefault((2 << 12) - 1); - + AddAttr("slide_steps", "Use slide steps to calc batch auc.") + .SetDefault(1); AddComment(R"DOC( Area Under The Curve (AUC) Operator. diff --git a/paddle/fluid/operators/auc_op.h b/paddle/fluid/operators/auc_op.h index fb0517d70635e090f8c5b59ff9d8420fc34c747b..fb370842d1942c3b3eebecb1fe5e8ffb845cb34b 100644 --- a/paddle/fluid/operators/auc_op.h +++ b/paddle/fluid/operators/auc_op.h @@ -32,7 +32,9 @@ class AucKernel : public framework::OpKernel { std::string curve = ctx.Attr("curve"); int num_thresholds = ctx.Attr("num_thresholds"); + // buckets contain numbers from 0 to num_thresholds int num_pred_buckets = num_thresholds + 1; + int slide_steps = ctx.Attr("slide_steps"); // Only use output var for now, make sure it's persistable and // not cleaned up for each batch. @@ -40,16 +42,19 @@ class AucKernel : public framework::OpKernel { auto *stat_pos = ctx.Output("StatPosOut"); auto *stat_neg = ctx.Output("StatNegOut"); - auto *stat_pos_data = stat_pos->mutable_data(ctx.GetPlace()); - auto *stat_neg_data = stat_neg->mutable_data(ctx.GetPlace()); - calcAuc(ctx, label, predict, stat_pos_data, stat_neg_data, num_thresholds, - auc); + auto *origin_stat_pos = stat_pos->mutable_data(ctx.GetPlace()); + auto *origin_stat_neg = stat_neg->mutable_data(ctx.GetPlace()); - auto *batch_auc = ctx.Output("BatchAUC"); - std::vector stat_pos_batch(num_pred_buckets, 0); - std::vector stat_neg_batch(num_pred_buckets, 0); - calcAuc(ctx, label, predict, stat_pos_batch.data(), stat_neg_batch.data(), - num_thresholds, batch_auc); + std::vector stat_pos_data(num_pred_buckets, 0); + std::vector stat_neg_data(num_pred_buckets, 0); + + auto stat_pos_calc = stat_pos_data.data(); + auto stat_neg_calc = stat_neg_data.data(); + + statAuc(label, predict, num_pred_buckets, num_thresholds, slide_steps, + origin_stat_pos, origin_stat_neg, &stat_pos_calc, &stat_neg_calc); + + calcAuc(ctx, stat_pos_calc, stat_neg_calc, num_thresholds, auc); } private: @@ -58,29 +63,76 @@ class AucKernel : public framework::OpKernel { return (X1 > X2 ? (X1 - X2) : (X2 - X1)) * (Y1 + Y2) / 2.0; } - inline static void calcAuc(const framework::ExecutionContext &ctx, - const framework::Tensor *label, + inline static void statAuc(const framework::Tensor *label, const framework::Tensor *predict, - int64_t *stat_pos, int64_t *stat_neg, - int num_thresholds, - framework::Tensor *auc_tensor) { + const int num_pred_buckets, + const int num_thresholds, const int slide_steps, + int64_t *origin_stat_pos, int64_t *origin_stat_neg, + int64_t **stat_pos, int64_t **stat_neg) { size_t batch_size = predict->dims()[0]; size_t inference_width = predict->dims()[1]; const T *inference_data = predict->data(); const auto *label_data = label->data(); - auto *auc = auc_tensor->mutable_data(ctx.GetPlace()); - for (size_t i = 0; i < batch_size; i++) { uint32_t binIdx = static_cast( inference_data[i * inference_width + 1] * num_thresholds); if (label_data[i]) { - stat_pos[binIdx] += 1.0; + (*stat_pos)[binIdx] += 1.0; } else { - stat_neg[binIdx] += 1.0; + (*stat_neg)[binIdx] += 1.0; } } + int bucket_length = num_pred_buckets * sizeof(int64_t); + + // will stat auc unlimited. + if (slide_steps == 0) { + for (int slide = 0; slide < num_pred_buckets; ++slide) { + origin_stat_pos[slide] += (*stat_pos)[slide]; + origin_stat_neg[slide] += (*stat_neg)[slide]; + } + + *stat_pos = origin_stat_pos; + *stat_neg = origin_stat_neg; + + } else { + for (int slide = 1; slide < slide_steps; ++slide) { + int dst_idx = (slide - 1) * num_pred_buckets; + int src_inx = slide * num_pred_buckets; + std::memcpy(origin_stat_pos + dst_idx, origin_stat_pos + src_inx, + bucket_length); + std::memcpy(origin_stat_neg + dst_idx, origin_stat_neg + src_inx, + bucket_length); + } + + std::memcpy(origin_stat_pos + (slide_steps - 1) * num_pred_buckets, + *stat_pos, bucket_length); + std::memcpy(origin_stat_neg + (slide_steps - 1) * num_pred_buckets, + *stat_neg, bucket_length); + + std::memset(*stat_pos, 0, bucket_length); + std::memset(*stat_neg, 0, bucket_length); + + for (int slide = 0; slide < num_pred_buckets; ++slide) { + int stat_pos_steps = 0; + int stat_neg_steps = 0; + for (int step = 0; step < slide_steps; ++step) { + stat_pos_steps += origin_stat_pos[slide + step * num_pred_buckets]; + stat_neg_steps += origin_stat_neg[slide + step * num_pred_buckets]; + } + (*stat_pos)[slide] += stat_pos_steps; + (*stat_neg)[slide] += stat_neg_steps; + } + } + } + + inline static void calcAuc(const framework::ExecutionContext &ctx, + int64_t *stat_pos, int64_t *stat_neg, + int num_thresholds, + framework::Tensor *auc_tensor) { + auto *auc = auc_tensor->mutable_data(ctx.GetPlace()); + *auc = 0.0f; double totPos = 0.0; @@ -96,7 +148,6 @@ class AucKernel : public framework::OpKernel { totPos += stat_pos[idx]; totNeg += stat_neg[idx]; *auc += trapezoidArea(totNeg, totNegPrev, totPos, totPosPrev); - --idx; } diff --git a/paddle/fluid/operators/channel_close_op.cc b/paddle/fluid/operators/channel_close_op.cc deleted file mode 100644 index 8e2db250a069c488ee98f618bc03df6485022456..0000000000000000000000000000000000000000 --- a/paddle/fluid/operators/channel_close_op.cc +++ /dev/null @@ -1,70 +0,0 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. */ - -#include "paddle/fluid/framework/channel.h" -#include "paddle/fluid/framework/op_registry.h" - -namespace pf = paddle::framework; -static constexpr char kChannel[] = "Channel"; - -namespace paddle { -namespace operators { - -class ChannelCloseOp : public framework::OperatorBase { - public: - ChannelCloseOp(const std::string &type, - const framework::VariableNameMap &inputs, - const framework::VariableNameMap &outputs, - const framework::AttributeMap &attrs) - : framework::OperatorBase(type, inputs, outputs, attrs) {} - - private: - void RunImpl(const framework::Scope &scope, - const platform::Place &dev_place) const override { - auto &inp = *scope.FindVar(Input(kChannel)); - - // Get the mutable version of the channel variable and closes it. - pf::ChannelHolder *ch = inp.GetMutable(); - ch->close(); - } -}; - -class ChannelCloseOpOpInferShape : public framework::InferShapeBase { - public: - void operator()(framework::InferShapeContext *context) const override { - PADDLE_ENFORCE(context->HasInput("Channel"), - "The input of ChannelClose op must be set"); - } -}; - -class ChannelCloseOpMaker : public framework::OpProtoAndCheckerMaker { - public: - void Make() override { - AddInput(kChannel, - "The Channel Variable that should be closed by" - " the ChannelClose Op."); - AddComment(R"DOC( -Channel Close Operator. - -This operator closes an open channel. -)DOC"); - } -}; - -} // namespace operators -} // namespace paddle - -REGISTER_OPERATOR(channel_close, paddle::operators::ChannelCloseOp, - paddle::framework::EmptyGradOpMaker, - paddle::operators::ChannelCloseOpMaker); diff --git a/paddle/fluid/operators/channel_create_op.cc b/paddle/fluid/operators/channel_create_op.cc deleted file mode 100644 index a7f59e4088e3fb328e5b5a83eed65f0f90edb9f0..0000000000000000000000000000000000000000 --- a/paddle/fluid/operators/channel_create_op.cc +++ /dev/null @@ -1,113 +0,0 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. */ - -#include "paddle/fluid/framework/channel.h" -#include "paddle/fluid/framework/lod_rank_table.h" -#include "paddle/fluid/framework/lod_tensor_array.h" -#include "paddle/fluid/framework/op_registry.h" -#include "paddle/fluid/framework/reader.h" - -namespace pf = paddle::framework; - -static constexpr char kOutput[] = "Out"; - -namespace paddle { -namespace operators { - -class ChannelCreateOp : public framework::OperatorBase { - public: - ChannelCreateOp(const std::string &type, - const framework::VariableNameMap &inputs, - const framework::VariableNameMap &outputs, - const framework::AttributeMap &attrs) - : framework::OperatorBase(type, inputs, outputs, attrs) {} - - private: - void RunImpl(const framework::Scope &scope, - const platform::Place &dev_place) const override { - auto &out = *scope.FindVar(Output(kOutput)); - - // Determine the datatype and capacity of the channel to be created - // from the attributes provided. - auto dtype = - static_cast(Attr("data_type")); - auto capacity = Attr("capacity"); - - // Based on the datatype, create a new channel holder initialized with - // the given capacity. When capacity is 0, an unbuffered channel is - // created. - pf::ChannelHolder *ch = out.GetMutable(); - if (dtype == framework::proto::VarType::LOD_TENSOR) { - ch->Reset(capacity); - } else if (dtype == framework::proto::VarType::SELECTED_ROWS) { - ch->Reset(capacity); - } else if (dtype == framework::proto::VarType::LOD_RANK_TABLE) { - ch->Reset(capacity); - } else if (dtype == framework::proto::VarType::LOD_TENSOR_ARRAY) { - ch->Reset(capacity); - } else if (dtype == framework::proto::VarType::READER) { - ch->Reset(capacity); - } else if (dtype == framework::proto::VarType::CHANNEL) { - ch->Reset(capacity); - } else if (dtype == framework::proto::VarType::BOOL) { - ch->Reset(capacity); - } else if (dtype == framework::proto::VarType::INT32) { - ch->Reset(capacity); - } else if (dtype == framework::proto::VarType::INT64) { - ch->Reset(capacity); - } else if (dtype == framework::proto::VarType::FP32) { - ch->Reset(capacity); - } else if (dtype == framework::proto::VarType::FP64) { - ch->Reset(capacity); - } else { - PADDLE_THROW( - "Data type %d is not in " - "[LOD_TENSOR, SELECTED_ROWS, LOD_RANK_TABLE, LOD_TENSOR_ARRAY, " - "READER, CHANNEL, BOOL, INT32, INT64, FP32, FP64]", - dtype); - } - } -}; - -class ChannelCreateOpOpInferShape : public framework::InferShapeBase { - public: - void operator()(framework::InferShapeContext *context) const override { - PADDLE_ENFORCE(context->HasOutput(kOutput), - "The output of ChannelCreate op must be set"); - context->SetOutputDim(kOutput, {1}); - } -}; - -class ChannelCreateOpMaker : public framework::OpProtoAndCheckerMaker { - public: - void Make() override { - AddOutput(kOutput, - "The object of a Channel type created by ChannelCreate Op."); - AddAttr("capacity", "The size of the buffer of Channel.") - .SetDefault(0); - AddAttr("data_type", "The data type of elements inside the Channel."); - AddComment(R"DOC( -Channel Create Operator. - -This operator creates an object of the VarType Channel and returns it. -)DOC"); - } -}; - -} // namespace operators -} // namespace paddle - -REGISTER_OPERATOR(channel_create, paddle::operators::ChannelCreateOp, - paddle::framework::EmptyGradOpMaker, - paddle::operators::ChannelCreateOpMaker); diff --git a/paddle/fluid/operators/channel_recv_op.cc b/paddle/fluid/operators/channel_recv_op.cc deleted file mode 100644 index 101015e837e28b504b71d919abd5f908a102c812..0000000000000000000000000000000000000000 --- a/paddle/fluid/operators/channel_recv_op.cc +++ /dev/null @@ -1,98 +0,0 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. */ - -#include "paddle/fluid/framework/channel.h" -#include -#include -#include -#include "paddle/fluid/framework/op_registry.h" -#include "paddle/fluid/framework/var_type.h" -#include "paddle/fluid/operators/concurrency/channel_util.h" -#include "paddle/fluid/operators/math/math_function.h" - -static constexpr char Channel[] = "Channel"; -static constexpr char Status[] = "Status"; -static constexpr char Out[] = "Out"; - -namespace paddle { -namespace operators { - -void SetReceiveStatus(const platform::Place &dev_place, - framework::Variable *status_var, bool status) { - auto cpu = platform::CPUPlace(); - auto status_tensor = - status_var->GetMutable()->mutable_data({1}, - cpu); - status_tensor[0] = status; -} - -class ChannelRecvOp : public framework::OperatorBase { - public: - ChannelRecvOp(const std::string &type, - const framework::VariableNameMap &inputs, - const framework::VariableNameMap &outputs, - const framework::AttributeMap &attrs) - : framework::OperatorBase(type, inputs, outputs, attrs) {} - - void InferShape(framework::InferShapeContext *ctx) const { - PADDLE_ENFORCE(ctx->HasInput(Channel), - "Input(Channel) of ChannelRecvOp should not be null."); - PADDLE_ENFORCE(ctx->HasOutput(Out), - "Input(Channel) of ChannelRecvOp should not be null."); - PADDLE_ENFORCE(ctx->HasOutput(Status), - "Output(Status) of ChannelRecvOp should not be null."); - ctx->SetOutputDim("Status", {1}); - } - - private: - void RunImpl(const framework::Scope &scope, - const platform::Place &dev_place) const override { - // Get the channel holder created by channel_create op, passed as input. - framework::ChannelHolder *ch = - scope.FindVar(Input(Channel))->GetMutable(); - auto output_var = scope.FindVar(Output(Out)); - // Receive the data from the channel. - bool ok = concurrency::ChannelReceive(ch, output_var); - - // Set the status output of the `ChannelReceive` call. - SetReceiveStatus(dev_place, scope.FindVar(Output(Status)), ok); - } -}; - -class ChannelRecvOpMaker : public framework::OpProtoAndCheckerMaker { - public: - void Make() override { - AddInput(Channel, - "(Channel) A variable which \"receives\" the a value sent" - "to it by a channel_send op.") - .AsDuplicable(); - AddOutput(Out, - "(Variable) Output Variable that will hold the data received" - " from the Channel") - .AsDuplicable(); - AddOutput(Status, - "(Tensor) An LoD Tensor that returns a boolean status of the" - "result of the receive operation.") - .AsDuplicable(); - AddComment(R"DOC( -)DOC"); - } -}; - -} // namespace operators -} // namespace paddle - -REGISTER_OPERATOR(channel_recv, paddle::operators::ChannelRecvOp, - paddle::framework::EmptyGradOpMaker, - paddle::operators::ChannelRecvOpMaker); diff --git a/paddle/fluid/operators/channel_send_op.cc b/paddle/fluid/operators/channel_send_op.cc deleted file mode 100644 index 67d6deb511d883ac69426ddd34be2199367cd4c7..0000000000000000000000000000000000000000 --- a/paddle/fluid/operators/channel_send_op.cc +++ /dev/null @@ -1,76 +0,0 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. */ - -#include "paddle/fluid/framework/channel.h" -#include -#include -#include -#include "paddle/fluid/framework/op_registry.h" -#include "paddle/fluid/framework/var_type.h" -#include "paddle/fluid/operators/concurrency/channel_util.h" -#include "paddle/fluid/operators/math/math_function.h" - -static constexpr char Channel[] = "Channel"; -static constexpr char X[] = "X"; - -namespace paddle { -namespace operators { - -class ChannelSendOp : public framework::OperatorBase { - public: - ChannelSendOp(const std::string &type, - const framework::VariableNameMap &inputs, - const framework::VariableNameMap &outputs, - const framework::AttributeMap &attrs) - : framework::OperatorBase(type, inputs, outputs, attrs) {} - - void InferShape(framework::InferShapeContext *ctx) const { - PADDLE_ENFORCE(ctx->HasInput(Channel), - "Input(Channel) of ChannelSendOp should not be null."); - PADDLE_ENFORCE(ctx->HasInput(X), - "Input(X) of ChannelSendOp should not be null."); - } - - private: - void RunImpl(const framework::Scope &scope, - const platform::Place &dev_place) const override { - // Get the channel holder created by channel_create op, passed as input. - framework::ChannelHolder *ch = - scope.FindVar(Input(Channel))->GetMutable(); - auto input_var = scope.FindVar(Input(X)); - - // Send the input data through the channel. - concurrency::ChannelSend(ch, input_var); - } -}; - -class ChannelSendOpMaker : public framework::OpProtoAndCheckerMaker { - public: - void Make() override { - AddInput(Channel, - "(Channel) A variable which \"sends\" the passed in value to " - "a listening receiver.") - .AsDuplicable(); - AddInput(X, "(Variable) The value which gets sent by the channel.") - .AsDuplicable(); - AddComment(R"DOC( -)DOC"); - } -}; -} // namespace operators -} // namespace paddle - -REGISTER_OPERATOR(channel_send, paddle::operators::ChannelSendOp, - paddle::framework::EmptyGradOpMaker, - paddle::operators::ChannelSendOpMaker); diff --git a/paddle/fluid/operators/concurrency/CMakeLists.txt b/paddle/fluid/operators/concurrency/CMakeLists.txt deleted file mode 100644 index e4617440d152b4c15d09e81cd19c76739b95b979..0000000000000000000000000000000000000000 --- a/paddle/fluid/operators/concurrency/CMakeLists.txt +++ /dev/null @@ -1 +0,0 @@ -cc_library(concurrency SRCS channel_util.cc DEPS device_context framework_proto boost eigen3) diff --git a/paddle/fluid/operators/concurrency/channel_util.cc b/paddle/fluid/operators/concurrency/channel_util.cc deleted file mode 100644 index fba4abf1897bceea615222b2438700085ed8e551..0000000000000000000000000000000000000000 --- a/paddle/fluid/operators/concurrency/channel_util.cc +++ /dev/null @@ -1,111 +0,0 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. */ - -#include "paddle/fluid/operators/concurrency/channel_util.h" -#include "paddle/fluid/framework/var_type.h" - -namespace poc = paddle::operators::concurrency; - -void poc::ChannelSend(framework::ChannelHolder *ch, framework::Variable *var) { - auto type = framework::ToVarType(var->Type()); - if (type == framework::proto::VarType_Type_LOD_TENSOR) - ch->Send(var->GetMutable()); - else if (type == framework::proto::VarType_Type_LOD_RANK_TABLE) - ch->Send(var->GetMutable()); - else if (type == framework::proto::VarType_Type_LOD_TENSOR_ARRAY) - ch->Send(var->GetMutable()); - else if (type == framework::proto::VarType_Type_SELECTED_ROWS) - ch->Send(var->GetMutable()); - else if (type == framework::proto::VarType_Type_READER) - ch->Send(var->GetMutable()); - else if (type == framework::proto::VarType_Type_CHANNEL) - ch->Send(var->GetMutable()); - else - PADDLE_THROW("ChannelSend:Unsupported type"); -} - -bool poc::ChannelReceive(framework::ChannelHolder *ch, - framework::Variable *var) { - // Get type of channel and use that to call mutable data for Variable - auto type = framework::ToVarType(ch->Type()); - if (type == framework::proto::VarType_Type_LOD_TENSOR) - return ch->Receive(var->GetMutable()); - else if (type == framework::proto::VarType_Type_LOD_RANK_TABLE) - return ch->Receive(var->GetMutable()); - else if (type == framework::proto::VarType_Type_LOD_TENSOR_ARRAY) - return ch->Receive(var->GetMutable()); - else if (type == framework::proto::VarType_Type_SELECTED_ROWS) - return ch->Receive(var->GetMutable()); - else if (type == framework::proto::VarType_Type_READER) - return ch->Receive(var->GetMutable()); - else if (type == framework::proto::VarType_Type_CHANNEL) - return ch->Receive(var->GetMutable()); - else - PADDLE_THROW("ChannelReceive:Unsupported type"); -} - -void poc::ChannelAddToSendQ(framework::ChannelHolder *ch, const void *referrer, - framework::Variable *var, - std::shared_ptr cond, - std::function cb) { - auto type = framework::ToVarType(var->Type()); - if (type == framework::proto::VarType_Type_LOD_TENSOR) { - ch->AddToSendQ(referrer, var->GetMutable(), cond, cb); - } else if (type == framework::proto::VarType_Type_LOD_RANK_TABLE) { - ch->AddToSendQ(referrer, var->GetMutable(), cond, - cb); - } else if (type == framework::proto::VarType_Type_LOD_TENSOR_ARRAY) { - ch->AddToSendQ(referrer, var->GetMutable(), cond, - cb); - } else if (type == framework::proto::VarType_Type_SELECTED_ROWS) { - ch->AddToSendQ(referrer, var->GetMutable(), cond, - cb); - } else if (type == framework::proto::VarType_Type_READER) { - ch->AddToSendQ(referrer, var->GetMutable(), cond, - cb); - } else if (type == framework::proto::VarType_Type_CHANNEL) { - ch->AddToSendQ(referrer, var->GetMutable(), cond, - cb); - } else { - PADDLE_THROW("ChannelAddToSendQ:Unsupported type"); - } -} - -void poc::ChannelAddToReceiveQ( - framework::ChannelHolder *ch, const void *referrer, - framework::Variable *var, std::shared_ptr cond, - std::function cb) { - auto type = framework::ToVarType(var->Type()); - if (type == framework::proto::VarType_Type_LOD_TENSOR) { - ch->AddToReceiveQ(referrer, var->GetMutable(), cond, - cb); - } else if (type == framework::proto::VarType_Type_LOD_RANK_TABLE) { - ch->AddToReceiveQ(referrer, var->GetMutable(), - cond, cb); - } else if (type == framework::proto::VarType_Type_LOD_TENSOR_ARRAY) { - ch->AddToReceiveQ(referrer, var->GetMutable(), - cond, cb); - } else if (type == framework::proto::VarType_Type_SELECTED_ROWS) { - ch->AddToReceiveQ(referrer, var->GetMutable(), - cond, cb); - } else if (type == framework::proto::VarType_Type_READER) { - ch->AddToReceiveQ(referrer, var->GetMutable(), - cond, cb); - } else if (type == framework::proto::VarType_Type_CHANNEL) { - ch->AddToReceiveQ(referrer, var->GetMutable(), - cond, cb); - } else { - PADDLE_THROW("ChannelAddToReceiveQ:Unsupported type"); - } -} diff --git a/paddle/fluid/operators/concurrency/channel_util.h b/paddle/fluid/operators/concurrency/channel_util.h deleted file mode 100644 index cd18ca78c6fdecdc6c72748611ccdd9c2690ef46..0000000000000000000000000000000000000000 --- a/paddle/fluid/operators/concurrency/channel_util.h +++ /dev/null @@ -1,38 +0,0 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. */ - -#pragma once - -#include "paddle/fluid/framework/channel.h" -#include "paddle/fluid/framework/variable.h" - -namespace paddle { -namespace operators { -namespace concurrency { - -void ChannelSend(framework::ChannelHolder *ch, framework::Variable *var); -bool ChannelReceive(framework::ChannelHolder *ch, framework::Variable *var); - -void ChannelAddToSendQ(framework::ChannelHolder *ch, const void *referrer, - framework::Variable *var, - std::shared_ptr cond, - std::function cb); -void ChannelAddToReceiveQ(framework::ChannelHolder *ch, const void *referrer, - framework::Variable *var, - std::shared_ptr cond, - std::function cb); - -} // namespace concurrency -} // namespace operators -} // namespace paddle diff --git a/paddle/fluid/operators/distributed/grpc_client.h b/paddle/fluid/operators/distributed/grpc_client.h index 75a3662316462a222760bfbb7d7906c70f46d143..d8e9cee85bd734c2ed4b1cae03ecee04e304b651 100644 --- a/paddle/fluid/operators/distributed/grpc_client.h +++ b/paddle/fluid/operators/distributed/grpc_client.h @@ -15,6 +15,7 @@ limitations under the License. */ #pragma once #include +#include #include // NOLINT #include // NOLINT diff --git a/paddle/fluid/operators/distributed/request_handler.h b/paddle/fluid/operators/distributed/request_handler.h index 3dbbd75b1e945208395c42ace3235db7891936c5..5be7095acd3c5ac6f880a8a26c246f60a93643b5 100644 --- a/paddle/fluid/operators/distributed/request_handler.h +++ b/paddle/fluid/operators/distributed/request_handler.h @@ -15,6 +15,7 @@ #pragma once #include +#include // NOLINT #include #include diff --git a/paddle/fluid/operators/distributed/rpc_server.h b/paddle/fluid/operators/distributed/rpc_server.h index d88e8c640ffb5ea44e88318cc973c9a783862435..f3e61e1575ced0b9ffbad23e6973121daca9751b 100644 --- a/paddle/fluid/operators/distributed/rpc_server.h +++ b/paddle/fluid/operators/distributed/rpc_server.h @@ -14,6 +14,7 @@ #pragma once +#include #include #include #include // NOLINT diff --git a/paddle/fluid/operators/scale_op.cc b/paddle/fluid/operators/scale_op.cc index bf4df4f600c14050b636b7ee6d7b6973b57adb94..981969d2aaa684731a615ec64ca7f7718b35cf09 100644 --- a/paddle/fluid/operators/scale_op.cc +++ b/paddle/fluid/operators/scale_op.cc @@ -77,8 +77,10 @@ class ScaleOpVarTypeInference : public framework::VarTypeInference { auto out_var_name = op_desc.Output("Out").front(); auto *out_var = block->FindVarRecursive(out_var_name); - out_var->SetType(in_var.GetType()); - out_var->SetDataType(in_var.GetDataType()); + if (in_var_name != out_var_name) { + out_var->SetType(in_var.GetType()); + out_var->SetDataType(in_var.GetDataType()); + } } }; diff --git a/paddle/fluid/operators/select_op.cc b/paddle/fluid/operators/select_op.cc deleted file mode 100644 index e71841d4d1815d50cd9800910c9db34e121beffc..0000000000000000000000000000000000000000 --- a/paddle/fluid/operators/select_op.cc +++ /dev/null @@ -1,419 +0,0 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. */ - -#include -#include // NOLINT -#include -#include "paddle/fluid/framework/channel.h" -#include "paddle/fluid/framework/executor.h" -#include "paddle/fluid/framework/lod_tensor.h" -#include "paddle/fluid/framework/op_registry.h" -#include "paddle/fluid/operators/concurrency/channel_util.h" - -#include - -namespace paddle { -namespace operators { - -static constexpr char kX[] = "X"; -static constexpr char kCaseToExecute[] = "case_to_execute"; -static constexpr char kOutputs[] = "Out"; - -static constexpr char kCases[] = "cases"; -static constexpr char kCasesBlock[] = "sub_block"; - -class SelectOp : public framework::OperatorBase { - public: - SelectOp(const std::string &type, const framework::VariableNameMap &inputs, - const framework::VariableNameMap &outputs, - const framework::AttributeMap &attrs) - : framework::OperatorBase(type, inputs, outputs, attrs) {} - - private: - enum class SelectOpCaseType { - DEFAULT = 0, - SEND = 1, - RECEIVE = 2, - }; - - struct SelectOpCase { - int caseIndex; - SelectOpCaseType caseType; - std::string channelName; - std::string varName; - - SelectOpCase() {} - - SelectOpCase(int caseIndex, SelectOpCaseType caseType, - std::string channelName, std::string varName) - : caseIndex(caseIndex), - caseType(caseType), - channelName(channelName), - varName(varName) {} - }; - - void RunImpl(const framework::Scope &scope, - const platform::Place &dev_place) const override { - std::vector casesConfigs = - Attr>(kCases); - - framework::BlockDesc *casesBlock = - Attr(kCasesBlock); - - framework::Scope &casesBlockScope = scope.NewScope(); - - std::string caseToExecuteVarName = Input(kCaseToExecute); - framework::Variable *caseToExecuteVar = - casesBlockScope.FindVar(caseToExecuteVarName); - - // Construct cases from "conditional_block_op"(s) in the casesBlock - std::vector> cases = - ParseAndShuffleCases(&casesConfigs); - - // Get all unique channels involved in select - std::set channelsSet; - for (auto c : cases) { - if (!c->channelName.empty()) { - auto channelVar = scope.FindVar(c->channelName); - framework::ChannelHolder *ch = - channelVar->GetMutable(); - - if (channelsSet.find(ch) == channelsSet.end()) { - channelsSet.insert(ch); - } - } - } - - // Order all channels by their pointer address - std::vector channels(channelsSet.begin(), - channelsSet.end()); - std::sort(channels.begin(), channels.end()); - - // Poll all cases - int32_t caseToExecute = pollCases(&scope, &cases, channels); - - // At this point, the case to execute has already been determined, - // so we can proceed with executing the cases block - framework::LoDTensor *caseToExecuteTensor = - caseToExecuteVar->GetMutable(); - caseToExecuteTensor->data()[0] = caseToExecute; - - // Execute the cases block, only one case will be executed since we set the - // case_to_execute value to the index of the case we want to execute - framework::Executor executor(dev_place); - framework::ProgramDesc *program = casesBlock->Program(); - executor.Run(*program, &casesBlockScope, casesBlock->ID(), - false /*create_local_scope*/); - } - - /** - * Goes through all operators in the casesConfigs and processes - * "conditional_block" operators. These operators are mapped to our - * SelectOpCase objects. We randomize the case orders, and set the - * default case (if any exists) as the last case) - * @param casesBlock - * @return - */ - std::vector> ParseAndShuffleCases( - std::vector *casesConfigs) const { - std::vector> cases; - std::shared_ptr defaultCase; - - if (casesConfigs != nullptr) { - boost::char_delimiters_separator sep(false, ",", ""); - for (std::vector::iterator itr = casesConfigs->begin(); - itr < casesConfigs->end(); ++itr) { - std::string caseConfig = *itr; - boost::tokenizer<> tokens(caseConfig, sep); - - boost::tokenizer<>::iterator tok_iter = tokens.begin(); - PADDLE_ENFORCE(tok_iter != tokens.end(), "Cannot get case index"); - std::string caseIndexString = *tok_iter; - int caseIndex = std::stoi(caseIndexString); - - ++tok_iter; - PADDLE_ENFORCE(tok_iter != tokens.end(), "Cannot get case type"); - std::string caseTypeString = *tok_iter; - SelectOpCaseType caseType = (SelectOpCaseType)std::stoi(caseTypeString); - - std::string caseChannel; - std::string caseChannelVar; - - ++tok_iter; - if (caseType != SelectOpCaseType::DEFAULT) { - PADDLE_ENFORCE(tok_iter != tokens.end(), "Cannot get case channel"); - caseChannel = *tok_iter; - - ++tok_iter; - PADDLE_ENFORCE(tok_iter != tokens.end(), - "Cannot get case channel variable"); - caseChannelVar = *tok_iter; - } - - auto c = std::make_shared(caseIndex, caseType, - caseChannel, caseChannelVar); - - if (caseType == SelectOpCaseType::DEFAULT) { - PADDLE_ENFORCE(defaultCase == nullptr, - "Select can only contain one default case."); - defaultCase = c; - } else { - cases.push_back(c); - } - } - } - - // Randomly sort cases, with default case being last - std::random_shuffle(cases.begin(), cases.end()); - if (defaultCase != nullptr) { - cases.push_back(defaultCase); - } - - return cases; - } - - /** - * This method will recursively poll the cases and determines if any case - * condition is true. - * If none of the cases conditions are true (and there is no default case), - * then block - * the thread. The thread may be woken up by a channel operation, at which - * point we - * execute the case. - * @param scope - * @param cases - * @param channels - * @return - */ - int32_t pollCases(const framework::Scope *scope, - std::vector> *cases, - std::vector channels) const { - // Lock all involved channels - lockChannels(channels); - - std::atomic caseToExecute(-1); - - std::vector>::iterator it = cases->begin(); - while (it != cases->end()) { - std::shared_ptr c = *it; - - auto chVar = scope->FindVar(c->channelName); - framework::ChannelHolder *ch = - chVar->GetMutable(); - - switch (c->caseType) { - case SelectOpCaseType::SEND: - PADDLE_ENFORCE(!ch->IsClosed(), "Cannot send to a closed channel"); - if (ch->CanSend()) { - // We can send to channel directly, send the data to channel - // and execute case - auto chVar = scope->FindVar(c->varName); - concurrency::ChannelSend(ch, chVar); - caseToExecute = c->caseIndex; - } - break; - case SelectOpCaseType::RECEIVE: - if (ch->CanReceive()) { - // We can receive from channel directly, send the data to channel - // and execute case - auto chVar = scope->FindVar(c->varName); - concurrency::ChannelReceive(ch, chVar); - caseToExecute = c->caseIndex; - } - break; - case SelectOpCaseType::DEFAULT: - caseToExecute = c->caseIndex; - break; - } - - if (caseToExecute != -1) { - // We found a case to execute, stop looking at other case statements - break; - } - - ++it; - } - - if (caseToExecute == -1) { - // None of the cases are eligible to execute, enqueue current thread - // into all the sending/receiving queue of each involved channel - std::atomic completed(false); - std::recursive_mutex mutex; - std::unique_lock lock{mutex}; - // std::condition_variable_any selectCond; - auto selectCond = std::make_shared(); - - std::recursive_mutex callbackMutex; - pushThreadOnChannelQueues(scope, cases, selectCond, &caseToExecute, - &completed, &callbackMutex); - - // TODO(thuan): Atomically unlock all channels and sleep current thread - unlockChannels(channels); - selectCond->wait(lock, [&completed]() { return completed.load(); }); - - // Select has been woken up by case operation - lockChannels(channels); - removeThreadOnChannelQueues(scope, cases); - - if (caseToExecute == -1) { - // Recursively poll cases, since we were woken up by a channel close - // TODO(thuan): Need to test if this is a valid case - unlockChannels(channels); - return pollCases(scope, cases, channels); - } - } - - // At this point, caseToExecute != -1, and we can proceed with executing - // the case block - unlockChannels(channels); - - return caseToExecute; - } - - void lockChannels(std::vector chs) const { - std::vector::iterator it = chs.begin(); - while (it != chs.end()) { - framework::ChannelHolder *ch = *it; - ch->Lock(); - ++it; - } - } - - void unlockChannels(std::vector chs) const { - std::vector::reverse_iterator it = chs.rbegin(); - while (it != chs.rend()) { - framework::ChannelHolder *ch = *it; - ch->Unlock(); - ++it; - } - } - - void pushThreadOnChannelQueues( - const framework::Scope *scope, - std::vector> *cases, - std::shared_ptr rCond, - std::atomic *caseToExecute, std::atomic *completed, - std::recursive_mutex *callbackMutex) const { - std::vector>::iterator it = cases->begin(); - while (it != cases->end()) { - std::shared_ptr c = *it; - - auto chVar = scope->FindVar(c->channelName); - framework::ChannelHolder *ch = - chVar->GetMutable(); - - std::function cb = - [&caseToExecute, &completed, &callbackMutex, - c](framework::ChannelAction channelAction) { - std::lock_guard lock{*callbackMutex}; - - bool canProcess = false; - if (!(*completed)) { - // If the channel wasn't closed, we set the caseToExecute index - // as this current case - if (channelAction != framework::ChannelAction::CLOSE) { - *caseToExecute = c->caseIndex; - } - // This will allow our conditional variable to break out of wait - *completed = true; - canProcess = true; - } - - return canProcess; - }; - - switch (c->caseType) { - case SelectOpCaseType::SEND: { - auto chOutputVar = scope->FindVar(c->varName); - concurrency::ChannelAddToSendQ(ch, this, chOutputVar, rCond, cb); - break; - } - case SelectOpCaseType::RECEIVE: { - auto chOutputVar = scope->FindVar(c->varName); - concurrency::ChannelAddToReceiveQ(ch, this, chOutputVar, rCond, cb); - break; - } - default: - break; - } - ++it; - } - } - - void removeThreadOnChannelQueues( - const framework::Scope *scope, - std::vector> *cases) const { - std::vector>::iterator it = cases->begin(); - while (it != cases->end()) { - std::shared_ptr c = *it; - - auto chVar = scope->FindVar(c->channelName); - framework::ChannelHolder *ch = - chVar->GetMutable(); - switch (c->caseType) { - case SelectOpCaseType::SEND: { - ch->RemoveFromSendQ(this); - break; - } - case SelectOpCaseType::RECEIVE: { - ch->RemoveFromReceiveQ(this); - break; - } - default: - break; - } - ++it; - } - } -}; - -class SelectOpMaker : public framework::OpProtoAndCheckerMaker { - public: - void Make() override { - AddInput(kX, - "A set of variables, which are required by operators inside the " - "cases of Select Op") - .AsDuplicable(); - AddInput(kCaseToExecute, - "(Int) The variable the sets the index of the case to execute, " - "after evaluating the channels being sent to and received from") - .AsDuplicable(); - AddOutput(kOutputs, - "A set of variables, which will be assigned with values " - "generated by the operators inside the cases of Select Op.") - .AsDuplicable(); - AddAttr>(kCases, - "(String vector) Serialized list of" - "all cases in the select op. Each" - "case is serialized as: " - "',,,'" - "where type is 0 for default, 1 for" - "send, and 2 for receive" - "No channel and values are needed for" - "default cases."); - AddAttr(kCasesBlock, - "The cases block inside select_op"); - AddComment(R"DOC( -)DOC"); - } -}; - -// TODO(thuan): Implement Gradient Operator for SELECT_OP - -} // namespace operators -} // namespace paddle - -REGISTER_OPERATOR(select, paddle::operators::SelectOp, - paddle::framework::EmptyGradOpMaker, - paddle::operators::SelectOpMaker); diff --git a/paddle/fluid/operators/sum_op.h b/paddle/fluid/operators/sum_op.h index 6dffe527c1072ee97fcde1725bfc1a47ed1ad74a..7c61e38f6222886a49a3de47867f26aeb6273a6b 100644 --- a/paddle/fluid/operators/sum_op.h +++ b/paddle/fluid/operators/sum_op.h @@ -32,7 +32,7 @@ class SumKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &context) const override { auto in_vars = context.MultiInputVar("X"); - int N = in_vars.size(); + size_t in_num = in_vars.size(); auto out_var = context.OutputVar("Out"); bool in_place = out_var == in_vars[0]; @@ -53,7 +53,7 @@ class SumKernel : public framework::OpKernel { auto &place = *context.template device_context().eigen_device(); // If in_place, just skip the first tensor - for (int i = in_place ? 1 : 0; i < N; i++) { + for (size_t i = in_place ? 1 : 0; i < in_num; i++) { if (in_vars[i]->IsType()) { auto &in_t = in_vars[i]->Get(); if (in_t.numel() == 0) { @@ -101,13 +101,13 @@ class SumKernel : public framework::OpKernel { // Runtime InferShape size_t first_dim = 0; - for (int i = 0; i < N; i++) { + for (size_t i = 0; i < in_num; i++) { auto &sel_row = get_selected_row(i); first_dim += sel_row.rows().size(); } std::vector in_dim; - for (int i = 0; i < N; i++) { + for (size_t i = 0; i < in_num; i++) { auto &sel_row = get_selected_row(i); if (sel_row.rows().size() > 0) { in_dim = framework::vectorize(sel_row.value().dims()); @@ -116,7 +116,8 @@ class SumKernel : public framework::OpKernel { } if (in_dim.empty()) { VLOG(3) << "WARNING: all the inputs are empty"; - in_dim = framework::vectorize(get_selected_row(N - 1).value().dims()); + in_dim = + framework::vectorize(get_selected_row(in_num - 1).value().dims()); } else { in_dim[0] = static_cast(first_dim); } @@ -133,7 +134,7 @@ class SumKernel : public framework::OpKernel { math::SelectedRowsAddTo functor; int64_t offset = 0; - for (int i = 0; i < N; i++) { + for (size_t i = 0; i < in_num; i++) { auto &sel_row = get_selected_row(i); if (sel_row.rows().size() == 0) { continue; diff --git a/paddle/fluid/pybind/protobuf.cc b/paddle/fluid/pybind/protobuf.cc index a5bc44122028c1191f511157bdde2e7c2d30c6aa..3b22718a8c6f994dbc2dc3e7aaa19a7163f716ba 100644 --- a/paddle/fluid/pybind/protobuf.cc +++ b/paddle/fluid/pybind/protobuf.cc @@ -214,7 +214,6 @@ void BindVarDsec(pybind11::module *m) { .def("set_shapes", &pd::VarDesc::SetShapes) .def("set_dtype", &pd::VarDesc::SetDataType) .def("set_dtypes", &pd::VarDesc::SetDataTypes) - .def("set_capacity", &pd::VarDesc::SetCapacity) .def("shape", &pd::VarDesc::GetShape, pybind11::return_value_policy::reference) .def("shapes", &pd::VarDesc::GetShapes, @@ -251,7 +250,6 @@ void BindVarDsec(pybind11::module *m) { .value("STEP_SCOPES", pd::proto::VarType::STEP_SCOPES) .value("LOD_RANK_TABLE", pd::proto::VarType::LOD_RANK_TABLE) .value("LOD_TENSOR_ARRAY", pd::proto::VarType::LOD_TENSOR_ARRAY) - .value("CHANNEL", pd::proto::VarType::CHANNEL) .value("PLACE_LIST", pd::proto::VarType::PLACE_LIST) .value("READER", pd::proto::VarType::READER) .value("RAW", pd::proto::VarType::RAW); diff --git a/paddle/fluid/pybind/pybind.cc b/paddle/fluid/pybind/pybind.cc index 8b62502e3f920a3bf7d80f9e7edc2f3647a0e5b1..15268aebe4df5ac4038727338b133cbd0fca2acd 100644 --- a/paddle/fluid/pybind/pybind.cc +++ b/paddle/fluid/pybind/pybind.cc @@ -21,7 +21,6 @@ limitations under the License. */ #include #include -#include "paddle/fluid/framework/channel.h" #include "paddle/fluid/framework/executor.h" #include "paddle/fluid/framework/feed_fetch_method.h" #include "paddle/fluid/framework/framework.pb.h" diff --git a/paddle/legacy/trainer/tests/CMakeLists.txt b/paddle/legacy/trainer/tests/CMakeLists.txt index 08548bea4c4a7fc4fa99d9305208abd4ee442572..fbefcced5643b65372072856bfeb6c87cd4071a8 100644 --- a/paddle/legacy/trainer/tests/CMakeLists.txt +++ b/paddle/legacy/trainer/tests/CMakeLists.txt @@ -16,7 +16,11 @@ endfunction() trainer_test(test_Compare) trainer_test(test_PyDataProviderWrapper) trainer_test(test_recurrent_machine_generation) -trainer_test(test_Trainer) +if(NOT APPLE) + trainer_test(test_Trainer) +else() + message(WARNING "These tests has been disabled in OSX for random fail: \n test_Trainer") +endif() ############### test_TrainerOnePass ########################## if(WITH_PYTHON) diff --git a/paddle/scripts/paddle_build.sh b/paddle/scripts/paddle_build.sh index c397f070e947ba787c13397dfc07e4b1e4e37e73..05c4cb57142a7af91733ba463dfaf2431c17f61f 100755 --- a/paddle/scripts/paddle_build.sh +++ b/paddle/scripts/paddle_build.sh @@ -70,8 +70,8 @@ function cmake_gen() { PYTHON_FLAGS="" SYSTEM=`uname -s` if [ "$SYSTEM" == "Darwin" ]; then + echo "using python abi: $1" if [[ "$1" == "cp27-cp27m" ]] || [[ "$1" == "" ]]; then - echo "using python abi: $1" if [ -d "/Library/Frameworks/Python.framework/Versions/2.7" ]; then export LD_LIBRARY_PATH=/Library/Frameworks/Python.framework/Versions/2.7 export DYLD_LIBRARY_PATH=/Library/Frameworks/Python.framework/Versions/2.7 @@ -82,7 +82,18 @@ function cmake_gen() { else exit 1 fi - # TODO: qiyang add python3 part here + elif [ "$1" == "cp35-cp35m" ]; then + if [ -d "/Library/Frameworks/Python.framework/Versions/3.5" ]; then + export LD_LIBRARY_PATH=/Library/Frameworks/Python.framework/Versions/3.5/lib/ + export DYLD_LIBRARY_PATH=/Library/Frameworks/Python.framework/Versions/3.5/lib/ + export PATH=/Library/Frameworks/Python.framework/Versions/3.5/bin/:${PATH} + PYTHON_FLAGS="-DPYTHON_EXECUTABLE:FILEPATH=/Library/Frameworks/Python.framework/Versions/3.5/bin/python3 + -DPYTHON_INCLUDE_DIR:PATH=/Library/Frameworks/Python.framework/Versions/3.5/include/python3.5m/ + -DPYTHON_LIBRARY:FILEPATH=/Library/Frameworks/Python.framework/Versions/3.5/lib/libpython3.5m.dylib" + WITH_FLUID_ONLY=${WITH_FLUID_ONLY:-ON} + else + exit 1 + fi fi else if [ "$1" != "" ]; then @@ -384,7 +395,7 @@ EOF ctest --output-on-failure -j $1 # make install should also be test when unittest make install -j 8 - pip install /usr/local/opt/paddle/share/wheels/*.whl + pip install ${INSTALL_PREFIX:-/paddle/build}/opt/paddle/share/wheels/*.whl if [[ ${WITH_FLUID_ONLY:-OFF} == "OFF" ]] ; then paddle version fi diff --git a/python/paddle/dataset/common.py b/python/paddle/dataset/common.py index ece4046f5b7a7eff5be724d6f890665be7f3344e..58a4c66c206c3f783437126c855c2890644f1bc0 100644 --- a/python/paddle/dataset/common.py +++ b/python/paddle/dataset/common.py @@ -77,13 +77,14 @@ def download(url, module_name, md5sum, save_name=None): retry_limit = 3 while not (os.path.exists(filename) and md5file(filename) == md5sum): if os.path.exists(filename): - print("file md5", md5file(filename), md5sum) + sys.stderr.write("file %s md5 %s" % (md5file(filename), md5sum)) if retry < retry_limit: retry += 1 else: raise RuntimeError("Cannot download {0} within retry limit {1}". format(url, retry_limit)) - print("Cache file %s not found, downloading %s" % (filename, url)) + sys.stderr.write("Cache file %s not found, downloading %s" % + (filename, url)) r = requests.get(url, stream=True) total_length = r.headers.get('content-length') @@ -100,10 +101,11 @@ def download(url, module_name, md5sum, save_name=None): dl += len(data) f.write(data) done = int(50 * dl / total_length) - sys.stdout.write("\r[%s%s]" % ('=' * done, + sys.stderr.write("\r[%s%s]" % ('=' * done, ' ' * (50 - done))) sys.stdout.flush() - + sys.stderr.write("\n") + sys.stdout.flush() return filename diff --git a/python/paddle/fluid/clip.py b/python/paddle/fluid/clip.py index e884185528282021fd16289ccc6a3533e22b9967..4c24d0d6a7069c75c7b9b8245f4567ae8bfc2742 100644 --- a/python/paddle/fluid/clip.py +++ b/python/paddle/fluid/clip.py @@ -271,7 +271,8 @@ class GradientClipByGlobalNorm(BaseGradientClipAttr): "All parameters' 'clip_norm' of a same group should be the same" ) - local_norm_var = layers.reduce_sum(input=layers.pow(x=grad, factor=2.0)) + square = grad * grad + local_norm_var = layers.cast(layers.reduce_sum(input=square), 'float64') context[self.group_name].append(local_norm_var) self.context = context @@ -281,6 +282,7 @@ class GradientClipByGlobalNorm(BaseGradientClipAttr): if group_scale_name not in self.context: group_norm_var = layers.sums(input=self.context[self.group_name]) group_norm_var = layers.sqrt(x=group_norm_var) + group_norm_var = layers.cast(group_norm_var, 'float32') clip_var = self.context[self.group_name + "_clip"] group_scale_var = layers.elementwise_div( x=clip_var, diff --git a/python/paddle/fluid/concurrency.py b/python/paddle/fluid/concurrency.py deleted file mode 100644 index e375fdef9c6076f3268c86c0b79d9d484021e49d..0000000000000000000000000000000000000000 --- a/python/paddle/fluid/concurrency.py +++ /dev/null @@ -1,454 +0,0 @@ -# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from __future__ import print_function - -from .layers.control_flow import BlockGuard, equal -from .framework import Operator -from .layer_helper import LayerHelper, unique_name -from .layers import fill_constant -from . import core - -__all__ = [ - 'make_channel', 'channel_send', 'channel_recv', 'channel_close', 'Select' -] - - -class Go(BlockGuard): - def __init__(self, name=None): - self.helper = LayerHelper("go", name=name) - super(Go, self).__init__(self.helper.main_program) - - def __enter__(self): - super(Go, self).__enter__() - - def __exit__(self, exc_type, exc_val, exc_tb): - if exc_type is not None: - return False - self._construct_go_op() - return super(Go, self).__exit__(exc_type, exc_val, exc_tb) - - def _construct_go_op(self): - main_program = self.helper.main_program - go_block = main_program.current_block() - parent_block = main_program.block(main_program.current_block() - .parent_idx) - - inner_outputs = set() - x_name_list = set() - for op in go_block.ops: - # Iterate over all operators, get all the inputs - # and add as input to the Go operator. - for iname in op.input_names: - for in_var_name in op.input(iname): - if in_var_name not in inner_outputs: - x_name_list.add(in_var_name) - - for oname in op.output_names: - for out_var_name in op.output(oname): - inner_outputs.add(out_var_name) - - # Iterate over all operators , get all the outputs - # add to the output list of Go operator only if - # they exist in the parent block. - out_vars = [] - for inner_out_name in inner_outputs: - if inner_out_name in parent_block.vars: - out_vars.append(parent_block.var(inner_out_name)) - - parent_block.append_op( - type='go', - inputs={ - 'X': [ - parent_block._var_recursive(x_name) - for x_name in x_name_list - ] - }, - outputs={}, - attrs={'sub_block': go_block}) - - -class SelectCase(object): - DEFAULT = 0 - SEND = 1 - RECEIVE = 2 - - def __init__(self, - select, - case_idx, - case_to_execute, - channel_action_fn=None, - channel=None, - value=None, - is_copy=False): - self.select = select - self.helper = LayerHelper('conditional_block') - self.main_program = self.helper.main_program - self.is_scalar_condition = True - - self.case_to_execute = case_to_execute - self.idx = case_idx - - # Since we aren't going to use the `channel_send` or `channel_recv` - # functions directly, we just need to capture the name. - self.action = (self.SEND - if channel_action_fn.__name__ == ('channel_send') else - self.RECEIVE) if channel_action_fn else self.DEFAULT - - X = value - if self.action == self.SEND and is_copy: - # We create of copy of the data we want to send - copied_X = self.select.parent_block.create_var( - name=unique_name.generate(value.name + '_copy'), - type=value.type, - dtype=value.dtype, - shape=value.shape, - lod_level=value.lod_level, - capacity=value.capacity - if hasattr(value, 'capacity') else None, ) - - self.select.parent_block.append_op( - type="assign", inputs={"X": value}, outputs={"Out": copied_X}) - X = copied_X - - self.value = X - self.channel = channel - - def __enter__(self): - self.block = self.main_program._create_block() - - def construct_op(self): - main_program = self.helper.main_program - cases_block = main_program.current_block() - - inner_outputs = set() - input_set = set() - params = set() - - for op in self.block.ops: - # Iterate over all operators, get all the inputs - # and add as input to the SelectCase operator. - for iname in op.input_names: - for in_var_name in op.input(iname): - if in_var_name not in inner_outputs: - input_set.add(in_var_name) - - for oname in op.output_names: - for out_var_name in op.output(oname): - inner_outputs.add(out_var_name) - - param_list = [ - cases_block.var(each_name) for each_name in params - if each_name not in input_set - ] - - # Iterate over all operators, get all the outputs - # add to the output list of SelectCase operator only if - # they exist in the parent block. - out_vars = [] - for inner_out_name in inner_outputs: - if inner_out_name in cases_block.vars: - out_vars.append(cases_block.var(inner_out_name)) - - # First, create an op that will determine whether or not this is the - # conditional variable to execute. - should_execute_block = equal( - fill_constant( - shape=[1], dtype=core.VarDesc.VarType.INT32, value=self.idx), - self.case_to_execute) - - step_scope = cases_block.create_var( - type=core.VarDesc.VarType.STEP_SCOPES) - - cases_block.append_op( - type='conditional_block', - inputs={'X': [should_execute_block], - 'Params': param_list}, - outputs={'Out': out_vars, - 'Scope': [step_scope]}, - attrs={ - 'sub_block': self.block, - 'is_scalar_condition': self.is_scalar_condition - }) - - return '%s,%s,%s,%s' % (self.idx, self.action, self.channel.name - if self.channel else '', self.value.name - if self.value else '') - - def __exit__(self, exc_type, exc_val, exc_tb): - self.main_program._rollback() - if exc_type is not None: - return False # re-raise exception - return True - - -class Select(BlockGuard): - def __init__(self, name=None): - self.helper = LayerHelper('select', name=name) - self.parent_block = self.helper.main_program.current_block() - self.cases = [] - - super(Select, self).__init__(self.helper.main_program) - self.case_to_execute = fill_constant( - shape=[1], dtype=core.VarDesc.VarType.INT32, value=-1) - - def __enter__(self): - super(Select, self).__enter__() - return self - - def case(self, channel_action_fn, channel, value, is_copy=False): - """Create a new block for this condition. - """ - select_case = SelectCase(self, - len(self.cases), self.case_to_execute, - channel_action_fn, channel, value, is_copy) - - self.cases.append(select_case) - - return select_case - - def default(self): - """Create a default case block for this condition. - """ - default_case = SelectCase(self, len(self.cases), self.case_to_execute) - - self.cases.append(default_case) - - return default_case - - def __exit__(self, exc_type, exc_val, exc_tb): - if exc_type is not None: - return False - - # Create a select op and another block to wrap its - # case blocks. - select_block = self.helper.main_program.current_block() - parent_block = self.helper.main_program.block(select_block.parent_idx) - - # Construct each case op, inside the newly created select block. - serialized_cases = [] - for case in self.cases: - serialized_cases.append(case.construct_op()) - - intermediate = set() - params = set() - - for case_block in select_block.ops: - if case_block.attrs and 'sub_block' in case_block.attrs: - for each_op in case_block.attrs['sub_block'].ops: - assert isinstance(each_op, Operator) - for iname in each_op.input_names: - for in_var_name in each_op.input(iname): - if in_var_name not in intermediate: - params.add(in_var_name) - - for oname in each_op.output_names: - for out_var_name in each_op.output(oname): - intermediate.add(out_var_name) - - out_list = [ - parent_block.var(var_name) for var_name in parent_block.vars - if var_name in intermediate - ] - - X = [select_block._var_recursive(x_name) for x_name in params] - - # Needs to be used by `equal` inside the cases block. - X.append(self.case_to_execute) - - # Construct the select op. - parent_block.append_op( - type='select', - inputs={'X': X, - 'case_to_execute': self.case_to_execute}, - attrs={'sub_block': select_block, - 'cases': serialized_cases}, - outputs={'Out': out_list}) - - return super(Select, self).__exit__(exc_type, exc_val, exc_tb) - - -def make_channel(dtype, capacity=0): - """ - Helps implementation of a concurrent program by creating a "channel" of - a defined data type. Channels allow for the passing of data in - concurrent scenarios - such as when using threads to divide computation. - Channels can be used to "send" and "receive" such data concurrently. - - There are two kinds of channels: unbuffered and buffered. Unbuffered - channels have no capacity - and thus, block on send and only unblock only - once what they have sent has been received. - - On the other hand, buffered channels are initialized with a capacity - - and do not block on sends. - - Use this method in combination with `channel_send`, `channel_recv`, - `channel_close`, and `Go` to design a concurrent Paddle program. - - Args: - dtype (ParamAttr|string): Data type of the data sent in the channel. - This data type should be the string name of a numpy data type. - capacity (ParamAttr|int): Size of the channel. Defaults to 0 for - to create an unbuffered channel. - - Returns: - Variable: The channel variable that can be used to send an receive data - of the defined dtype. - - Examples: - .. code-block:: python - - ch = fluid.make_channel(dtype='int32', capacity=10) - ... - # Code to execute in a Go block, which receives the channel data. - fluid.channel_send(ch, 100) - fluid.channel_close(ch) - """ - helper = LayerHelper('channel_create', **locals()) - main_program = helper.main_program - make_channel_block = main_program.current_block() - - # Make a channel variable (using the channel data type) and make sure it - # persists into the global scope. - channel = helper.create_variable( - name=unique_name.generate('channel'), - type=core.VarDesc.VarType.CHANNEL, - persistable=True) - - create_channel_op = make_channel_block.append_op( - type="channel_create", - outputs={"Out": channel}, - attrs={"data_type": dtype, - "capacity": capacity}) - - return channel - - -def channel_send(channel, value, is_copy=False): - """ - Sends a value through a channel variable. Used by an unbuffered or buffered - channel to pass data from within or to a concurrent Go block, where - `channel_recv` to used to get the passed value. - - Args: - channel (Variable|Channel): Channel variable created using - `make_channel`. - value (Variable): Value to send to channel - is_copy (bool): Copy data while channel send. If False, then data - is moved. The input cannot be used after move. (default False) - Returns: - Variable: The boolean status on whether or not the channel - successfully sent the passed value. - - Examples: - .. code-block:: python - - ch = fluid.make_channel(dtype='int32', capacity=10) - ... - # Code to execute in a Go block, which receives the channel data. - fluid.channel_send(ch, 100) - """ - helper = LayerHelper('channel_send', **locals()) - main_program = helper.main_program - channel_send_block = main_program.current_block() - - X = value - - if is_copy: - copied_X = helper.create_variable( - name=unique_name.generate(value.name + '_copy'), - type=value.type, - dtype=value.dtype, - shape=value.shape, - lod_level=value.lod_level, - capacity=value.capacity if hasattr(value, 'capacity') else None) - - assign_op = channel_send_block.append_op( - type="assign", inputs={"X": value}, outputs={"Out": copied_X}) - X = copied_X - - channel_send_block.append_op( - type="channel_send", inputs={ - "Channel": channel, - "X": X, - }) - - -def channel_recv(channel, return_value): - """ - Receives a value through a channel variable. Used by an unbuffered or - buffered channel within a concurrent Go block to get data from originally - sent using `channel_send`, or from outside such a block where - `channel_send` is used to send the value. - - Args: - channel (Variable|Channel): Channel variable created using - `make_channel`. - return_value (Variable): Variable to set as a result of running channel_recv_op - - Returns: - Variable: The received value from the channel. - Variable: The boolean status on whether or not the channel - successfully received the passed value. - - Examples: - .. code-block:: python - - ch = fluid.make_channel(dtype='int32', capacity=10) - with fluid.Go(): - returned_value, return_status = fluid.channel_recv(ch, 'int32') - - # Code to send data through the channel. - """ - helper = LayerHelper('channel_recv', **locals()) - main_program = helper.main_program - channel_recv_block = main_program.current_block() - - status = helper.create_variable( - name=unique_name.generate('status'), - type=core.VarDesc.VarType.LOD_TENSOR, - dtype=core.VarDesc.VarType.BOOL) - - channel_recv_op = channel_recv_block.append_op( - type="channel_recv", - inputs={"Channel": channel}, - outputs={"Out": return_value, - "Status": status}) - - return return_value, status - - -def channel_close(channel): - """ - Closes a channel created using `make_channel`. - - Args: - channel (Variable|Channel): Channel variable created using - `make_channel`. - - Examples: - .. code-block:: python - - ch = fluid.make_channel(dtype='int32', capacity=10) - ... - # Code to receive and send data through a channel - ... - fluid.channel_close(ch) - """ - helper = LayerHelper('channel_close', **locals()) - main_program = helper.main_program - channel_close_block = main_program.current_block() - - channel_close_op = channel_close_block.append_op( - type="channel_close", inputs={"Channel": channel}) diff --git a/python/paddle/fluid/framework.py b/python/paddle/fluid/framework.py index 7ece6a7fafa91b24b03feeabb2bbefa0d3a1b24b..5f3111f363ccc14de4dd3f067097a19eabb83662 100644 --- a/python/paddle/fluid/framework.py +++ b/python/paddle/fluid/framework.py @@ -537,8 +537,7 @@ class Operator(object): 'feed', 'fetch', 'save', 'load', 'recurrent', 'go', 'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv', 'listen_and_serv', 'parallel_do', 'save_combine', 'load_combine', - 'ncclInit', 'channel_create', 'channel_close', 'channel_send', - 'channel_recv', 'select', 'checkpoint_notify', 'gen_nccl_id' + 'ncclInit', 'select', 'checkpoint_notify', 'gen_nccl_id' } def __init__(self, diff --git a/python/paddle/fluid/layers/control_flow.py b/python/paddle/fluid/layers/control_flow.py index 0049773bbeb514d5dfef490e73b9988bd5371029..c6250ff6ce5df8d8b0c78d538d736b77801f98f8 100644 --- a/python/paddle/fluid/layers/control_flow.py +++ b/python/paddle/fluid/layers/control_flow.py @@ -21,7 +21,7 @@ from .. import core from ..framework import Program, Variable, Operator from ..layer_helper import LayerHelper, unique_name from ..initializer import force_init_on_cpu -from .ops import logical_and, logical_not, logical_or +from .nn import logical_and, logical_not, logical_or import numpy import warnings import six diff --git a/python/paddle/fluid/layers/detection.py b/python/paddle/fluid/layers/detection.py index 9772c65738a2c5373f657164e3bc379404ba642e..1cfcbbb9c1614f21848e62cce79befc673e1739c 100644 --- a/python/paddle/fluid/layers/detection.py +++ b/python/paddle/fluid/layers/detection.py @@ -42,19 +42,11 @@ __all__ = [ 'roi_perspective_transform', 'generate_proposal_labels', 'generate_proposals', -] - -__auto__ = [ 'iou_similarity', 'box_coder', 'polygon_box_transform', ] -__all__ += __auto__ - -for _OP in set(__auto__): - globals()[_OP] = generate_layer_fn(_OP) - def rpn_target_assign(bbox_pred, cls_logits, @@ -308,6 +300,101 @@ def detection_output(loc, return nmsed_outs +@templatedoc() +def iou_similarity(x, y, name=None): + """ + ${comment} + + Args: + x(${x_type}): ${x_comment} + y(${y_type}): ${y_comment} + + Returns: + out(${out_type}): ${out_comment} + """ + helper = LayerHelper("iou_similarity", **locals()) + if name is None: + out = helper.create_tmp_variable(dtype=x.dtype) + else: + out = helper.create_variable( + name=name, dtype=x.dtype, persistable=False) + + helper.append_op( + type="iou_similarity", + inputs={"X": x, + "Y": y}, + attrs={}, + outputs={"Out": out}) + return out + + +@templatedoc() +def box_coder(prior_box, + prior_box_var, + target_box, + code_type="encode_center_size", + box_normalized=True, + name=None): + """ + ${comment} + + Args: + prior_box(${prior_box_type}): ${prior_box_comment} + prior_box_var(${prior_box_var_type}): ${prior_box_var_comment} + target_box(${target_box_type}): ${target_box_comment} + code_type(${code_type_type}): ${code_type_comment} + box_normalized(${box_normalized_type}): ${box_normalized_comment} + + Returns: + output_box(${output_box_type}): ${output_box_comment} + """ + helper = LayerHelper("box_coder", **locals()) + + if name is None: + output_box = helper.create_tmp_variable(dtype=prior_box.dtype) + else: + output_box = helper.create_variable( + name=name, dtype=prior_box.dtype, persistable=False) + + helper.append_op( + type="box_coder", + inputs={ + "PriorBox": prior_box, + "PriorBoxVar": prior_box_var, + "TargetBox": target_box + }, + attrs={"code_type": code_type, + "box_normalized": box_normalized}, + outputs={"OutputBox": output_box}) + return output_box + + +@templatedoc() +def polygon_box_transform(input, name=None): + """ + ${comment} + + Args: + input(${input_type}): ${input_comment} + + Returns: + output(${output_type}): ${output_comment} + """ + helper = LayerHelper("polygon_box_transform", **locals()) + if name is None: + output = helper.create_tmp_variable(dtype=input.dtype) + else: + output = helper.create_variable( + name=name, dtype=prior_box.input, persistable=False) + + helper.append_op( + type="polygon_box_transform", + inputs={"Input": input}, + attrs={}, + outputs={"Output": output}) + return output + + @templatedoc() def detection_map(detect_res, label, diff --git a/python/paddle/fluid/layers/metric_op.py b/python/paddle/fluid/layers/metric_op.py index b1598bfec210474ae1e17f9f88e8b57aa80b8452..a3064b565d096f7feda18379c66ffc8bf2f4a55c 100644 --- a/python/paddle/fluid/layers/metric_op.py +++ b/python/paddle/fluid/layers/metric_op.py @@ -78,7 +78,12 @@ def accuracy(input, label, k=1, correct=None, total=None): return acc_out -def auc(input, label, curve='ROC', num_thresholds=2**12 - 1, topk=1): +def auc(input, + label, + curve='ROC', + num_thresholds=2**12 - 1, + topk=1, + slide_steps=1): """ **Area Under the Curve (AUC) Layer** @@ -105,6 +110,8 @@ def auc(input, label, curve='ROC', num_thresholds=2**12 - 1, topk=1): num_thresholds(int): The number of thresholds to use when discretizing the roc curve. Default 200. topk(int): only topk number of prediction output will be used for auc. + slide_steps: when calc batch auc, we can not only use step currently but the previous steps can be used. slide_steps=1 means use the current step, slide_steps=3 means use current step and the previous second steps, slide_steps=0 use all of the steps. + Returns: Variable: A scalar representing the current AUC. @@ -120,16 +127,48 @@ def auc(input, label, curve='ROC', num_thresholds=2**12 - 1, topk=1): auc_out = helper.create_tmp_variable(dtype="float64") batch_auc_out = helper.create_tmp_variable(dtype="float64") # make tp, tn, fp, fn persistable, so that can accumulate all batches. + + # for batch auc + batch_stat_pos = helper.create_global_variable( + persistable=True, + dtype='int64', + shape=[slide_steps, num_thresholds + 1]) + batch_stat_neg = helper.create_global_variable( + persistable=True, + dtype='int64', + shape=[slide_steps, num_thresholds + 1]) + + # for global auc stat_pos = helper.create_global_variable( - persistable=True, dtype='int64', shape=[num_thresholds + 1]) + persistable=True, dtype='int64', shape=[1, num_thresholds + 1]) stat_neg = helper.create_global_variable( - persistable=True, dtype='int64', shape=[num_thresholds + 1]) + persistable=True, dtype='int64', shape=[1, num_thresholds + 1]) - for var in [stat_pos, stat_neg]: + for var in [batch_stat_pos, batch_stat_neg, stat_pos, stat_neg]: helper.set_variable_initializer( var, Constant( value=0.0, force_cpu=True)) + # Batch AUC + helper.append_op( + type="auc", + inputs={ + "Predict": [input], + "Label": [label], + "StatPos": [batch_stat_pos], + "StatNeg": [batch_stat_neg] + }, + attrs={ + "curve": curve, + "num_thresholds": num_thresholds, + "slide_steps": slide_steps + }, + outputs={ + "AUC": [batch_auc_out], + "StatPosOut": [batch_stat_pos], + "StatNegOut": [batch_stat_neg] + }) + # Global AUC helper.append_op( type="auc", inputs={ @@ -138,12 +177,16 @@ def auc(input, label, curve='ROC', num_thresholds=2**12 - 1, topk=1): "StatPos": [stat_pos], "StatNeg": [stat_neg] }, - attrs={"curve": curve, - "num_thresholds": num_thresholds}, + attrs={ + "curve": curve, + "num_thresholds": num_thresholds, + "slide_steps": 0 + }, outputs={ "AUC": [auc_out], - "BatchAUC": [batch_auc_out], "StatPosOut": [stat_pos], "StatNegOut": [stat_neg] }) - return auc_out, batch_auc_out, [stat_pos, stat_neg] + return auc_out, batch_auc_out, [ + batch_stat_pos, batch_stat_neg, stat_pos, stat_neg + ] diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index a9696ac20060d1069a99a02a79a755a740e760f0..8c0ef7a82421ffc04bf669e6850e075226c09d27 100644 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -29,29 +29,127 @@ from .. import unique_name from functools import reduce __all__ = [ - 'fc', 'embedding', 'dynamic_lstm', 'dynamic_lstmp', 'dynamic_gru', - 'gru_unit', 'linear_chain_crf', 'crf_decoding', 'cos_sim', 'cross_entropy', - 'square_error_cost', 'chunk_eval', 'sequence_conv', 'conv2d', 'conv3d', - 'sequence_pool', 'sequence_softmax', 'softmax', 'pool2d', 'pool3d', - 'batch_norm', 'beam_search_decode', 'conv2d_transpose', 'conv3d_transpose', - 'sequence_expand', 'sequence_expand_as', 'sequence_pad', 'lstm_unit', - 'reduce_sum', 'reduce_mean', 'reduce_max', 'reduce_min', 'reduce_prod', - 'sequence_first_step', 'sequence_last_step', 'dropout', 'split', - 'ctc_greedy_decoder', 'edit_distance', 'l2_normalize', 'matmul', 'topk', - 'warpctc', 'sequence_reshape', 'transpose', 'im2sequence', 'nce', - 'hsigmoid', 'beam_search', 'row_conv', 'multiplex', 'layer_norm', - 'softmax_with_cross_entropy', 'smooth_l1', 'one_hot', - 'autoincreased_step_counter', 'reshape', 'squeeze', 'unsqueeze', - 'lod_reset', 'lrn', 'pad', 'pad_constant_like', 'label_smooth', 'roi_pool', - 'dice_loss', 'image_resize', 'image_resize_short', 'resize_bilinear', - 'gather', 'scatter', 'sequence_scatter', 'random_crop', 'mean_iou', 'relu', - 'log', 'crop', 'rank_loss', 'elu', 'relu6', 'pow', 'stanh', 'hard_sigmoid', - 'swish', 'prelu', 'brelu', 'leaky_relu', 'soft_relu', 'flatten', - 'sequence_mask', 'stack', 'pad2d', 'unstack', 'sequence_enumerate', - 'expand', 'sequence_concat', 'scale', 'elementwise_add', 'elementwise_div', - 'elementwise_sub', 'elementwise_mul', 'elementwise_max', 'elementwise_min', - 'elementwise_pow', 'uniform_random_batch_size_like', 'gaussian_random', - 'sampling_id', 'gaussian_random_batch_size_like', 'sum', 'slice', 'shape' + 'fc', + 'embedding', + 'dynamic_lstm', + 'dynamic_lstmp', + 'dynamic_gru', + 'gru_unit', + 'linear_chain_crf', + 'crf_decoding', + 'cos_sim', + 'cross_entropy', + 'square_error_cost', + 'chunk_eval', + 'sequence_conv', + 'conv2d', + 'conv3d', + 'sequence_pool', + 'sequence_softmax', + 'softmax', + 'pool2d', + 'pool3d', + 'batch_norm', + 'beam_search_decode', + 'conv2d_transpose', + 'conv3d_transpose', + 'sequence_expand', + 'sequence_expand_as', + 'sequence_pad', + 'lstm_unit', + 'reduce_sum', + 'reduce_mean', + 'reduce_max', + 'reduce_min', + 'reduce_prod', + 'sequence_first_step', + 'sequence_last_step', + 'dropout', + 'split', + 'ctc_greedy_decoder', + 'edit_distance', + 'l2_normalize', + 'matmul', + 'topk', + 'warpctc', + 'sequence_reshape', + 'transpose', + 'im2sequence', + 'nce', + 'hsigmoid', + 'beam_search', + 'row_conv', + 'multiplex', + 'layer_norm', + 'softmax_with_cross_entropy', + 'smooth_l1', + 'one_hot', + 'autoincreased_step_counter', + 'reshape', + 'squeeze', + 'unsqueeze', + 'lod_reset', + 'lrn', + 'pad', + 'pad_constant_like', + 'label_smooth', + 'roi_pool', + 'dice_loss', + 'image_resize', + 'image_resize_short', + 'resize_bilinear', + 'gather', + 'scatter', + 'sequence_scatter', + 'random_crop', + 'mean_iou', + 'relu', + 'log', + 'crop', + 'rank_loss', + 'elu', + 'relu6', + 'pow', + 'stanh', + 'hard_sigmoid', + 'swish', + 'prelu', + 'brelu', + 'leaky_relu', + 'soft_relu', + 'flatten', + 'sequence_mask', + 'stack', + 'pad2d', + 'unstack', + 'sequence_enumerate', + 'expand', + 'sequence_concat', + 'scale', + 'elementwise_add', + 'elementwise_div', + 'elementwise_sub', + 'elementwise_mul', + 'elementwise_max', + 'elementwise_min', + 'elementwise_pow', + 'uniform_random_batch_size_like', + 'gaussian_random', + 'sampling_id', + 'gaussian_random_batch_size_like', + 'sum', + 'slice', + 'shape', + 'logical_and', + 'logical_or', + 'logical_xor', + 'logical_not', + 'clip', + 'clip_by_norm', + 'mean', + 'mul', + 'sigmoid_cross_entropy_with_logits', + 'maxout', ] @@ -60,7 +158,6 @@ def fc(input, num_flatten_dims=1, param_attr=None, bias_attr=None, - use_mkldnn=False, act=None, is_test=False, name=None): @@ -112,8 +209,6 @@ def fc(input, If it is set to None, the bias is initialized zero. Default: None. act (str, default None): Activation to be applied to the output of this layer. is_test(bool): A flag indicating whether execution is in test phase. - use_mkldnn(bool): Use mkldnn kernel or not, it is valid only when the mkldnn - library is installed. Default: False name (str, default None): The name of this layer. Returns: @@ -160,7 +255,7 @@ def fc(input, type="sum", inputs={"X": mul_results}, outputs={"Out": pre_bias}, - attrs={"use_mkldnn": use_mkldnn}) + attrs={"use_mkldnn": False}) # add bias pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims) # add activation @@ -953,8 +1048,8 @@ def cross_entropy(input, label, soft_label=False, ignore_index=-100): soft_label (bool): a flag indicating whether to interpretate the given labels as soft labels. Default: `False`. - ignore_index (int): Specifies a target value that is ignored and does - not contribute to the input gradient. Only valid + ignore_index (int): Specifies a target value that is ignored and does + not contribute to the input gradient. Only valid if soft_label is set to False. Default: -100 Returns: @@ -1324,7 +1419,6 @@ def conv2d(input, param_attr=None, bias_attr=None, use_cudnn=True, - use_mkldnn=False, act=None, name=None): """ @@ -1402,8 +1496,6 @@ def conv2d(input, bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn library is installed. Default: True - use_mkldnn (bool): Use mkldnn kernels or not, it is valid only when compiled - with mkldnn library. Default: False act (str): Activation type. Default: None name (str|None): A name for this layer(optional). If set None, the layer will be named automatically. @@ -1476,7 +1568,7 @@ def conv2d(input, 'dilations': dilation, 'groups': groups, 'use_cudnn': use_cudnn, - 'use_mkldnn': use_mkldnn + 'use_mkldnn': False }) pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2) @@ -1494,7 +1586,6 @@ def conv3d(input, param_attr=None, bias_attr=None, use_cudnn=True, - use_mkldnn=False, act=None, name=None): """ @@ -1568,7 +1659,6 @@ def conv3d(input, bias_attr (ParamAttr): Bias parameter for the Conv3d layer. Default: None use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn library is installed. Default: True - use_mkldnn (bool): Use mkldnn kernels or not. act (str): Activation type. Default: None name (str|None): A name for this layer(optional). If set None, the layer will be named automatically. @@ -1638,7 +1728,7 @@ def conv3d(input, 'dilations': dilation, 'groups': groups, 'use_cudnn': use_cudnn, - 'use_mkldnn': use_mkldnn + 'use_mkldnn': False }) pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2) @@ -1820,7 +1910,6 @@ def pool2d(input, global_pooling=False, use_cudnn=True, ceil_mode=False, - use_mkldnn=False, name=None): """ ${comment} @@ -1838,7 +1927,6 @@ def pool2d(input, global_pooling: ${global_pooling_comment} use_cudnn: ${use_cudnn_comment} ceil_mode: ${ceil_mode_comment} - use_mkldnn: ${use_mkldnn_comment} name (str|None): A name for this layer(optional). If set None, the layer will be named automatically. @@ -1898,7 +1986,7 @@ def pool2d(input, "paddings": pool_padding, "use_cudnn": use_cudnn, "ceil_mode": ceil_mode, - "use_mkldnn": use_mkldnn + "use_mkldnn": False }) return pool_out @@ -1912,7 +2000,6 @@ def pool3d(input, global_pooling=False, use_cudnn=True, ceil_mode=False, - use_mkldnn=False, name=None): """ This function adds the operator for pooling in 3-dimensions, using the @@ -1927,7 +2014,6 @@ def pool3d(input, global_pooling (bool): ${global_pooling_comment} use_cudnn (bool): ${use_cudnn_comment} ceil_mode (bool): ${ceil_mode_comment} - use_mkldnn (bool): ${use_mkldnn_comment} name (str): A name for this layer(optional). If set None, the layer will be named automatically. @@ -1968,7 +2054,7 @@ def pool3d(input, "paddings": pool_padding, "use_cudnn": use_cudnn, "ceil_mode": ceil_mode, - "use_mkldnn": use_mkldnn + "use_mkldnn": False }) return pool_out @@ -1983,7 +2069,6 @@ def batch_norm(input, bias_attr=None, data_layout='NCHW', in_place=False, - use_mkldnn=False, name=None, moving_mean_name=None, moving_variance_name=None, @@ -2025,7 +2110,6 @@ def batch_norm(input, bias_attr(ParamAttr): The parameter attribute for Parameter `bias`. data_layout(string, default NCHW): NCHW|NHWC in_place(bool, Default False): Make the input and output of batch norm reuse memory. - use_mkldnn(bool, Default false): ${use_mkldnn_comment} name(string, Default None): A name for this layer(optional). If set None, the layer will be named automatically. moving_mean_name(string, Default None): The name of moving_mean which store the global Mean. @@ -2117,7 +2201,7 @@ def batch_norm(input, "momentum": momentum, "epsilon": epsilon, "is_test": is_test, - "use_mkldnn": use_mkldnn, + "use_mkldnn": False, "fuse_with_relu": fuse_with_relu }) @@ -2714,20 +2798,20 @@ def sequence_pad(x, pad_value, maxlen=None): Args: x(Variable): Input variable which should contain lod information. - pad_value(Variable): The Variable that holds values that will be fill - into padded steps. It can be a scalar or a tensor whose shape - equals to time steps in sequences. If it's a scalar, it will be + pad_value(Variable): The Variable that holds values that will be fill + into padded steps. It can be a scalar or a tensor whose shape + equals to time steps in sequences. If it's a scalar, it will be automatically broadcasted to the shape of time step. - maxlen(int, default None): The length of padded sequences. It can be - None or any positive int. When it is None, all sequences will be - padded up to the length of the longest one among them; when it a - certain positive value, it must be greater than the length of the + maxlen(int, default None): The length of padded sequences. It can be + None or any positive int. When it is None, all sequences will be + padded up to the length of the longest one among them; when it a + certain positive value, it must be greater than the length of the longest original sequence." - + Returns: - Variable: The padded sequence batch and the original lengths before + Variable: The padded sequence batch and the original lengths before padding. All sequences has the same length. - + Examples: .. code-block:: python @@ -4343,8 +4427,8 @@ def softmax_with_cross_entropy(logits, soft_label is set to true, Label is a Tensor with soft_label (bool): A flag to indicate whether to interpretate the given labels as soft labels. By default, `soft_label` is set to False. - ignore_index (int): Specifies a target value that is ignored and does - not contribute to the input gradient. Only valid + ignore_index (int): Specifies a target value that is ignored and does + not contribute to the input gradient. Only valid if soft_label is set to False. Default: -100 Returns: @@ -4601,14 +4685,14 @@ def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None): def squeeze(input, axes, name=None): """ - Remove single-dimensional entries from the shape of a tensor. Takes a - parameter axes with a list of axes to squeeze. If axes is not provided, all - the single dimensions will be removed from the shape. If an axis is + Remove single-dimensional entries from the shape of a tensor. Takes a + parameter axes with a list of axes to squeeze. If axes is not provided, all + the single dimensions will be removed from the shape. If an axis is selected with shape entry not equal to one, an error is raised. - + Examples: Case 1: - Given + Given X.shape = (1, 3, 1, 5) and axes = [0] @@ -4617,11 +4701,11 @@ def squeeze(input, axes, name=None): Case 2: Given X.shape = (1, 3, 1, 5) - and + and axes = [] we get: Out.shape = (3, 5) - + Args: input (Variable): The input variable to be squeezed. axes (list): List of integers, indicating the dimensions to be squeezed. @@ -4651,14 +4735,14 @@ def squeeze(input, axes, name=None): def unsqueeze(input, axes, name=None): """ - Insert single-dimensional entries to the shape of a tensor. Takes one - required argument axes, a list of dimensions that will be inserted. - Dimension indices in axes are as seen in the output tensor. + Insert single-dimensional entries to the shape of a tensor. Takes one + required argument axes, a list of dimensions that will be inserted. + Dimension indices in axes are as seen in the output tensor. - For example: - Given a tensor such that tensor with shape [3, 4, 5], + For example: + Given a tensor such that tensor with shape [3, 4, 5], then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1]. - + Args: input (Variable): The input variable to be unsqueezed. axes (list): List of integers, indicating the dimensions to be inserted. @@ -5757,39 +5841,39 @@ def pad2d(input, Example: Given that X is a channel of image from input: - + X = [[1, 2, 3], [4, 5, 6]] - + Case 0: - + paddings = [0, 1, 2, 3], mode = 'constant' pad_value = 0 - + Out = [[0, 0, 1, 2, 3, 0, 0, 0] [0, 0, 4, 5, 6, 0, 0, 0] [0, 0, 0, 0, 0, 0, 0, 0]] - + Case 1: - + paddings = [0, 1, 2, 1], mode = 'reflect' - + Out = [[3, 2, 1, 2, 3, 2] [6, 5, 4, 5, 6, 5] [3, 2, 1, 2, 3, 2]] - + Case 2: - + paddings = [0, 1, 2, 1], mode = 'edge' - + Out = [[1, 1, 1, 2, 3, 3] [4, 4, 4, 5, 6, 6] [4, 4, 4, 5, 6, 6]] - - + + Args: input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format. paddings (tuple|list): The padding size. If padding is a tuple, it must @@ -5988,7 +6072,7 @@ def prelu(x, mode, param_attr=None, name=None): channel:elements in a channel share same weight element:each element has a weight name(str|None): A name for this layer(optional). If set None, the layer - will be named automatically. + will be named automatically. Returns: Variable: The output tensor with the same shape as input. @@ -6166,10 +6250,10 @@ def flatten(x, axis=1, name=None): def sequence_enumerate(input, win_size, pad_value=0, name=None): """ Generate a new sequence for the input index sequence, which enumerates all the - sub-sequences with length `win_size` of the input. + sub-sequences with length `win_size` of the input. The enumerated sequence has the same 1st dimension with variable `input`, and the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation. - + Examples: Case 1: Input: @@ -6296,20 +6380,20 @@ def unstack(x, axis=0, num=None): **UnStack Layer** This layer unstacks input :code:`x` into several tensors along axis. - + If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`. If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`, and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is - raised. + raised. Args: - x (Variable): Input variable. + x (Variable): Input variable. axis (int): The axis along which the input is unstacked. num (int|None): The number of output variables. - + Returns: list(Variable): The unstacked variables. - + """ helper = LayerHelper('unstack', **locals()) @@ -6342,21 +6426,21 @@ def expand(x, expand_times, name=None): .. code-block:: text Input(X) is a 3-D tensor with shape [2, 3, 1]: - + [ [[1], [2], [3]], [[4], [5], [6]] ] - + Attr(expand_times): [1, 2, 2] - + Output(Out) is a 3-D tensor with shape [2, 6, 2]: - + [ [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]], [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]] ] - + Args: x (Variable): A tensor with rank in [1, 6]. expand_times (list|tuple): Expand times number for each dimension. @@ -6432,12 +6516,7 @@ def uniform_random_batch_size_like(input, @templatedoc() -def gaussian_random(shape, - mean=0.0, - std=1.0, - seed=0, - dtype='float32', - use_mkldnn=False): +def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'): """ ${comment} @@ -6447,7 +6526,6 @@ def gaussian_random(shape, std (Float): ${std_comment} seed (Int): ${seed_comment} dtype(np.dtype|core.VarDesc.VarType|str): Output data type. - use_mkldnn (Bool): Only used in mkldnn kernel. Returns: out (Variable): ${out_comment} @@ -6466,7 +6544,7 @@ def gaussian_random(shape, 'std': std, 'seed': seed, 'dtype': c_dtype, - 'use_mkldnn': use_mkldnn + 'use_mkldnn': False }) return out @@ -6549,13 +6627,12 @@ def gaussian_random_batch_size_like(input, @templatedoc() -def sum(x, use_mkldnn=False): +def sum(x): """ ${comment} Args: x (Variable): ${x_comment} - use_mkldnn (Bool): ${use_mkldnn_comment} Returns: out (Variable): ${out_comment} @@ -6567,7 +6644,7 @@ def sum(x, use_mkldnn=False): type='sum', inputs={'X': x}, outputs={'Out': out}, - attrs={'use_mkldnn': use_mkldnn}) + attrs={'use_mkldnn': False}) return out @@ -6630,14 +6707,12 @@ def _elementwise_op(helper): assert y is not None, 'y cannot be None in {}'.format(op_type) axis = helper.kwargs.get('axis', -1) use_mkldnn = helper.kwargs.get('use_mkldnn', False) - out = helper.kwargs.get('out', None) - if out is None: - name = helper.kwargs.get('name', None) - if name is None: - out = helper.create_tmp_variable(dtype=x.dtype) - else: - out = helper.create_variable( - name=name, dtype=x.dtype, persistable=False) + name = helper.kwargs.get('name', None) + if name is None: + out = helper.create_tmp_variable(dtype=x.dtype) + else: + out = helper.create_variable( + name=name, dtype=x.dtype, persistable=False) helper.append_op( type=op_type, @@ -6650,13 +6725,7 @@ def _elementwise_op(helper): @templatedoc() -def scale(x, - scale=1.0, - bias=0.0, - bias_after_scale=True, - out=None, - act=None, - name=None): +def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None): """ ${comment} @@ -6665,21 +6734,19 @@ def scale(x, scale(${scale_type}): ${scale_comment} bias(${bias_type}): ${bias_comment} bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment} - out(Tensor): Output tensor. act(basestring|None): Activation applied to the output. - name(basestring|None): Name of the output. + name(basestring|None): Name of the output. Returns: out(${out_type}): ${out_comment} """ helper = LayerHelper('scale', **locals()) - if out is None: - if name is None: - out = helper.create_tmp_variable(dtype=x.dtype) - else: - out = helper.create_variable( - name=name, dtype=x.dtype, persistable=False) + if name is None: + out = helper.create_tmp_variable(dtype=x.dtype) + else: + out = helper.create_variable( + name=name, dtype=x.dtype, persistable=False) helper.append_op( type='scale', @@ -6693,73 +6760,31 @@ def scale(x, return helper.append_activation(out) -def elementwise_add(x, - y, - out=None, - axis=-1, - use_mkldnn=False, - act=None, - name=None): +def elementwise_add(x, y, axis=-1, act=None, name=None): return _elementwise_op(LayerHelper('elementwise_add', **locals())) -def elementwise_div(x, - y, - out=None, - axis=-1, - use_mkldnn=False, - act=None, - name=None): +def elementwise_div(x, y, axis=-1, act=None, name=None): return _elementwise_op(LayerHelper('elementwise_div', **locals())) -def elementwise_sub(x, - y, - out=None, - axis=-1, - use_mkldnn=False, - act=None, - name=None): +def elementwise_sub(x, y, axis=-1, act=None, name=None): return _elementwise_op(LayerHelper('elementwise_sub', **locals())) -def elementwise_mul(x, - y, - out=None, - axis=-1, - use_mkldnn=False, - act=None, - name=None): +def elementwise_mul(x, y, axis=-1, act=None, name=None): return _elementwise_op(LayerHelper('elementwise_mul', **locals())) -def elementwise_max(x, - y, - out=None, - axis=-1, - use_mkldnn=False, - act=None, - name=None): +def elementwise_max(x, y, axis=-1, act=None, name=None): return _elementwise_op(LayerHelper('elementwise_max', **locals())) -def elementwise_min(x, - y, - out=None, - axis=-1, - use_mkldnn=False, - act=None, - name=None): +def elementwise_min(x, y, axis=-1, act=None, name=None): return _elementwise_op(LayerHelper('elementwise_min', **locals())) -def elementwise_pow(x, - y, - out=None, - axis=-1, - use_mkldnn=False, - act=None, - name=None): +def elementwise_pow(x, y, axis=-1, act=None, name=None): return _elementwise_op(LayerHelper('elementwise_pow', **locals())) @@ -6771,7 +6796,291 @@ for func in [ func.__doc__ = _generate_doc_string_( op_proto, additional_args_lines=[ - "out (Tensor): The output tensor of elementwise op.", "act (basestring|None): Activation applied to the output.", "name (basestring|None): Name of the output." ]) + + +def _logical_op(op_name, x, y, out=None, name=None, binary_op=True): + helper = LayerHelper(op_name, **locals()) + + if binary_op: + assert x.dtype == y.dtype + + if out is None: + if name is None: + out = helper.create_tmp_variable(dtype=x.dtype) + else: + out = helper.create_variable( + name=name, dtype=x.dtype, persistable=False) + + if binary_op: + helper.append_op( + type=op_name, inputs={"X": x, + "Y": y}, outputs={"Out": out}) + else: + helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out}) + + return out + + +@templatedoc() +def logical_and(x, y, out=None, name=None): + """ + ${comment} + + Args: + x(${x_type}): ${x_comment} + y(${y_type}): ${y_comment} + out(Tensor): Output tensor of logical operation. + name(basestring|None): Name of the output. + + Returns: + out(${out_type}): ${out_comment} + """ + + return _logical_op( + op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True) + + +@templatedoc() +def logical_or(x, y, out=None, name=None): + """ + ${comment} + + Args: + x(${x_type}): ${x_comment} + y(${y_type}): ${y_comment} + out(Tensor): Output tensor of logical operation. + name(basestring|None): Name of the output. + + Returns: + out(${out_type}): ${out_comment} + """ + + return _logical_op( + op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True) + + +@templatedoc() +def logical_xor(x, y, out=None, name=None): + """ + ${comment} + + Args: + x(${x_type}): ${x_comment} + y(${y_type}): ${y_comment} + out(Tensor): Output tensor of logical operation. + name(basestring|None): Name of the output. + + Returns: + out(${out_type}): ${out_comment} + """ + + return _logical_op( + op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True) + + +@templatedoc() +def logical_not(x, out=None, name=None): + """ + ${comment} + + Args: + x(${x_type}): ${x_comment} + out(Tensor): Output tensor of logical operation. + name(basestring|None): Name of the output. + + Returns: + out(${out_type}): ${out_comment} + """ + + return _logical_op( + op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False) + + +@templatedoc() +def clip(x, min, max, name=None): + """ + ${comment} + + Args: + x(${x_type}): ${x_comment} + min(${min_type}): ${min_comment} + max(${max_type}): ${max_comment} + name(basestring|None): Name of the output. + + Returns: + out(${out_type}): ${out_comment} + """ + + helper = LayerHelper("clip", **locals()) + + if name is None: + out = helper.create_tmp_variable(dtype=x.dtype) + else: + out = helper.create_variable( + name=name, dtype=x.dtype, persistable=False) + + helper.append_op( + type="clip", + inputs={"X": x}, + attrs={"min": min, + "max": max}, + outputs={"Out": out}) + + return out + + +@templatedoc() +def clip_by_norm(x, max_norm, name=None): + """ + ${comment} + + Args: + x(${x_type}): ${x_comment} + max_norm(${max_norm_type}): ${max_norm_comment} + name(basestring|None): Name of the output. + + Returns: + out(${out_type}): ${out_comment} + """ + + helper = LayerHelper("clip_by_norm", **locals()) + + if name is None: + out = helper.create_tmp_variable(dtype=x.dtype) + else: + out = helper.create_variable( + name=name, dtype=x.dtype, persistable=False) + + helper.append_op( + type="clip_by_norm", + inputs={"X": x}, + attrs={"max_norm": max_norm}, + outputs={"Out": out}) + + return out + + +@templatedoc() +def mean(x, name=None): + """ + ${comment} + + Args: + x(${x_type}): ${x_comment} + name(basestring|None): Name of the output. + + Returns: + out(${out_type}): ${out_comment} + """ + + helper = LayerHelper("mean", **locals()) + + if name is None: + out = helper.create_tmp_variable(dtype=x.dtype) + else: + out = helper.create_variable( + name=name, dtype=x.dtype, persistable=False) + + helper.append_op( + type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out}) + + return out + + +@templatedoc() +def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None): + """ + ${comment} + + Args: + x(${x_type}): ${x_comment} + y(${y_type}): ${y_comment} + x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment} + y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment} + name(basestring|None): Name of the output. + + Returns: + out(${out_type}): ${out_comment} + """ + + helper = LayerHelper("mul", **locals()) + + if name is None: + out = helper.create_tmp_variable(dtype=x.dtype) + else: + out = helper.create_variable( + name=name, dtype=x.dtype, persistable=False) + + helper.append_op( + type="mul", + inputs={"X": x, + "Y": y}, + attrs={ + "x_num_col_dims": x_num_col_dims, + "y_num_col_dims": y_num_col_dims + }, + outputs={"Out": out}) + return out + + +@templatedoc() +def sigmoid_cross_entropy_with_logits(x, label, name=None): + """ + ${comment} + + Args: + x(${x_type}): ${x_comment} + label(${label_type}): ${label_comment} + name(basestring|None): Name of the output. + + Returns: + out(${out_type}): ${out_comment} + """ + + helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals()) + + if name is None: + out = helper.create_tmp_variable(dtype=x.dtype) + else: + out = helper.create_variable( + name=name, dtype=x.dtype, persistable=False) + + helper.append_op( + type="sigmoid_cross_entropy_with_logits", + inputs={"X": x, + "Label": label}, + attrs={}, + outputs={"Out": out}) + return out + + +@templatedoc() +def maxout(x, groups, name=None): + """ + ${comment} + + Args: + x(${x_type}): ${x_comment} + groups(${groups_type}): ${groups_comment} + name(basestring|None): Name of the output. + + Returns: + out(${out_type}): ${out_comment} + """ + helper = LayerHelper("maxout", **locals()) + + if name is None: + out = helper.create_tmp_variable(dtype=x.dtype) + else: + out = helper.create_variable( + name=name, dtype=x.dtype, persistable=False) + + helper.append_op( + type="maxout", + inputs={"X": x}, + attrs={"groups": groups}, + outputs={"Out": out}) + return out diff --git a/python/paddle/fluid/layers/ops.py b/python/paddle/fluid/layers/ops.py index 8a533035b0a3d175073cb0b0884aa507bcff782c..9a8300524d8784fae598635796888382b1adbccf 100644 --- a/python/paddle/fluid/layers/ops.py +++ b/python/paddle/fluid/layers/ops.py @@ -35,18 +35,7 @@ __activations_noattr__ = [ 'softsign', ] -__all__ = [ - 'mean', - 'mul', - 'sigmoid_cross_entropy_with_logits', - 'clip', - 'clip_by_norm', - 'logical_and', - 'logical_or', - 'logical_xor', - 'logical_not', - 'maxout', -] +__all__ = [] for _OP in set(__all__): globals()[_OP] = generate_layer_fn(_OP) @@ -56,6 +45,8 @@ for _OP in set(__all__): # e.g.: test_program_code.py, test_dist_train.py globals()['_scale'] = generate_layer_fn('scale') +globals()['_elementwise_div'] = generate_layer_fn('elementwise_div') + __all__ += __activations_noattr__ for _OP in set(__activations_noattr__): diff --git a/python/paddle/fluid/nets.py b/python/paddle/fluid/nets.py index 06513801dd8b34d366f9632f6943c8046872c31b..1dabad54f5b976e0fcabf6918d3bc6ece4eed384 100644 --- a/python/paddle/fluid/nets.py +++ b/python/paddle/fluid/nets.py @@ -40,8 +40,7 @@ def simple_img_conv_pool(input, param_attr=None, bias_attr=None, act=None, - use_cudnn=True, - use_mkldnn=False): + use_cudnn=True): """ The simple_img_conv_pool is composed with one Convolution2d and one Pool2d. @@ -84,8 +83,6 @@ def simple_img_conv_pool(input, act (str): Activation type for Conv2d. Default: None use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn library is installed. Default: True - use_mkldnn (bool): Use mkldnn kernels or not, it is valid only when compiled - with mkldnn library. Default: False Return: Variable: The result of input after Convolution2d and Pool2d. @@ -112,8 +109,7 @@ def simple_img_conv_pool(input, param_attr=param_attr, bias_attr=bias_attr, act=act, - use_cudnn=use_cudnn, - use_mkldnn=use_mkldnn) + use_cudnn=use_cudnn) pool_out = layers.pool2d( input=conv_out, @@ -122,8 +118,7 @@ def simple_img_conv_pool(input, pool_stride=pool_stride, pool_padding=pool_padding, global_pooling=global_pooling, - use_cudnn=use_cudnn, - use_mkldnn=use_mkldnn) + use_cudnn=use_cudnn) return pool_out @@ -138,8 +133,7 @@ def img_conv_group(input, conv_batchnorm_drop_rate=0.0, pool_stride=1, pool_type="max", - use_cudnn=True, - use_mkldnn=False): + use_cudnn=True): """ The Image Convolution Group is composed of Convolution2d, BatchNorm, DropOut, and Pool2d. According to the input arguments, img_conv_group will do serials of @@ -177,8 +171,6 @@ def img_conv_group(input, average-pooling. Default :math:`max`. use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn library is installed. Default: True - use_mkldnn (bool): Use mkldnn kernels or not, it is valid only when compiled - with mkldnn library. Default: False Return: Variable: The final result after serial computation using Convolution2d, @@ -226,8 +218,7 @@ def img_conv_group(input, padding=conv_padding[i], param_attr=param_attr[i], act=local_conv_act, - use_cudnn=use_cudnn, - use_mkldnn=use_mkldnn) + use_cudnn=use_cudnn) if conv_with_batchnorm[i]: tmp = layers.batch_norm(input=tmp, act=conv_act, in_place=True) @@ -240,8 +231,7 @@ def img_conv_group(input, pool_size=pool_size, pool_type=pool_type, pool_stride=pool_stride, - use_cudnn=use_cudnn, - use_mkldnn=use_mkldnn) + use_cudnn=use_cudnn) return pool_out diff --git a/python/paddle/fluid/optimizer.py b/python/paddle/fluid/optimizer.py index ad09005d866b10146e6fcd7cf108c51f34322607..1b9571f6d3a6a69d1ac35f6be74b80eaa2ce6251 100644 --- a/python/paddle/fluid/optimizer.py +++ b/python/paddle/fluid/optimizer.py @@ -26,6 +26,7 @@ from .layer_helper import LayerHelper from .regularizer import append_regularization_ops from .clip import append_gradient_clip_ops, error_clip_callback from contextlib import contextmanager +from .layers import ops __all__ = [ 'SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'DecayedAdagrad', 'Ftrl', @@ -1301,7 +1302,7 @@ class ModelAverage(Optimizer): x=tmp, dtype='float32' if self._dtype == None else self._dtype) sum = layers.cast( x=sum, dtype='float32' if self._dtype == None else self._dtype) - layers.elementwise_div(x=sum, y=tmp, out=param) + ops._elementwise_div(x=sum, y=tmp, out=param) def _add_average_restore_op(self, block, param_grad): param = block._clone_variable(param_grad[0]) diff --git a/python/paddle/fluid/tests/book/high-level-api/recognize_digits/CMakeLists.txt b/python/paddle/fluid/tests/book/high-level-api/recognize_digits/CMakeLists.txt index 673c965b662a022739f8d489c331f4de9455a926..ad056aaa7b30b06d950486fd059c5b6a15770551 100644 --- a/python/paddle/fluid/tests/book/high-level-api/recognize_digits/CMakeLists.txt +++ b/python/paddle/fluid/tests/book/high-level-api/recognize_digits/CMakeLists.txt @@ -2,6 +2,16 @@ file(GLOB TEST_OPS RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "test_*.py") string(REPLACE ".py" "" TEST_OPS "${TEST_OPS}") # default test -foreach(src ${TEST_OPS}) - py_test(${src} SRCS ${src}.py) -endforeach() +if(NOT APPLE) + foreach(src ${TEST_OPS}) + py_test(${src} SRCS ${src}.py) + endforeach() +else() + foreach(src ${TEST_OPS}) + if(${src} STREQUAL "test_recognize_digits_conv") + message(WARNING "These tests has been disabled in OSX for random fail: \n" ${src}) + else() + py_test(${src} SRCS ${src}.py) + endif() + endforeach() +endif() diff --git a/python/paddle/fluid/tests/no_test_concurrency.py b/python/paddle/fluid/tests/no_test_concurrency.py deleted file mode 100644 index b5d7676f4a2cb085c6900cd0bd0644afa2b2afd5..0000000000000000000000000000000000000000 --- a/python/paddle/fluid/tests/no_test_concurrency.py +++ /dev/null @@ -1,260 +0,0 @@ -# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from __future__ import print_function - -import unittest -import paddle.fluid as fluid -import paddle.fluid.core as core -from paddle.fluid import framework, unique_name, layer_helper -from paddle.fluid.executor import Executor -from paddle.fluid.layers import fill_constant, assign, While, elementwise_add, Print - - -class TestRoutineOp(unittest.TestCase): - def test_simple_routine(self): - ch = fluid.make_channel(dtype=core.VarDesc.VarType.LOD_TENSOR) - - # Create LOD_TENSOR and put it into the scope. This placeholder - # variable will be filled in and returned by fluid.channel_recv - result = self._create_tensor('return_value', - core.VarDesc.VarType.LOD_TENSOR, - core.VarDesc.VarType.INT64) - - with fluid.Go(): - input_value = fill_constant( - shape=[1], dtype=core.VarDesc.VarType.FP64, value=1234) - fluid.channel_send(ch, input_value) - - result, status = fluid.channel_recv(ch, result) - fluid.channel_close(ch) - - cpu = core.CPUPlace() - exe = Executor(cpu) - - outs = exe.run(fetch_list=[result]) - self.assertEqual(outs[0], 1234) - - def test_daisy_chain(self): - ''' - Mimics classic Daisy-chain test: https://talks.golang.org/2012/concurrency.slide#39 - ''' - n = 100 - - leftmost = fluid.make_channel(dtype=core.VarDesc.VarType.LOD_TENSOR) - left = leftmost - - # TODO(thuan): Use fluid.While() after scope capture is implemented. - # https://github.com/PaddlePaddle/Paddle/issues/8502 - for i in range(n): - right = fluid.make_channel(dtype=core.VarDesc.VarType.LOD_TENSOR) - with fluid.Go(): - one_tensor = self._create_one_dim_tensor(1) - result = self._create_tensor('return_value', - core.VarDesc.VarType.LOD_TENSOR, - core.VarDesc.VarType.INT64) - - result, status = fluid.channel_recv(right, result) - one_added = fluid.layers.elementwise_add(x=one_tensor, y=result) - fluid.channel_send(left, one_added) - left = right - - # Trigger the channel propagation by sending a "1" to rightmost channel - with fluid.Go(): - one_tensor = self._create_one_dim_tensor(1) - fluid.channel_send(right, one_tensor) - - leftmost_result = self._create_tensor('return_value', - core.VarDesc.VarType.LOD_TENSOR, - core.VarDesc.VarType.INT64) - leftmost_result, status = fluid.channel_recv(leftmost, leftmost_result) - - cpu = core.CPUPlace() - exe = Executor(cpu) - leftmost_data = exe.run(fetch_list=[leftmost_result]) - - # The leftmost_data should be equal to the number of channels + 1 - self.assertEqual(leftmost_data[0][0], n + 1) - - def _create_one_dim_tensor(self, value): - one_dim_tensor = fill_constant(shape=[1], dtype='int', value=value) - one_dim_tensor.stop_gradient = True - return one_dim_tensor - - def _create_tensor(self, name, type, dtype): - return framework.default_main_program().current_block().create_var( - name=unique_name.generate(name), type=type, dtype=dtype) - - def _create_persistable_tensor(self, name, type, dtype): - return framework.default_main_program().current_block().create_var( - name=unique_name.generate(name), - type=type, - dtype=dtype, - persistable=True) - - def test_select(self): - with framework.program_guard(framework.Program()): - ch1 = fluid.make_channel( - dtype=core.VarDesc.VarType.LOD_TENSOR, capacity=1) - - result1 = self._create_tensor('return_value', - core.VarDesc.VarType.LOD_TENSOR, - core.VarDesc.VarType.FP64) - - input_value = fill_constant( - shape=[1], dtype=core.VarDesc.VarType.FP64, value=10) - - with fluid.Select() as select: - with select.case(fluid.channel_send, ch1, input_value): - # Execute something. - pass - - with select.default(): - pass - - # This should not block because we are using a buffered channel. - result1, status = fluid.channel_recv(ch1, result1) - fluid.channel_close(ch1) - - cpu = core.CPUPlace() - exe = Executor(cpu) - - result = exe.run(fetch_list=[result1]) - self.assertEqual(result[0][0], 10) - - def test_fibonacci(self): - """ - Mimics Fibonacci Go example: https://tour.golang.org/concurrency/5 - """ - with framework.program_guard(framework.Program()): - quit_ch_input_var = self._create_persistable_tensor( - 'quit_ch_input', core.VarDesc.VarType.LOD_TENSOR, - core.VarDesc.VarType.INT32) - quit_ch_input = fill_constant( - shape=[1], - dtype=core.VarDesc.VarType.INT32, - value=0, - out=quit_ch_input_var) - - result = self._create_persistable_tensor( - 'result', core.VarDesc.VarType.LOD_TENSOR, - core.VarDesc.VarType.INT32) - fill_constant( - shape=[1], - dtype=core.VarDesc.VarType.INT32, - value=0, - out=result) - - x = fill_constant( - shape=[1], dtype=core.VarDesc.VarType.INT32, value=0) - y = fill_constant( - shape=[1], dtype=core.VarDesc.VarType.INT32, value=1) - - while_cond = fill_constant( - shape=[1], dtype=core.VarDesc.VarType.BOOL, value=True) - - while_false = fill_constant( - shape=[1], dtype=core.VarDesc.VarType.BOOL, value=False) - - x_tmp = fill_constant( - shape=[1], dtype=core.VarDesc.VarType.INT32, value=0) - - def fibonacci(channel, quit_channel): - while_op = While(cond=while_cond) - with while_op.block(): - result2 = fill_constant( - shape=[1], dtype=core.VarDesc.VarType.INT32, value=0) - - with fluid.Select() as select: - with select.case( - fluid.channel_send, channel, x, is_copy=True): - assign(input=x, output=x_tmp) - assign(input=y, output=x) - assign(elementwise_add(x=x_tmp, y=y), output=y) - - with select.case(fluid.channel_recv, quit_channel, - result2): - # Quit - helper = layer_helper.LayerHelper('assign') - helper.append_op( - type='assign', - inputs={'X': [while_false]}, - outputs={'Out': [while_cond]}) - - ch1 = fluid.make_channel(dtype=core.VarDesc.VarType.LOD_TENSOR) - quit_ch = fluid.make_channel(dtype=core.VarDesc.VarType.LOD_TENSOR) - - with fluid.Go(): - for i in range(10): - fluid.channel_recv(ch1, result) - Print(result) - - fluid.channel_send(quit_ch, quit_ch_input) - - fibonacci(ch1, quit_ch) - - fluid.channel_close(ch1) - fluid.channel_close(quit_ch) - - cpu = core.CPUPlace() - exe = Executor(cpu) - - exe_result = exe.run(fetch_list=[result]) - self.assertEqual(exe_result[0][0], 34) - - def test_ping_pong(self): - """ - Mimics Ping Pong example: https://gobyexample.com/channel-directions - """ - with framework.program_guard(framework.Program()): - result = self._create_tensor('return_value', - core.VarDesc.VarType.LOD_TENSOR, - core.VarDesc.VarType.FP64) - - ping_result = self._create_tensor('ping_return_value', - core.VarDesc.VarType.LOD_TENSOR, - core.VarDesc.VarType.FP64) - - def ping(ch, message): - fluid.channel_send(ch, message, is_copy=True) - - def pong(ch1, ch2): - fluid.channel_recv(ch1, ping_result) - fluid.channel_send(ch2, ping_result, is_copy=True) - - pings = fluid.make_channel( - dtype=core.VarDesc.VarType.LOD_TENSOR, capacity=1) - pongs = fluid.make_channel( - dtype=core.VarDesc.VarType.LOD_TENSOR, capacity=1) - - msg = fill_constant( - shape=[1], dtype=core.VarDesc.VarType.FP64, value=9) - - ping(pings, msg) - pong(pings, pongs) - - fluid.channel_recv(pongs, result) - - fluid.channel_close(pings) - fluid.channel_close(pongs) - - cpu = core.CPUPlace() - exe = Executor(cpu) - - exe_result = exe.run(fetch_list=[result]) - self.assertEqual(exe_result[0][0], 9) - - -if __name__ == '__main__': - unittest.main() diff --git a/python/paddle/fluid/tests/unittests/CMakeLists.txt b/python/paddle/fluid/tests/unittests/CMakeLists.txt index d02c890209e65bdceb5da23ba5b9c7c0356174b8..2ce792728e24712c69e82617b867d1d165e6f097 100644 --- a/python/paddle/fluid/tests/unittests/CMakeLists.txt +++ b/python/paddle/fluid/tests/unittests/CMakeLists.txt @@ -17,6 +17,9 @@ if(NOT WITH_DISTRIBUTE) list(REMOVE_ITEM TEST_OPS test_listen_and_serv_op) LIST(REMOVE_ITEM TEST_OPS test_dist_mnist) LIST(REMOVE_ITEM TEST_OPS test_dist_word2vec) + LIST(REMOVE_ITEM TEST_OPS test_dist_ctr) + LIST(REMOVE_ITEM TEST_OPS test_dist_simnet_bow) + LIST(REMOVE_ITEM TEST_OPS test_dist_text_classification) endif(NOT WITH_DISTRIBUTE) list(REMOVE_ITEM TEST_OPS test_seq_concat_op) # FIXME(helin): https://github.com/PaddlePaddle/Paddle/issues/8290 diff --git a/python/paddle/fluid/tests/unittests/dist_ctr.py b/python/paddle/fluid/tests/unittests/dist_ctr.py new file mode 100644 index 0000000000000000000000000000000000000000..902dc6544ed6858c4cd8d64b14d6af2367059091 --- /dev/null +++ b/python/paddle/fluid/tests/unittests/dist_ctr.py @@ -0,0 +1,109 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function + +import paddle +import paddle.fluid as fluid + +import dist_ctr_reader +from test_dist_base import TestDistRunnerBase, runtime_main + +IS_SPARSE = True + +# Fix seed for test +fluid.default_startup_program().random_seed = 1 +fluid.default_main_program().random_seed = 1 + + +class TestDistCTR2x2(TestDistRunnerBase): + def get_model(self, batch_size=2): + dnn_input_dim, lr_input_dim = dist_ctr_reader.load_data_meta() + """ network definition """ + dnn_data = fluid.layers.data( + name="dnn_data", + shape=[-1, 1], + dtype="int64", + lod_level=1, + append_batch_size=False) + lr_data = fluid.layers.data( + name="lr_data", + shape=[-1, 1], + dtype="int64", + lod_level=1, + append_batch_size=False) + label = fluid.layers.data( + name="click", + shape=[-1, 1], + dtype="int64", + lod_level=0, + append_batch_size=False) + + # build dnn model + dnn_layer_dims = [128, 64, 32, 1] + dnn_embedding = fluid.layers.embedding( + is_distributed=False, + input=dnn_data, + size=[dnn_input_dim, dnn_layer_dims[0]], + param_attr=fluid.ParamAttr( + name="deep_embedding", + initializer=fluid.initializer.Constant(value=0.01)), + is_sparse=IS_SPARSE) + dnn_pool = fluid.layers.sequence_pool( + input=dnn_embedding, pool_type="sum") + dnn_out = dnn_pool + for i, dim in enumerate(dnn_layer_dims[1:]): + fc = fluid.layers.fc( + input=dnn_out, + size=dim, + act="relu", + param_attr=fluid.ParamAttr( + initializer=fluid.initializer.Constant(value=0.01)), + name='dnn-fc-%d' % i) + dnn_out = fc + + # build lr model + lr_embbding = fluid.layers.embedding( + is_distributed=False, + input=lr_data, + size=[lr_input_dim, 1], + param_attr=fluid.ParamAttr( + name="wide_embedding", + initializer=fluid.initializer.Constant(value=0.01)), + is_sparse=IS_SPARSE) + lr_pool = fluid.layers.sequence_pool(input=lr_embbding, pool_type="sum") + + merge_layer = fluid.layers.concat(input=[dnn_out, lr_pool], axis=1) + + predict = fluid.layers.fc(input=merge_layer, size=2, act='softmax') + acc = fluid.layers.accuracy(input=predict, label=label) + auc_var, batch_auc_var, auc_states = fluid.layers.auc(input=predict, + label=label) + cost = fluid.layers.cross_entropy(input=predict, label=label) + avg_cost = fluid.layers.mean(x=cost) + + inference_program = paddle.fluid.default_main_program().clone() + + sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.0001) + sgd_optimizer.minimize(avg_cost) + + dataset = dist_ctr_reader.Dataset() + train_reader = paddle.batch(dataset.train(), batch_size=batch_size) + test_reader = paddle.batch(dataset.test(), batch_size=batch_size) + + return inference_program, avg_cost, train_reader, test_reader, None, predict + + +if __name__ == "__main__": + runtime_main(TestDistCTR2x2) diff --git a/python/paddle/fluid/tests/unittests/dist_ctr_reader.py b/python/paddle/fluid/tests/unittests/dist_ctr_reader.py new file mode 100644 index 0000000000000000000000000000000000000000..95e39d891f7e6a3dcb57540bd96fe70027443cda --- /dev/null +++ b/python/paddle/fluid/tests/unittests/dist_ctr_reader.py @@ -0,0 +1,172 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import logging +import paddle +import tarfile + +logging.basicConfig() +logger = logging.getLogger("paddle") +logger.setLevel(logging.INFO) + +DATA_URL = "http://paddle-ctr-data.cdn.bcebos.com/avazu_ctr_data.tgz" +DATA_MD5 = "c11df99fbd14e53cd4bfa6567344b26e" +""" +avazu_ctr_data/train.txt +avazu_ctr_data/infer.txt +avazu_ctr_data/test.txt +avazu_ctr_data/data.meta.txt +""" + + +def read_data(file_name): + path = paddle.dataset.common.download(DATA_URL, "avazu_ctr_data", DATA_MD5) + tar = tarfile.open(path, "r:gz") + tar_info = None + for member in tar.getmembers(): + if member.name.endswith(file_name): + tar_info = member + f = tar.extractfile(tar_info) + ret_lines = [_.decode('utf-8') for _ in f.readlines()] + return ret_lines + + +class TaskMode: + TRAIN_MODE = 0 + TEST_MODE = 1 + INFER_MODE = 2 + + def __init__(self, mode): + self.mode = mode + + def is_train(self): + return self.mode == self.TRAIN_MODE + + def is_test(self): + return self.mode == self.TEST_MODE + + def is_infer(self): + return self.mode == self.INFER_MODE + + @staticmethod + def create_train(): + return TaskMode(TaskMode.TRAIN_MODE) + + @staticmethod + def create_test(): + return TaskMode(TaskMode.TEST_MODE) + + @staticmethod + def create_infer(): + return TaskMode(TaskMode.INFER_MODE) + + +class ModelType: + CLASSIFICATION = 0 + REGRESSION = 1 + + def __init__(self, mode): + self.mode = mode + + def is_classification(self): + return self.mode == self.CLASSIFICATION + + def is_regression(self): + return self.mode == self.REGRESSION + + @staticmethod + def create_classification(): + return ModelType(ModelType.CLASSIFICATION) + + @staticmethod + def create_regression(): + return ModelType(ModelType.REGRESSION) + + +def load_dnn_input_record(sent): + return list(map(int, sent.split())) + + +def load_lr_input_record(sent): + res = [] + for _ in [x.split(':') for x in sent.split()]: + res.append(int(_[0])) + return res + + +feeding_index = {'dnn_input': 0, 'lr_input': 1, 'click': 2} + + +class Dataset(object): + def train(self): + ''' + Load trainset. + ''' + file_name = "train.txt" + logger.info("load trainset from %s" % file_name) + mode = TaskMode.create_train() + return self._parse_creator(file_name, mode) + + def test(self): + ''' + Load testset. + ''' + file_name = "test.txt" + logger.info("load testset from %s" % file_name) + mode = TaskMode.create_test() + return self._parse_creator(file_name, mode) + + def infer(self): + ''' + Load infer set. + ''' + file_name = "infer.txt" + logger.info("load inferset from %s" % file_name) + mode = TaskMode.create_infer() + return self._parse_creator(file_name, mode) + + def _parse_creator(self, file_name, mode): + ''' + Parse dataset. + ''' + + def _parse(): + data = read_data(file_name) + for line_id, line in enumerate(data): + fs = line.strip().split('\t') + dnn_input = load_dnn_input_record(fs[0]) + lr_input = load_lr_input_record(fs[1]) + if not mode.is_infer(): + click = int(fs[2]) + yield [dnn_input, lr_input, click] + else: + yield [dnn_input, lr_input] + + return _parse + + +def load_data_meta(): + ''' + load data meta info from path, return (dnn_input_dim, lr_input_dim) + ''' + lines = read_data('data.meta.txt') + err_info = "wrong meta format" + assert len(lines) == 2, err_info + assert 'dnn_input_dim:' in lines[0] and 'lr_input_dim:' in lines[ + 1], err_info + res = map(int, [_.split(':')[1] for _ in lines]) + res = list(res) + logger.info('dnn input dim: %d' % res[0]) + logger.info('lr input dim: %d' % res[1]) + return res diff --git a/python/paddle/fluid/tests/unittests/dist_mnist.py b/python/paddle/fluid/tests/unittests/dist_mnist.py index 85a96c0b53f6bc08687965048d6251265055a6fe..877d21ae882ab4efb49beb6a846ab71a22c2aab7 100644 --- a/python/paddle/fluid/tests/unittests/dist_mnist.py +++ b/python/paddle/fluid/tests/unittests/dist_mnist.py @@ -47,7 +47,7 @@ def cnn_model(data): pool_stride=2, act="relu", param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant( - value=0.3))) + value=0.01))) conv_pool_2 = fluid.nets.simple_img_conv_pool( input=conv_pool_1, filter_size=5, @@ -56,7 +56,7 @@ def cnn_model(data): pool_stride=2, act="relu", param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant( - value=0.2))) + value=0.01))) SIZE = 10 input_shape = conv_pool_2.shape @@ -68,7 +68,7 @@ def cnn_model(data): size=SIZE, act="softmax", param_attr=fluid.param_attr.ParamAttr( - initializer=fluid.initializer.Constant(value=0.1))) + initializer=fluid.initializer.Constant(value=0.01))) return predict diff --git a/python/paddle/fluid/tests/unittests/dist_se_resnext.py b/python/paddle/fluid/tests/unittests/dist_se_resnext.py index a4ffe7d40c40501ebd43fec0b664159227ea34bd..5da370570680e9f10a22ad882e3346e6381dfe63 100644 --- a/python/paddle/fluid/tests/unittests/dist_se_resnext.py +++ b/python/paddle/fluid/tests/unittests/dist_se_resnext.py @@ -247,7 +247,7 @@ class DistSeResneXt2x2(TestDistRunnerBase): # Reader train_reader = paddle.batch( - paddle.dataset.flowers.train(), batch_size=batch_size) + paddle.dataset.flowers.test(use_xmap=False), batch_size=batch_size) test_reader = paddle.batch( paddle.dataset.flowers.test(use_xmap=False), batch_size=batch_size) diff --git a/python/paddle/fluid/tests/unittests/dist_simnet_bow.py b/python/paddle/fluid/tests/unittests/dist_simnet_bow.py new file mode 100644 index 0000000000000000000000000000000000000000..6456d1b53a129db04ace7ff4413a3d76e922ccde --- /dev/null +++ b/python/paddle/fluid/tests/unittests/dist_simnet_bow.py @@ -0,0 +1,238 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function + +import numpy as np +import argparse +import time +import math +import random + +import paddle +import paddle.fluid as fluid +import paddle.fluid.profiler as profiler +from paddle.fluid import core +import unittest +from multiprocessing import Process +import os +import signal +from functools import reduce +from test_dist_base import TestDistRunnerBase, runtime_main + +DTYPE = "int64" +DATA_URL = 'http://paddle-dist-ce-data.bj.bcebos.com/simnet.train.1000' +DATA_MD5 = '24e49366eb0611c552667989de2f57d5' + +# For Net +base_lr = 0.2 +emb_lr = base_lr * 3 +dict_dim = 1500 +emb_dim = 128 +hid_dim = 128 +margin = 0.1 +sample_rate = 1 + +# Fix seed for test +fluid.default_startup_program().random_seed = 1 +fluid.default_main_program().random_seed = 1 + + +def get_acc(cos_q_nt, cos_q_pt, batch_size): + cond = fluid.layers.less_than(cos_q_nt, cos_q_pt) + cond = fluid.layers.cast(cond, dtype='float64') + cond_3 = fluid.layers.reduce_sum(cond) + acc = fluid.layers.elementwise_div( + cond_3, + fluid.layers.fill_constant( + shape=[1], value=batch_size * 1.0, dtype='float64'), + name="simnet_acc") + return acc + + +def get_loss(cos_q_pt, cos_q_nt): + loss_op1 = fluid.layers.elementwise_sub( + fluid.layers.fill_constant_batch_size_like( + input=cos_q_pt, shape=[-1, 1], value=margin, dtype='float32'), + cos_q_pt) + loss_op2 = fluid.layers.elementwise_add(loss_op1, cos_q_nt) + loss_op3 = fluid.layers.elementwise_max( + fluid.layers.fill_constant_batch_size_like( + input=loss_op2, shape=[-1, 1], value=0.0, dtype='float32'), + loss_op2) + avg_cost = fluid.layers.mean(loss_op3) + return avg_cost + + +def get_optimizer(): + # SGD optimizer + optimizer = fluid.optimizer.SGD(learning_rate=base_lr) + return optimizer + + +def train_network(batch_size, is_distributed=False, is_sparse=False): + # query + q = fluid.layers.data( + name="query_ids", shape=[1], dtype="int64", lod_level=1) + ## embedding + q_emb = fluid.layers.embedding( + input=q, + is_distributed=is_distributed, + size=[dict_dim, emb_dim], + param_attr=fluid.ParamAttr( + initializer=fluid.initializer.Constant(value=0.01), + name="__emb__", + learning_rate=emb_lr), + is_sparse=is_sparse) + ## vsum + q_sum = fluid.layers.sequence_pool(input=q_emb, pool_type='sum') + q_ss = fluid.layers.softsign(q_sum) + ## fc layer after conv + q_fc = fluid.layers.fc( + input=q_ss, + size=hid_dim, + param_attr=fluid.ParamAttr( + initializer=fluid.initializer.Constant(value=0.01), + name="__q_fc__", + learning_rate=base_lr)) + # label data + label = fluid.layers.data(name="label", shape=[1], dtype="int64") + # pt + pt = fluid.layers.data( + name="pos_title_ids", shape=[1], dtype="int64", lod_level=1) + ## embedding + pt_emb = fluid.layers.embedding( + input=pt, + is_distributed=is_distributed, + size=[dict_dim, emb_dim], + param_attr=fluid.ParamAttr( + initializer=fluid.initializer.Constant(value=0.01), + name="__emb__", + learning_rate=emb_lr), + is_sparse=is_sparse) + ## vsum + pt_sum = fluid.layers.sequence_pool(input=pt_emb, pool_type='sum') + pt_ss = fluid.layers.softsign(pt_sum) + ## fc layer + pt_fc = fluid.layers.fc( + input=pt_ss, + size=hid_dim, + param_attr=fluid.ParamAttr( + initializer=fluid.initializer.Constant(value=0.01), + name="__fc__", + learning_rate=base_lr), + bias_attr=fluid.ParamAttr(name="__fc_b__")) + # nt + nt = fluid.layers.data( + name="neg_title_ids", shape=[1], dtype="int64", lod_level=1) + ## embedding + nt_emb = fluid.layers.embedding( + input=nt, + is_distributed=is_distributed, + size=[dict_dim, emb_dim], + param_attr=fluid.ParamAttr( + initializer=fluid.initializer.Constant(value=0.01), + name="__emb__", + learning_rate=emb_lr), + is_sparse=is_sparse) + ## vsum + nt_sum = fluid.layers.sequence_pool(input=nt_emb, pool_type='sum') + nt_ss = fluid.layers.softsign(nt_sum) + ## fc layer + nt_fc = fluid.layers.fc( + input=nt_ss, + size=hid_dim, + param_attr=fluid.ParamAttr( + initializer=fluid.initializer.Constant(value=0.01), + name="__fc__", + learning_rate=base_lr), + bias_attr=fluid.ParamAttr(name="__fc_b__")) + cos_q_pt = fluid.layers.cos_sim(q_fc, pt_fc) + cos_q_nt = fluid.layers.cos_sim(q_fc, nt_fc) + # loss + avg_cost = get_loss(cos_q_pt, cos_q_nt) + # acc + acc = get_acc(cos_q_nt, cos_q_pt, batch_size) + return [avg_cost, acc, cos_q_pt] + + +def combination(x, y): + res = [[[xi, yi] for yi in y] for xi in x] + return res[0] + + +def get_one_data(file_list): + for file in file_list: + contents = [] + with open(file, "r") as fin: + for i in fin: + contents.append(i.strip()) + for index, q in enumerate(contents): + try: + one_data = [[int(j) for j in i.split(" ")] + for i in q.split(";")[:-1]] + if one_data[1][0] + one_data[1][1] != len(one_data) - 3: + q = fin.readline() + continue + tmp = combination(one_data[3:3 + one_data[1][0]], + one_data[3 + one_data[1][0]:]) + except Exception as e: + continue + + for each in tmp: + yield [one_data[2], 0, each[0], each[1]] + + +def get_batch_reader(file_list, batch_size): + def batch_reader(): + res = [] + for i in get_one_data(file_list): + if random.random() <= sample_rate: + res.append(i) + if len(res) >= batch_size: + yield res + res = [] + + return batch_reader + + +def get_train_reader(batch_size): + # The training data set. + train_file = os.path.join(paddle.dataset.common.DATA_HOME, "simnet", + "train") + train_reader = get_batch_reader([train_file], batch_size) + train_feed = ["query_ids", "pos_title_ids", "neg_title_ids", "label"] + return train_reader, train_feed + + +class TestDistSimnetBow2x2(TestDistRunnerBase): + def get_model(self, batch_size=2): + # Train program + avg_cost, acc, predict = \ + train_network(batch_size, bool(int(os.environ["IS_DISTRIBUTED"])), bool(int(os.environ["IS_SPARSE"]))) + + inference_program = fluid.default_main_program().clone() + + # Optimization + opt = get_optimizer() + opt.minimize(avg_cost) + + # Reader + train_reader, _ = get_train_reader(batch_size) + return inference_program, avg_cost, train_reader, train_reader, acc, predict + + +if __name__ == "__main__": + paddle.dataset.common.download(DATA_URL, 'simnet', DATA_MD5, "train") + runtime_main(TestDistSimnetBow2x2) diff --git a/python/paddle/fluid/tests/unittests/dist_text_classification.py b/python/paddle/fluid/tests/unittests/dist_text_classification.py new file mode 100644 index 0000000000000000000000000000000000000000..095a474fd3ac056c678f9051ed80ef363ae968c9 --- /dev/null +++ b/python/paddle/fluid/tests/unittests/dist_text_classification.py @@ -0,0 +1,231 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function + +import numpy as np +import argparse +import time +import math + +import paddle +import paddle.fluid as fluid +import paddle.fluid.profiler as profiler +from paddle.fluid import core +import unittest +from multiprocessing import Process +import os +import signal +import six +import tarfile +import string +import re +from functools import reduce +from test_dist_base import TestDistRunnerBase, runtime_main + +DTYPE = "float32" +VOCAB_URL = 'http://paddle-dist-ce-data.bj.bcebos.com/imdb.vocab' +VOCAB_MD5 = '23c86a0533c0151b6f12fa52b106dcc2' +DATA_URL = 'http://paddle-dist-ce-data.bj.bcebos.com/text_classification.tar.gz' +DATA_MD5 = '29ebfc94f11aea9362bbb7f5e9d86b8a' + + +# Load dictionary. +def load_vocab(filename): + vocab = {} + if six.PY2: + with open(filename, 'r') as f: + for idx, line in enumerate(f): + vocab[line.strip()] = idx + else: + with open(filename, 'r', encoding="utf-8") as f: + for idx, line in enumerate(f): + vocab[line.strip()] = idx + return vocab + + +def get_worddict(dict_path): + word_dict = load_vocab(dict_path) + word_dict[""] = len(word_dict) + dict_dim = len(word_dict) + return word_dict, dict_dim + + +def conv_net(input, + dict_dim, + emb_dim=128, + window_size=3, + num_filters=128, + fc0_dim=96, + class_dim=2): + emb = fluid.layers.embedding( + input=input, + size=[dict_dim, emb_dim], + is_sparse=False, + param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant( + value=0.01))) + + conv_3 = fluid.nets.sequence_conv_pool( + input=emb, + num_filters=num_filters, + filter_size=window_size, + act="tanh", + pool_type="max", + param_attr=fluid.ParamAttr( + initializer=fluid.initializer.Constant(value=0.01))) + + fc_0 = fluid.layers.fc( + input=[conv_3], + size=fc0_dim, + param_attr=fluid.ParamAttr( + initializer=fluid.initializer.Constant(value=0.01))) + + prediction = fluid.layers.fc( + input=[fc_0], + size=class_dim, + act="softmax", + param_attr=fluid.ParamAttr( + initializer=fluid.initializer.Constant(value=0.01))) + + return prediction + + +def inference_network(dict_dim): + data = fluid.layers.data( + name="words", shape=[1], dtype="int64", lod_level=1) + out = conv_net(data, dict_dim) + return out + + +def get_reader(word_dict, batch_size): + # The training data set. + train_reader = paddle.batch(train(word_dict), batch_size=batch_size) + + # The testing data set. + test_reader = paddle.batch(test(word_dict), batch_size=batch_size) + + return train_reader, test_reader + + +def get_optimizer(learning_rate): + optimizer = fluid.optimizer.SGD(learning_rate=learning_rate) + return optimizer + + +class TestDistTextClassification2x2(TestDistRunnerBase): + def get_model(self, batch_size=2): + vocab = os.path.join(paddle.dataset.common.DATA_HOME, + "text_classification", "imdb.vocab") + word_dict, dict_dim = get_worddict(vocab) + + # Input data + data = fluid.layers.data( + name="words", shape=[1], dtype="int64", lod_level=1) + label = fluid.layers.data(name='label', shape=[1], dtype='int64') + + # Train program + predict = conv_net(data, dict_dim) + cost = fluid.layers.cross_entropy(input=predict, label=label) + avg_cost = fluid.layers.mean(x=cost) + acc = fluid.layers.accuracy(input=predict, label=label) + inference_program = fluid.default_main_program().clone() + + # Optimization + opt = get_optimizer(learning_rate=0.001) + opt.minimize(avg_cost) + + # Reader + train_reader, test_reader = get_reader(word_dict, batch_size) + + return inference_program, avg_cost, train_reader, test_reader, acc, predict + + +def tokenize(pattern): + """ + Read files that match the given pattern. Tokenize and yield each file. + """ + + with tarfile.open( + paddle.dataset.common.download(DATA_URL, 'text_classification', + DATA_MD5)) as tarf: + # Note that we should use tarfile.next(), which does + # sequential access of member files, other than + # tarfile.extractfile, which does random access and might + # destroy hard disks. + tf = tarf.next() + while tf != None: + if bool(pattern.match(tf.name)): + # newline and punctuations removal and ad-hoc tokenization. + yield tarf.extractfile(tf).read().rstrip(six.b( + "\n\r")).translate( + None, six.b(string.punctuation)).lower().split() + tf = tarf.next() + + +def reader_creator(pos_pattern, neg_pattern, word_idx): + UNK = word_idx[''] + INS = [] + + def load(pattern, out, label): + for doc in tokenize(pattern): + out.append(([word_idx.get(w, UNK) for w in doc], label)) + + load(pos_pattern, INS, 0) + load(neg_pattern, INS, 1) + + def reader(): + for doc, label in INS: + yield doc, label + + return reader + + +def train(word_idx): + """ + IMDB training set creator. + + It returns a reader creator, each sample in the reader is an zero-based ID + sequence and label in [0, 1]. + + :param word_idx: word dictionary + :type word_idx: dict + :return: Training reader creator + :rtype: callable + """ + return reader_creator( + re.compile("train/pos/.*\.txt$"), + re.compile("train/neg/.*\.txt$"), word_idx) + + +def test(word_idx): + """ + IMDB test set creator. + + It returns a reader creator, each sample in the reader is an zero-based ID + sequence and label in [0, 1]. + + :param word_idx: word dictionary + :type word_idx: dict + :return: Test reader creator + :rtype: callable + """ + return reader_creator( + re.compile("test/pos/.*\.txt$"), + re.compile("test/neg/.*\.txt$"), word_idx) + + +if __name__ == "__main__": + paddle.dataset.common.download(VOCAB_URL, 'text_classification', VOCAB_MD5) + paddle.dataset.common.download(DATA_URL, 'text_classification', DATA_MD5) + runtime_main(TestDistTextClassification2x2) diff --git a/python/paddle/fluid/tests/unittests/dist_transformer.py b/python/paddle/fluid/tests/unittests/dist_transformer.py index f53f7f3b354e60619b17d601ff3f55d2b8b059db..a2cc57425841100a2b61279d1b447b88ed4b9a54 100644 --- a/python/paddle/fluid/tests/unittests/dist_transformer.py +++ b/python/paddle/fluid/tests/unittests/dist_transformer.py @@ -1699,10 +1699,9 @@ class DistTransformer2x2(TestDistRunnerBase): exe.run(startup_prog) exe.run(pserver_prog) - def run_trainer(self, use_cuda, args): - place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() - TrainTaskConfig.use_gpu = use_cuda - sum_cost, avg_cost, predict, token_num, local_lr_scheduler, test_program = get_model( + def run_trainer(self, args): + TrainTaskConfig.use_gpu = args.use_cuda + sum_cost, avg_cost, predict, token_num, local_lr_scheduler = get_model( args.is_dist, not args.sync_mode) if args.is_dist: @@ -1718,6 +1717,11 @@ class DistTransformer2x2(TestDistRunnerBase): TrainTaskConfig.batch_size = 20 trainer_prog = fluid.default_main_program() + if args.use_cuda: + place = fluid.CUDAPlace(0) + else: + place = fluid.CPUPlace() + startup_exe = fluid.Executor(place) TrainTaskConfig.local = not args.is_dist diff --git a/python/paddle/fluid/tests/unittests/dist_word2vec.py b/python/paddle/fluid/tests/unittests/dist_word2vec.py index f3e740fc7027a4a562b836c3113b87d55062c185..835306edd0f17490dd10110db40f42dce30b25bb 100644 --- a/python/paddle/fluid/tests/unittests/dist_word2vec.py +++ b/python/paddle/fluid/tests/unittests/dist_word2vec.py @@ -122,4 +122,7 @@ class TestDistWord2vec2x2(TestDistRunnerBase): if __name__ == "__main__": + import os + os.environ['CPU_NUM'] = '1' + os.environ['USE_CUDA'] = "FALSE" runtime_main(TestDistWord2vec2x2) diff --git a/python/paddle/fluid/tests/unittests/test_auc_op.py b/python/paddle/fluid/tests/unittests/test_auc_op.py index 1de4a9d016a177944253d12094722d3a05614be2..810e8a1a8547a92de923877695178e780981edeb 100644 --- a/python/paddle/fluid/tests/unittests/test_auc_op.py +++ b/python/paddle/fluid/tests/unittests/test_auc_op.py @@ -36,7 +36,11 @@ class TestAucOp(OpTest): "StatPos": stat_pos, "StatNeg": stat_neg } - self.attrs = {'curve': 'ROC', 'num_thresholds': num_thresholds} + self.attrs = { + 'curve': 'ROC', + 'num_thresholds': num_thresholds, + "slide_steps": 1 + } python_auc = metrics.Auc(name="auc", curve='ROC', @@ -45,7 +49,6 @@ class TestAucOp(OpTest): self.outputs = { 'AUC': np.array(python_auc.eval()), - 'BatchAUC': np.array(python_auc.eval()), 'StatPosOut': np.array(python_auc._stat_pos), 'StatNegOut': np.array(python_auc._stat_neg) } diff --git a/python/paddle/fluid/tests/unittests/test_dist_base.py b/python/paddle/fluid/tests/unittests/test_dist_base.py index e07c5b07417164b74c8eb3d3397bc1981c0a3acd..04924bec057e301bfb342a62bb4c1e0b3c3aff4c 100644 --- a/python/paddle/fluid/tests/unittests/test_dist_base.py +++ b/python/paddle/fluid/tests/unittests/test_dist_base.py @@ -18,23 +18,27 @@ import time import unittest import os import sys -import six import signal import subprocess +import six import argparse +import paddle.fluid as fluid + +RUN_STEP = 10 + class TestDistRunnerBase(object): def get_model(self, batch_size=2): raise NotImplementedError( "get_model should be implemented by child classes.") - def get_transpiler(self, trainer_id, main_program, pserver_endpoints, - trainers, sync_mode): + @staticmethod + def get_transpiler(trainer_id, main_program, pserver_endpoints, trainers, + sync_mode): # NOTE: import fluid until runtime, or else forking processes will cause error. - import paddle - import paddle.fluid as fluid - t = fluid.DistributeTranspiler() + config = fluid.DistributeTranspilerConfig() + t = fluid.DistributeTranspiler(config=config) t.transpile( trainer_id=trainer_id, program=main_program, @@ -44,8 +48,7 @@ class TestDistRunnerBase(object): return t def run_pserver(self, args): - import paddle - import paddle.fluid as fluid + self.get_model(batch_size=2) # NOTE: pserver should not call memory optimize t = self.get_transpiler(args.trainer_id, @@ -60,12 +63,10 @@ class TestDistRunnerBase(object): exe.run(startup_prog) exe.run(pserver_prog) - def run_trainer(self, use_cuda, args): - import paddle - import paddle.fluid as fluid - place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() + def run_trainer(self, args): test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \ self.get_model(batch_size=2) + if args.mem_opt: fluid.memory_optimize(fluid.default_main_program(), skip_grads=True) if args.is_dist: @@ -73,16 +74,23 @@ class TestDistRunnerBase(object): fluid.default_main_program(), args.endpoints, args.trainers, args.sync_mode) + trainer_prog = t.get_trainer_program() else: trainer_prog = fluid.default_main_program() + if args.use_cuda: + place = fluid.CUDAPlace(0) + else: + place = fluid.CPUPlace() + startup_exe = fluid.Executor(place) startup_exe.run(fluid.default_startup_program()) strategy = fluid.ExecutionStrategy() strategy.num_threads = 1 strategy.allow_op_delay = False + build_stra = fluid.BuildStrategy() if args.use_reduce: @@ -91,7 +99,7 @@ class TestDistRunnerBase(object): build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.AllReduce exe = fluid.ParallelExecutor( - use_cuda, + args.use_cuda, loss_name=avg_cost.name, exec_strategy=strategy, build_strategy=build_stra) @@ -102,27 +110,26 @@ class TestDistRunnerBase(object): ] feeder = fluid.DataFeeder(feed_var_list, place) - reader_generator = test_reader() - - data = next(reader_generator) - first_loss, = exe.run(fetch_list=[avg_cost.name], - feed=feeder.feed(data)) - print(first_loss) + reader_generator = train_reader() - for i in six.moves.xrange(5): - data = next(reader_generator) - loss, = exe.run(fetch_list=[avg_cost.name], feed=feeder.feed(data)) + def get_data(): + origin_batch = next(reader_generator) + if args.is_dist and args.use_reader_alloc: + new_batch = [] + for offset, item in enumerate(origin_batch): + if offset % 2 == args.trainer_id: + new_batch.append(item) + return new_batch + else: + return origin_batch - data = next(reader_generator) - last_loss, = exe.run(fetch_list=[avg_cost.name], feed=feeder.feed(data)) - print(last_loss) + for _ in six.moves.xrange(RUN_STEP): + loss, = exe.run(fetch_list=[avg_cost.name], + feed=feeder.feed(get_data())) + print(loss) def runtime_main(test_class): - import paddle - import paddle.fluid as fluid - import paddle.fluid.core as core - parser = argparse.ArgumentParser(description='Run dist test.') parser.add_argument( '--role', type=str, required=True, choices=['pserver', 'trainer']) @@ -134,7 +141,10 @@ def runtime_main(test_class): '--current_endpoint', type=str, required=False, default="") parser.add_argument('--sync_mode', action='store_true') parser.add_argument('--mem_opt', action='store_true') + parser.add_argument('--use_cuda', action='store_true') parser.add_argument('--use_reduce', action='store_true') + parser.add_argument( + '--use_reader_alloc', action='store_true', required=False, default=True) args = parser.parse_args() @@ -142,8 +152,7 @@ def runtime_main(test_class): if args.role == "pserver" and args.is_dist: model.run_pserver(args) else: - use_cuda = True if core.is_compiled_with_cuda() else False - model.run_trainer(use_cuda, args) + model.run_trainer(args) import paddle.compat as cpt @@ -155,6 +164,17 @@ class TestDistBase(unittest.TestCase): def _setup_config(self): raise NotImplementedError("tests should have _setup_config implemented") + def _after_setup_config(self): + if self._enforce_place == "CPU": + self.__use_cuda = False + elif self._enforce_place == "GPU": + self.__use_cuda = True + else: + if fluid.core.is_compiled_with_cuda(): + self.__use_cuda = True + else: + self.__use_cuda = False + def setUp(self): self._trainers = 2 self._pservers = 2 @@ -162,24 +182,27 @@ class TestDistBase(unittest.TestCase): self._find_free_port(), self._find_free_port()) self._python_interp = "python" self._sync_mode = True + self._enforce_place = None self._mem_opt = False self._use_reduce = False + self._use_reader_alloc = True self._setup_config() + self._after_setup_config() def _find_free_port(self): with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as s: s.bind(('', 0)) return s.getsockname()[1] - def start_pserver(self, model_file, check_error_log): + def start_pserver(self, model_file, check_error_log, required_envs): ps0_ep, ps1_ep = self._ps_endpoints.split(",") ps_cmd = "%s %s --role pserver --endpoints %s --trainer_id 0 --current_endpoint %s --trainers %d --is_dist" ps0_cmd = ps_cmd % \ - (self._python_interp, model_file, self._ps_endpoints, ps0_ep, - self._trainers) + (self._python_interp, model_file, self._ps_endpoints, ps0_ep, + self._trainers) ps1_cmd = ps_cmd % \ - (self._python_interp, model_file, self._ps_endpoints, ps1_ep, - self._trainers) + (self._python_interp, model_file, self._ps_endpoints, ps1_ep, + self._trainers) if self._sync_mode: ps0_cmd += " --sync_mode" @@ -188,23 +211,23 @@ class TestDistBase(unittest.TestCase): ps0_cmd += " --mem_opt" ps1_cmd += " --mem_opt" - ps0_pipe = subprocess.PIPE - ps1_pipe = subprocess.PIPE - if check_error_log: - print(ps0_cmd) - print(ps1_cmd) - ps0_pipe = open("/tmp/ps0_err.log", "wb") - ps1_pipe = open("/tmp/ps1_err.log", "wb") + print(ps0_cmd) + print(ps1_cmd) + ps0_pipe = open("/tmp/ps0_err.log", "wb") + ps1_pipe = open("/tmp/ps1_err.log", "wb") ps0_proc = subprocess.Popen( - ps0_cmd.strip().split(" "), stdout=subprocess.PIPE, stderr=ps0_pipe) + ps0_cmd.strip().split(" "), + stdout=subprocess.PIPE, + stderr=ps0_pipe, + env=required_envs) ps1_proc = subprocess.Popen( - ps1_cmd.strip().split(" "), stdout=subprocess.PIPE, stderr=ps1_pipe) + ps1_cmd.strip().split(" "), + stdout=subprocess.PIPE, + stderr=ps1_pipe, + env=required_envs) - if not check_error_log: - return ps0_proc, ps1_proc, None, None - else: - return ps0_proc, ps1_proc, ps0_pipe, ps1_pipe + return ps0_proc, ps1_proc, ps0_pipe, ps1_pipe def _wait_ps_ready(self, pid): retry_times = 50 @@ -221,59 +244,59 @@ class TestDistBase(unittest.TestCase): (e, retry_times)) retry_times -= 1 - def check_with_place(self, model_file, delta=1e-3, check_error_log=False): - # TODO(typhoonzero): should auto adapt GPU count on the machine. - required_envs = { - "PATH": os.getenv("PATH", ""), - "PYTHONPATH": os.getenv("PYTHONPATH", ""), - "LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH", ""), - "FLAGS_fraction_of_gpu_memory_to_use": "0.15", - "FLAGS_cudnn_deterministic": "1", - "CPU_NUM": "1" - } + def _run_local(self, model, envs, check_error_log): - if check_error_log: - required_envs["GLOG_v"] = "7" - required_envs["GLOG_logtostderr"] = "1" + cmd = "%s %s --role trainer" % (self._python_interp, model) - # Run local to get a base line - env_local = {"CUDA_VISIBLE_DEVICES": "0"} - env_local.update(required_envs) - local_cmd = "%s %s --role trainer" % (self._python_interp, model_file) - if not check_error_log: - local_proc = subprocess.Popen( - local_cmd.split(" "), - stdout=subprocess.PIPE, - stderr=subprocess.PIPE, - env=env_local) + if self.__use_cuda: + cmd += " --use_cuda" + env_local = {"CUDA_VISIBLE_DEVICES": "0"} else: + env_local = {'CPU_NUM': '1'} + + envs.update(env_local) + + if check_error_log: err_log = open("/tmp/trainer.err.log", "wb") local_proc = subprocess.Popen( - local_cmd.split(" "), + cmd.split(" "), stdout=subprocess.PIPE, stderr=err_log, - env=env_local) + env=envs) + else: + local_proc = subprocess.Popen( + cmd.split(" "), + stdout=subprocess.PIPE, + stderr=subprocess.PIPE, + env=envs) + + local_out, local_err = local_proc.communicate() + local_ret = cpt.to_text(local_out) + + if check_error_log: + err_log.close() - local_proc.wait() - out, err = local_proc.communicate() - local_ret = cpt.to_text(out) - sys.stderr.write('local_loss: %s\n' % local_ret) - sys.stderr.write('local_stderr: %s\n' % err) + sys.stderr.write('local_stdout: %s\n' % local_ret) + sys.stderr.write('local_stderr: %s\n' % local_err) + local_losses = local_ret.split("\n") + return local_losses + + def _run_cluster(self, model, envs, check_error_log): # Run dist train to compare with local results - ps0, ps1, ps0_pipe, ps1_pipe = self.start_pserver(model_file, - check_error_log) + ps0, ps1, ps0_pipe, ps1_pipe = self.start_pserver(model, + check_error_log, envs) self._wait_ps_ready(ps0.pid) self._wait_ps_ready(ps1.pid) - ps0_ep, ps1_ep = self._ps_endpoints.split(",") + tr_cmd = "%s %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --trainers %d --is_dist" tr0_cmd = tr_cmd % \ - (self._python_interp, model_file, self._ps_endpoints, - 0, ps0_ep, self._trainers) + (self._python_interp, model, self._ps_endpoints, + 0, ps0_ep, self._trainers) tr1_cmd = tr_cmd % \ - (self._python_interp, model_file, self._ps_endpoints, - 1, ps1_ep, self._trainers) + (self._python_interp, model, self._ps_endpoints, + 1, ps1_ep, self._trainers) if self._sync_mode: tr0_cmd += " --sync_mode" @@ -284,20 +307,25 @@ class TestDistBase(unittest.TestCase): if self._use_reduce: tr0_cmd += " --use_reduce" tr1_cmd += " --use_reduce" + if self._use_reader_alloc: + tr0_cmd += " --use_reader_alloc" + tr1_cmd += " --use_reader_alloc" + if self.__use_cuda: + tr0_cmd += " --use_cuda" + tr1_cmd += " --use_cuda" + env0 = {"CUDA_VISIBLE_DEVICES": "0"} + env1 = {"CUDA_VISIBLE_DEVICES": "1"} + else: + env0 = {'CPU_NUM': '1'} + env1 = {'CPU_NUM': '1'} - env0 = {"CUDA_VISIBLE_DEVICES": "0"} - env1 = {"CUDA_VISIBLE_DEVICES": "1"} - env0.update(required_envs) - env1.update(required_envs) - FNULL = open(os.devnull, 'w') + env0.update(envs) + env1.update(envs) - tr0_pipe = subprocess.PIPE - tr1_pipe = subprocess.PIPE - if check_error_log: - print("tr0_cmd:", tr0_cmd) - print("tr1_cmd:", tr1_cmd) - tr0_pipe = open("/tmp/tr0_err.log", "wb") - tr1_pipe = open("/tmp/tr1_err.log", "wb") + print("tr0_cmd:{}, env0: {}".format(tr0_cmd, env0)) + print("tr1_cmd:{}, env1: {}".format(tr1_cmd, env1)) + tr0_pipe = open("/tmp/tr0_err.log", "wb") + tr1_pipe = open("/tmp/tr1_err.log", "wb") tr0_proc = subprocess.Popen( tr0_cmd.strip().split(" "), @@ -310,35 +338,65 @@ class TestDistBase(unittest.TestCase): stderr=tr1_pipe, env=env1) - tr0_proc.wait() - tr1_proc.wait() - out, err = tr0_proc.communicate() - sys.stderr.write('dist_stderr: %s\n' % err) - loss_data0 = cpt.to_text(out) - sys.stderr.write('dist_loss: %s\n' % loss_data0) - lines = loss_data0.split("\n") - dist_first_loss = eval(lines[0].replace(" ", ","))[0] - dist_last_loss = eval(lines[1].replace(" ", ","))[0] - - local_lines = local_ret.split("\n") - local_first_loss = eval(local_lines[0])[0] - local_last_loss = eval(local_lines[1])[0] + tr0_out, tr0_err = tr0_proc.communicate() + tr0_loss_text = cpt.to_text(tr0_out) + tr1_out, tr1_err = tr1_proc.communicate() + tr1_loss_text = cpt.to_text(tr1_out) # close trainer file - if check_error_log: - tr0_pipe.close() - tr1_pipe.close() + tr0_pipe.close() + tr1_pipe.close() - ps0_pipe.close() - ps1_pipe.close() + ps0_pipe.close() + ps1_pipe.close() # FIXME: use terminate() instead of sigkill. os.kill(ps0.pid, signal.SIGKILL) os.kill(ps1.pid, signal.SIGKILL) ps0.terminate() ps1.terminate() - ps0.wait() - ps1.wait() - FNULL.close() - self.assertAlmostEqual(local_first_loss, dist_first_loss, delta=delta) - self.assertAlmostEqual(local_last_loss, dist_last_loss, delta=delta) + # print log + sys.stderr.write('trainer 0 stdout:\n %s\n' % tr0_loss_text) + sys.stderr.write('trainer 0 stderr:\n %s\n' % tr0_err) + sys.stderr.write('trainer 1 stdout: %s\n' % tr1_loss_text) + sys.stderr.write('trainer 1 stderr: %s\n' % tr1_err) + + tr0_losses = tr0_loss_text.split("\n") + tr1_losses = tr1_loss_text.split("\n") + + return tr0_losses, tr1_losses + + def check_with_place(self, + model_file, + delta=1e-3, + check_error_log=False, + need_envs={}): + # TODO(typhoonzero): should auto adapt GPU count on the machine. + required_envs = { + "PATH": os.getenv("PATH", ""), + "PYTHONPATH": os.getenv("PYTHONPATH", ""), + "LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH", ""), + "FLAGS_fraction_of_gpu_memory_to_use": "0.15", + "FLAGS_cudnn_deterministic": "1", + "http_proxy": "" + } + + required_envs.update(need_envs) + + if check_error_log: + required_envs["GLOG_v"] = "7" + required_envs["GLOG_logtostderr"] = "1" + + local_losses\ + = self._run_local(model_file, required_envs, + check_error_log) + tr0_losses, tr1_losses = self._run_cluster(model_file, required_envs, + check_error_log) + + for step_id in range(RUN_STEP): + local_loss = eval(local_losses[step_id])[0] + tr0_loss = eval(tr0_losses[step_id])[0] + tr1_loss = eval(tr1_losses[step_id])[0] + dist_loss = (tr0_loss + tr1_loss) / 2 + print(str(local_loss) + ":" + str(dist_loss)) + self.assertAlmostEqual(local_loss, dist_loss, delta=delta) diff --git a/python/paddle/fluid/tests/notest_concurrency.py b/python/paddle/fluid/tests/unittests/test_dist_ctr.py similarity index 54% rename from python/paddle/fluid/tests/notest_concurrency.py rename to python/paddle/fluid/tests/unittests/test_dist_ctr.py index fd9da4cce0ea51c53b4b01e7c3dc2a2ed1eeb089..75a741f13ec99052088666fde624f2093f14461a 100644 --- a/python/paddle/fluid/tests/notest_concurrency.py +++ b/python/paddle/fluid/tests/unittests/test_dist_ctr.py @@ -11,31 +11,22 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. - from __future__ import print_function +import os import unittest -import paddle.fluid as fluid -import paddle.fluid.core as core -from paddle.fluid.executor import Executor - +from test_dist_base import TestDistBase -class TestRoutineOp(unittest.TestCase): - def test_simple_routine(self): - ch = fluid.make_channel( - dtype=core.VarDesc.VarType.BOOL, name="CreateChannel") - with fluid.Go(): - fluid.channel_send(ch, True) - result = fluid.channel_recv(ch) - fluid.channel_close(ch) +class TestDistCTR2x2(TestDistBase): + def _setup_config(self): + self._sync_mode = True + self._enforce_place = "CPU" - cpu = core.CPUPlace() - exe = Executor(cpu) - outs = exe.run(fetch_list=[result]) - self.assertEqual(outs[0], True) +def test_dist_ctr(self): + self.check_with_place("dist_ctr.py", delta=1e-7) -if __name__ == '__main__': +if __name__ == "__main__": unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_dist_mnist.py b/python/paddle/fluid/tests/unittests/test_dist_mnist.py index 09b1c546e49bd02bf336f31885bf4c7339cc5a2c..f65dd7e2a28c4ace3988c0cc1267ebe981fbd9cb 100644 --- a/python/paddle/fluid/tests/unittests/test_dist_mnist.py +++ b/python/paddle/fluid/tests/unittests/test_dist_mnist.py @@ -23,7 +23,7 @@ class TestDistMnist2x2(TestDistBase): self._use_reduce = False def test_dist_train(self): - self.check_with_place("dist_mnist.py", delta=1e-7) + self.check_with_place("dist_mnist.py", delta=1e-5) class TestDistMnist2x2WithMemopt(TestDistBase): @@ -32,7 +32,7 @@ class TestDistMnist2x2WithMemopt(TestDistBase): self._mem_opt = True def test_dist_train(self): - self.check_with_place("dist_mnist.py", delta=1e-7) + self.check_with_place("dist_mnist.py", delta=1e-5) class TestDistMnistAsync(TestDistBase): diff --git a/python/paddle/fluid/tests/unittests/test_dist_se_resnext.py b/python/paddle/fluid/tests/unittests/test_dist_se_resnext.py index 037580b24b8ff4bb0998117c3b528a58dc779ba6..c0989ca709e100d8f147a08970b0e858c81ce09b 100644 --- a/python/paddle/fluid/tests/unittests/test_dist_se_resnext.py +++ b/python/paddle/fluid/tests/unittests/test_dist_se_resnext.py @@ -20,9 +20,10 @@ from test_dist_base import TestDistBase class TestDistSeResneXt2x2(TestDistBase): def _setup_config(self): self._sync_mode = True + self._use_reader_alloc = False def test_dist_train(self): - self.check_with_place("dist_se_resnext.py", delta=1e-7) + self.check_with_place("dist_se_resnext.py", delta=100) class TestDistseResnXt2x2WithMemopt(TestDistBase): @@ -37,6 +38,7 @@ class TestDistseResnXt2x2WithMemopt(TestDistBase): class TestDistSeResneXt2x2Async(TestDistBase): def _setup_config(self): self._sync_mode = False + self._use_reader_alloc = False def test_dist_train(self): self.check_with_place("dist_se_resnext.py", delta=100) diff --git a/python/paddle/fluid/tests/unittests/test_dist_simnet_bow.py b/python/paddle/fluid/tests/unittests/test_dist_simnet_bow.py new file mode 100644 index 0000000000000000000000000000000000000000..e971f29db42a7c1a2394505a8ece3d2fd6b347e9 --- /dev/null +++ b/python/paddle/fluid/tests/unittests/test_dist_simnet_bow.py @@ -0,0 +1,79 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from __future__ import print_function + +import os +import unittest + +from test_dist_base import TestDistBase + + +class TestDistSimnetBowDense2x2(TestDistBase): + def _setup_config(self): + self._sync_mode = True + self._enforce_place = "CPU" + + def test_simnet_bow(self): + need_envs = {"IS_DISTRIBUTED": '0', "IS_SPARSE": '0'} + self.check_with_place( + "dist_simnet_bow.py", + delta=1e-5, + check_error_log=False, + need_envs=need_envs) + + +class TestDistSimnetBow2x2DenseAsync(TestDistBase): + def _setup_config(self): + self._sync_mode = False + self._enforce_place = "CPU" + + def test_simnet_bow(self): + need_envs = {"IS_DISTRIBUTED": '0', "IS_SPARSE": '0'} + self.check_with_place( + "dist_simnet_bow.py", + delta=100, + check_error_log=False, + need_envs=need_envs) + + +class TestDistSimnetBowSparse2x2(TestDistBase): + def _setup_config(self): + self._sync_mode = True + self._enforce_place = "CPU" + + def test_simnet_bow(self): + need_envs = {"IS_DISTRIBUTED": '0', "IS_SPARSE": '1'} + self.check_with_place( + "dist_simnet_bow.py", + delta=1e-5, + check_error_log=False, + need_envs=need_envs) + + +class TestDistSimnetBow2x2SparseAsync(TestDistBase): + def _setup_config(self): + self._sync_mode = False + self._enforce_place = "CPU" + + def test_simnet_bow(self): + need_envs = {"IS_DISTRIBUTED": '0', "IS_SPARSE": '1'} + self.check_with_place( + "dist_simnet_bow.py", + delta=100, + check_error_log=False, + need_envs=need_envs) + + +if __name__ == "__main__": + unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_dist_text_classification.py b/python/paddle/fluid/tests/unittests/test_dist_text_classification.py new file mode 100644 index 0000000000000000000000000000000000000000..0c1680359e2b84807084b06eab0534b41ecd6133 --- /dev/null +++ b/python/paddle/fluid/tests/unittests/test_dist_text_classification.py @@ -0,0 +1,40 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function +import os +import unittest +from test_dist_base import TestDistBase + + +class TestDistTextClassification2x2(TestDistBase): + def _setup_config(self): + self._sync_mode = True + self._enforce_place = "CPU" + + def test_text_classification(self): + self.check_with_place("dist_text_classification.py", delta=1e-6) + + +class TestDistTextClassification2x2Async(TestDistBase): + def _setup_config(self): + self._sync_mode = False + self._enforce_place = "CPU" + + def test_se_resnext(self): + self.check_with_place("dist_text_classification.py", delta=100) + + +if __name__ == "__main__": + unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_dist_word2vec.py b/python/paddle/fluid/tests/unittests/test_dist_word2vec.py index 33b39b262b95b0013e3696c3f15a288a2e801ce1..b26cbdbea12962a3a41036c774de5dfb61999205 100644 --- a/python/paddle/fluid/tests/unittests/test_dist_word2vec.py +++ b/python/paddle/fluid/tests/unittests/test_dist_word2vec.py @@ -39,7 +39,7 @@ class TestDistW2V2x2Async(TestDistBase): self._sync_mode = False def test_dist_train(self): - self.check_with_place("dist_word2vec.py", delta=1) + self.check_with_place("dist_word2vec.py", delta=100) if __name__ == "__main__": diff --git a/python/paddle/fluid/tests/unittests/test_layers.py b/python/paddle/fluid/tests/unittests/test_layers.py index b8dc9e8ad7cd7cd100d5c3cb99319e6f5a37da91..1d8d0b55f0c5d7cffa01a100847bdf48b6d7023d 100644 --- a/python/paddle/fluid/tests/unittests/test_layers.py +++ b/python/paddle/fluid/tests/unittests/test_layers.py @@ -825,6 +825,15 @@ class TestBook(unittest.TestCase): self.assertIsNotNone(out) print(str(program)) + def iou_similarity(self): + program = Program() + with program_guard(program): + x = layers.data(name="x", shape=[16], dtype="float32") + y = layers.data(name="y", shape=[16], dtype="float32") + out = layers.iou_similarity(x, y, name='iou_similarity') + self.assertIsNotNone(out) + print(str(program)) + if __name__ == '__main__': unittest.main() diff --git a/python/paddle/fluid/transpiler/distribute_transpiler.py b/python/paddle/fluid/transpiler/distribute_transpiler.py index 9ba280293d7e085da243206ace88b774f0157be1..ecdbe27f4d90268d755a712e25289cfaf4715f29 100644 --- a/python/paddle/fluid/transpiler/distribute_transpiler.py +++ b/python/paddle/fluid/transpiler/distribute_transpiler.py @@ -39,8 +39,8 @@ import six from .ps_dispatcher import RoundRobin, HashName, PSDispatcher from .. import core, framework from ..framework import Program, default_main_program, \ - default_startup_program, Block, \ - Parameter, grad_var_name + default_startup_program, Block, \ + Parameter, grad_var_name from .details import * from functools import reduce @@ -178,7 +178,7 @@ class DistributeTranspiler(object): pserver_program) elif role == "TRAINER": trainer_program = t.get_trainer_program() - + # for nccl2 mode config = fluid.DistributeTranspilerConfig() config.mode = "nccl2" @@ -537,7 +537,7 @@ class DistributeTranspiler(object): }) for varname, splited_var in six.iteritems(self.param_var_mapping): - #add concat ops to merge splited parameters received from parameter servers. + # add concat ops to merge splited parameters received from parameter servers. if len(splited_var) <= 1: continue # NOTE: if enable memory optimization, origin vars maybe removed. @@ -737,19 +737,14 @@ in a single call.") table_opt_block = self._create_table_optimize_block( pserver_index, pserver_program, pre_block_idx, grad_to_block_id) optimize_blocks.append(table_opt_block) - prefetch_var_name_to_block_id = self._create_prefetch_block( + lookup_table_var_name_to_block_id = self._create_prefetch_block( pserver_index, pserver_program, table_opt_block) checkpoint_block_id = self._create_checkpoint_save_block( pserver_program, table_opt_block.idx) pserver_program._distributed_lookup_table = self.table_name - - # NOTE: if has_distributed_lookup_table is False, then prefetch_block will - # not be executed, so it's safe to use optimize_block to hold the place - if self.has_distributed_lookup_table: - assert len(prefetch_var_name_to_block_id) > 0 - else: - assert len(prefetch_var_name_to_block_id) == 0 + prefetch_var_name_to_block_id.extend( + lookup_table_var_name_to_block_id) attrs = { "optimize_blocks": optimize_blocks, @@ -758,11 +753,14 @@ in a single call.") "sync_mode": self.sync_mode, "grad_to_block_id": grad_to_block_id, } - if len(prefetch_var_name_to_block_id) > 0: - attrs['prefetch_var_name_to_block_id'] \ - = prefetch_var_name_to_block_id + + if self.has_distributed_lookup_table: attrs['checkpint_block_id'] = checkpoint_block_id + if len(prefetch_var_name_to_block_id) > 0: + attrs[ + 'prefetch_var_name_to_block_id'] = prefetch_var_name_to_block_id + # step5 append the listen_and_serv op pserver_program.global_block().append_op( type="listen_and_serv", @@ -1016,7 +1014,7 @@ to transpile() call.") for g, p in zip(grad_blocks, param_blocks): g_name, g_bid, _ = g.split(":") p_name, p_bid, _ = p.split(":") - self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \ + self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \ self.param_var_mapping[p_name][int(p_bid)] # create mapping of endpoint -> split var to create pserver side program @@ -1323,7 +1321,7 @@ to transpile() call.") if len(splited) == 1: if self.sync_mode and add_trainer_suffix: new_var_name = "%s.trainer_%d" % \ - (orig_var.name, self.trainer_id) + (orig_var.name, self.trainer_id) program.global_block()._rename_var(varname, new_var_name) var_mapping[varname] = \ [program.global_block().var(new_var_name)] @@ -1346,10 +1344,10 @@ to transpile() call.") new_var_name = "" if self.sync_mode and add_trainer_suffix: new_var_name = "%s.block%d.trainer_%d" % \ - (varname, i, self.trainer_id) + (varname, i, self.trainer_id) else: new_var_name = "%s.block%d" % \ - (varname, i) + (varname, i) var = program.global_block().create_var( name=new_var_name, persistable=False, @@ -1490,9 +1488,8 @@ to transpile() call.") vars2merge = [] for i in range(self.trainer_num): per_trainer_name = "%s.trainer_%d" % \ - (merged_var_name, i) + (merged_var_name, i) vars2merge.append(pserver_block.vars[per_trainer_name]) - optimize_block.append_op( type="sum", inputs={"X": vars2merge}, @@ -1651,7 +1648,7 @@ to transpile() call.") # one op's output is another op's input, we say # the two operator is connected. if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \ - set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()): + set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()): return True return False @@ -1668,7 +1665,7 @@ to transpile() call.") def _is_optimizer_op(self, op): if "Param" in op.input_names and \ - "LearningRate" in op.input_names: + "LearningRate" in op.input_names: return True return False @@ -1743,7 +1740,7 @@ to transpile() call.") # NOTE: we need to skip all optimize ops, since it is connected # with forward/backward ops and lr ops, we only need the lr ops. if op1 != op2 and self._is_op_connected(op1, op2) and \ - not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2): + not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2): ufind.union(op1, op2) # find all ops which is related with lr var for op1 in block.ops: