From dacfaaa966b5e8d0b809e1f38600b30d44b1f7f0 Mon Sep 17 00:00:00 2001 From: Zeng Jinle <32832641+sneaxiy@users.noreply.github.com> Date: Tue, 8 Jan 2019 10:08:33 +0800 Subject: [PATCH] Revert "Remove op handle lock" test=develop --- paddle/fluid/operators/math/blas_impl.cu.h | 134 ++++++++++--------- paddle/fluid/platform/cuda_helper.h | 58 -------- paddle/fluid/platform/device_context.cc | 18 +-- paddle/fluid/platform/device_context.h | 76 +++++++---- paddle/fluid/platform/device_context_test.cu | 3 + 5 files changed, 130 insertions(+), 159 deletions(-) delete mode 100644 paddle/fluid/platform/cuda_helper.h diff --git a/paddle/fluid/operators/math/blas_impl.cu.h b/paddle/fluid/operators/math/blas_impl.cu.h index 58f7be12c..d35073029 100644 --- a/paddle/fluid/operators/math/blas_impl.cu.h +++ b/paddle/fluid/operators/math/blas_impl.cu.h @@ -62,19 +62,27 @@ struct CUBlas { cudaDataType_t Atype, int lda, const void *B, cudaDataType_t Btype, int ldb, const float *beta, void *C, cudaDataType_t Ctype, int ldc) { -// Because the gcc 4.8 doesn't expand template parameter pack that -// appears in a lambda-expression, I can not use template parameter pack -// here. + // Because the gcc 4.8 doesn't expand template parameter pack that + // appears in a lambda-expression, I can not use template parameter pack + // here. + auto cublas_call = [&]() { #if CUDA_VERSION >= 8000 - VLOG(5) << "use_tensor_op_math: " - << (dev_ctx->tensor_core_available() ? "True" : "False"); - dev_ctx->TensorCoreCublasCallIfAvailable([&](cublasHandle_t handle) { + VLOG(5) << "use_tensor_op_math: " + << (platform::TensorCoreAvailable() ? "True" : "False"); PADDLE_ENFORCE(platform::dynload::cublasSgemmEx( - handle, transa, transb, m, n, k, alpha, A, Atype, lda, B, Btype, ldb, - beta, C, Ctype, ldc)); - }); + dev_ctx->cublas_handle(), transa, transb, m, n, k, alpha, A, Atype, + lda, B, Btype, ldb, beta, C, Ctype, ldc)); #else - PADDLE_THROW("cublasSgemmEx is supported on cuda >= 8.0"); + PADDLE_THROW("cublasSgemmEx is supported on cuda >= 8.0"); +#endif + }; + +#if CUDA_VERSION >= 9000 + // NOTES: To use Tensor Core, we should change the cublas config, + // but the cublas may be hold by multi-thread. + dev_ctx->CublasCall(cublas_call, CUBLAS_TENSOR_OP_MATH); +#else + cublas_call(); #endif } }; @@ -162,24 +170,32 @@ struct CUBlas { cudaDataType_t Btype, int ldb, const void *beta, void *C, cudaDataType_t Ctype, int ldc, cudaDataType_t computeType) { + auto cublas_call = [&]() { #if CUDA_VERSION >= 8000 - cublasGemmAlgo_t algo = CUBLAS_GEMM_DFALT; + cublasGemmAlgo_t algo = CUBLAS_GEMM_DFALT; #if CUDA_VERSION >= 9000 - bool use_tensor_op_math = dev_ctx->tensor_core_available(); - if (use_tensor_op_math) { - algo = CUBLAS_GEMM_DFALT_TENSOR_OP; - } - VLOG(5) << "use_tensor_op_math: " - << (use_tensor_op_math ? "True" : "False"); + bool use_tensor_op_math = platform::TensorCoreAvailable(); + if (use_tensor_op_math) { + algo = CUBLAS_GEMM_DFALT_TENSOR_OP; + } + VLOG(5) << "use_tensor_op_math: " + << (use_tensor_op_math ? "True" : "False"); #endif // CUDA_VERSION >= 9000 - dev_ctx->TensorCoreCublasCallIfAvailable([&](cublasHandle_t handle) { PADDLE_ENFORCE(platform::dynload::cublasGemmEx( - handle, transa, transb, m, n, k, alpha, A, Atype, lda, B, Btype, ldb, - beta, C, Ctype, ldc, computeType, algo)); - }); + dev_ctx->cublas_handle(), transa, transb, m, n, k, alpha, A, Atype, + lda, B, Btype, ldb, beta, C, Ctype, ldc, computeType, algo)); #else - PADDLE_THROW("cublasGemmEx is supported on cuda >= 8.0"); + PADDLE_THROW("cublasGemmEx is supported on cuda >= 8.0"); +#endif + }; + +#if CUDA_VERSION >= 9000 + // NOTES: To use Tensor Core, we should change the cublas config, + // but the cublas may be hold by multi-thread. + dev_ctx->CublasCall(cublas_call, CUBLAS_TENSOR_OP_MATH); +#else + cublas_call(); #endif } }; @@ -207,10 +223,9 @@ void Blas::GEMM(CBLAS_TRANSPOSE transA, CUDA_R_32F, N); } else { #endif // CUDA_VERSION >= 8000 - context_.CublasCall([&](cublasHandle_t handle) { - CUBlas::GEMM(handle, cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A, - lda, &beta, C, N); - }); + + CUBlas::GEMM(context_.cublas_handle(), cuTransB, cuTransA, N, M, K, + &alpha, B, ldb, A, lda, &beta, C, N); #if CUDA_VERSION >= 8000 } @@ -251,12 +266,9 @@ inline void Blas::GEMM( CUDA_R_16F, lda, &h_beta, C, CUDA_R_16F, N, CUDA_R_32F); #else // CUDA 7.5 does not support cublasGemmEx, hence we fall back to use hgemm - - context_.CublasCall([&](cublasHandle_t handle) { - CUBlas::GEMM(handle, cuTransB, cuTransA, N, M, K, - &h_alpha, h_B, ldb, h_A, lda, &h_beta, h_C, - N); - }); + CUBlas::GEMM(context_.cublas_handle(), cuTransB, cuTransA, + N, M, K, &h_alpha, h_B, ldb, h_A, lda, + &h_beta, h_C, N); #endif // CUDA_VERSION >= 8000 } @@ -280,10 +292,8 @@ void Blas::GEMM(bool transA, bool transB, int M, } else { #endif // CUDA_VERSION >= 8000 - context_.CublasCall([&](cublasHandle_t handle) { - CUBlas::GEMM(handle, cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A, - lda, &beta, C, ldc); - }); + CUBlas::GEMM(context_.cublas_handle(), cuTransB, cuTransA, N, M, K, + &alpha, B, ldb, A, lda, &beta, C, ldc); #if CUDA_VERSION >= 8000 } @@ -301,19 +311,16 @@ inline void Blas::GEMM( cublasOperation_t cuTransA = transA ? CUBLAS_OP_T : CUBLAS_OP_N; cublasOperation_t cuTransB = transB ? CUBLAS_OP_T : CUBLAS_OP_N; - context_.CublasCall([&](cublasHandle_t handle) { - CUBlas::GEMM(handle, cuTransB, cuTransA, N, M, K, &alpha, - B, ldb, A, lda, &beta, C, ldc); - }); + CUBlas::GEMM(context_.cublas_handle(), cuTransB, cuTransA, + N, M, K, &alpha, B, ldb, A, lda, &beta, C, + ldc); } template <> template void Blas::AXPY(int n, T alpha, const T *x, T *y) const { - context_.CublasCall([&](cublasHandle_t handle) { - CUBlas::AXPY(handle, n, &alpha, x, 1, y, 1); - }); + CUBlas::AXPY(context_.cublas_handle(), n, &alpha, x, 1, y, 1); } template <> @@ -323,9 +330,8 @@ void Blas::GEMV(bool trans_a, int M, int N, T beta, T *C) const { cublasOperation_t cuTransA = !trans_a ? CUBLAS_OP_T : CUBLAS_OP_N; - context_.CublasCall([&](cublasHandle_t handle) { - CUBlas::GEMV(handle, cuTransA, N, M, &alpha, A, N, B, 1, &beta, C, 1); - }); + CUBlas::GEMV(context_.cublas_handle(), cuTransA, N, M, &alpha, A, N, B, 1, + &beta, C, 1); } template <> @@ -347,28 +353,28 @@ void Blas::BatchedGEMM( #if CUDA_VERSION >= 9010 if (FLAGS_enable_cublas_tensor_op_math && std::is_same::value) { - cublasGemmAlgo_t algo = CUBLAS_GEMM_DFALT; - bool use_tensor_op_math = context_.tensor_core_available(); - if (use_tensor_op_math) { - algo = CUBLAS_GEMM_DFALT_TENSOR_OP; - } - VLOG(5) << "use_tensor_op_math: " - << (use_tensor_op_math ? "True" : "False"); - - context_.TensorCoreCublasCallIfAvailable([&](cublasHandle_t handle) { + auto cublas_call = [&]() { + cublasGemmAlgo_t algo = CUBLAS_GEMM_DFALT; + bool use_tensor_op_math = platform::TensorCoreAvailable(); + if (use_tensor_op_math) { + algo = CUBLAS_GEMM_DFALT_TENSOR_OP; + } + VLOG(5) << "use_tensor_op_math: " + << (use_tensor_op_math ? "True" : "False"); + PADDLE_ENFORCE(platform::dynload::cublasGemmStridedBatchedEx( - handle, cuTransB, cuTransA, N, M, K, &alpha, B, CUDA_R_32F, ldb, - strideB, A, CUDA_R_32F, lda, strideA, &beta, C, CUDA_R_32F, ldc, - strideC, batchCount, CUDA_R_32F, algo)); - }); + context_.cublas_handle(), cuTransB, cuTransA, N, M, K, &alpha, B, + CUDA_R_32F, ldb, strideB, A, CUDA_R_32F, lda, strideA, &beta, C, + CUDA_R_32F, ldc, strideC, batchCount, CUDA_R_32F, algo)); + }; + auto &dev_ctx = const_cast(context_); + dev_ctx.CublasCall(cublas_call, CUBLAS_TENSOR_OP_MATH); } else { #endif // CUDA_VERSION >= 9010 - context_.CublasCall([&](cublasHandle_t handle) { - CUBlas::GEMM_STRIDED_BATCH(handle, cuTransB, cuTransA, N, M, K, &alpha, - B, ldb, strideB, A, lda, strideA, &beta, C, - ldc, strideC, batchCount); - }); + CUBlas::GEMM_STRIDED_BATCH(context_.cublas_handle(), cuTransB, cuTransA, + N, M, K, &alpha, B, ldb, strideB, A, lda, + strideA, &beta, C, ldc, strideC, batchCount); #if CUDA_VERSION >= 9010 } diff --git a/paddle/fluid/platform/cuda_helper.h b/paddle/fluid/platform/cuda_helper.h deleted file mode 100644 index 122de72e1..000000000 --- a/paddle/fluid/platform/cuda_helper.h +++ /dev/null @@ -1,58 +0,0 @@ -// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -#pragma once - -#include // NOLINT - -#include "paddle/fluid/platform/dynload/cublas.h" -#include "paddle/fluid/platform/macros.h" - -#if CUDA_VERSION < 9000 -enum cublasMath_t { CUBLAS_DEFAULT_MATH = 0 }; -#endif - -namespace paddle { -namespace platform { - -class CublasHandleHolder { - public: - CublasHandleHolder(cudaStream_t stream, cublasMath_t math_type) { - PADDLE_ENFORCE(dynload::cublasCreate(&handle_)); - PADDLE_ENFORCE(dynload::cublasSetStream(handle_, stream)); -#if CUDA_VERSION >= 9000 - if (math_type == CUBLAS_TENSOR_OP_MATH) { - PADDLE_ENFORCE( - dynload::cublasSetMathMode(handle_, CUBLAS_TENSOR_OP_MATH)); - } -#endif - } - - ~CublasHandleHolder() { PADDLE_ENFORCE(dynload::cublasDestroy(handle_)); } - - template - inline void Call(Callback &&callback) const { - std::lock_guard guard(mtx_); - callback(handle_); - } - - private: - DISABLE_COPY_AND_ASSIGN(CublasHandleHolder); - - cublasHandle_t handle_; - mutable std::mutex mtx_; -}; - -} // namespace platform -} // namespace paddle diff --git a/paddle/fluid/platform/device_context.cc b/paddle/fluid/platform/device_context.cc index be7f4949d..022afb686 100644 --- a/paddle/fluid/platform/device_context.cc +++ b/paddle/fluid/platform/device_context.cc @@ -245,15 +245,8 @@ CUDADeviceContext::CUDADeviceContext(CUDAPlace place) eigen_stream_.reset(new EigenCudaStreamDevice()); eigen_stream_->Reinitialize(&stream_, place); eigen_device_.reset(new Eigen::GpuDevice(eigen_stream_.get())); - cublas_handle_.reset(new CublasHandleHolder(stream_, CUBLAS_DEFAULT_MATH)); - - if (TensorCoreAvailable()) { -#if CUDA_VERSION >= 9000 - cublas_tensor_core_handle_.reset( - new CublasHandleHolder(stream_, CUBLAS_TENSOR_OP_MATH)); -#endif - } - + PADDLE_ENFORCE(dynload::cublasCreate(&cublas_handle_)); + PADDLE_ENFORCE(dynload::cublasSetStream(cublas_handle_, stream_)); if (dynload::HasCUDNN()) { cudnn_holder_.reset(new CudnnHolder(&stream_, place)); } @@ -313,8 +306,7 @@ CUDADeviceContext::~CUDADeviceContext() { SetDeviceId(place_.device); Wait(); WaitStreamCallback(); - cublas_handle_.reset(); - cublas_tensor_core_handle_.reset(); + PADDLE_ENFORCE(dynload::cublasDestroy(cublas_handle_)); eigen_stream_.reset(); eigen_device_.reset(); PADDLE_ENFORCE(cudaStreamDestroy(stream_)); @@ -343,8 +335,8 @@ Eigen::GpuDevice* CUDADeviceContext::eigen_device() const { return eigen_device_.get(); } -bool CUDADeviceContext::tensor_core_available() const { - return cublas_tensor_core_handle_ != nullptr; +cublasHandle_t CUDADeviceContext::cublas_handle() const { + return cublas_handle_; } cudnnHandle_t CUDADeviceContext::cudnn_handle() const { diff --git a/paddle/fluid/platform/device_context.h b/paddle/fluid/platform/device_context.h index c81d17380..7e8758018 100644 --- a/paddle/fluid/platform/device_context.h +++ b/paddle/fluid/platform/device_context.h @@ -20,7 +20,6 @@ limitations under the License. */ #include "paddle/fluid/memory/malloc.h" #include "paddle/fluid/platform/temporary_allocator.h" #ifdef PADDLE_WITH_CUDA -#include "paddle/fluid/platform/cuda_helper.h" #include "paddle/fluid/platform/dynload/cublas.h" #include "paddle/fluid/platform/dynload/cudnn.h" #include "paddle/fluid/platform/gpu_info.h" @@ -210,6 +209,39 @@ class CudnnWorkspaceHandle { std::unique_ptr> guard_; }; +#if CUDA_VERSION >= 9000 +class ScopedCublasMathMode { + public: + ScopedCublasMathMode(cublasHandle_t handle, cublasMath_t new_math_mode) + : handle_(handle) { + need_reset = false; + PADDLE_ENFORCE( + platform::dynload::cublasGetMathMode(handle_, &old_math_mode_), + "Failed to get old cublas math mode"); + if (old_math_mode_ != new_math_mode) { + PADDLE_ENFORCE( + platform::dynload::cublasSetMathMode(handle_, new_math_mode), + "Failed to set old cublas math mode"); + need_reset = true; + } + } + + ~ScopedCublasMathMode() { + if (need_reset) { + PADDLE_ENFORCE( + platform::dynload::cublasSetMathMode(handle_, old_math_mode_), + "Failed to set old cublas math mode"); + } + } + + private: + cublasHandle_t handle_; + cublasMath_t old_math_mode_; + bool need_reset; +}; + +#endif + class CUDADeviceContext : public DeviceContext { public: explicit CUDADeviceContext(CUDAPlace place); @@ -230,25 +262,8 @@ class CUDADeviceContext : public DeviceContext { /*! \brief Return eigen device in the device context. */ Eigen::GpuDevice* eigen_device() const; - /*! \brief Call cublas function safely. */ - template - inline void CublasCall(Callback&& callback) const { - cublas_handle_->Call(std::forward(callback)); - } - - /*! \brief Check whether tensor core is supported */ - bool tensor_core_available() const; - - /*! \brief Call cublas function with Tensor Core safely. If - Tensor Core is not available, use DEFAULT_MATH instead. */ - template - inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const { - if (cublas_tensor_core_handle_) { - cublas_tensor_core_handle_->Call(std::forward(callback)); - } else { - cublas_handle_->Call(std::forward(callback)); - } - } + /*! \brief Return cublas handle in the device context. */ + cublasHandle_t cublas_handle() const; /*! \brief Return cudnn handle in the device context. */ cudnnHandle_t cudnn_handle() const; @@ -267,6 +282,7 @@ class CUDADeviceContext : public DeviceContext { template void RecordEvent(cudaEvent_t ev, Callback callback) { + std::lock_guard guard(mtx_); callback(); PADDLE_ENFORCE(cudaEventRecord(ev, stream_)); } @@ -278,6 +294,18 @@ class CUDADeviceContext : public DeviceContext { void WaitStreamCallback() const { callback_manager_->Wait(); } +#if CUDA_VERSION >= 9000 + /*! \brief CublasCall may need to change cublas's config, + * but the cublas may be hold by multi-thread, so we should + * add lock here. */ + template + void CublasCall(Callback callback, cublasMath_t new_math) { + std::lock_guard guard(cublas_mtx_); + ScopedCublasMathMode scoped_cublas_math(cublas_handle_, new_math); + callback(); + } +#endif + private: CUDAPlace place_; @@ -285,9 +313,7 @@ class CUDADeviceContext : public DeviceContext { std::unique_ptr eigen_stream_; std::unique_ptr cudnn_holder_; cudaStream_t stream_; - - std::unique_ptr cublas_handle_; - std::unique_ptr cublas_tensor_core_handle_; + cublasHandle_t cublas_handle_; int compute_capability_; int runtime_version_; @@ -295,10 +321,12 @@ class CUDADeviceContext : public DeviceContext { int multi_process_; int max_threads_per_mp_; + mutable std::mutex mtx_; + // StreamCallbackManager is thread-safe std::unique_ptr callback_manager_; - DISABLE_COPY_AND_ASSIGN(CUDADeviceContext); + mutable std::mutex cublas_mtx_; }; template <> diff --git a/paddle/fluid/platform/device_context_test.cu b/paddle/fluid/platform/device_context_test.cu index 5b3aa98ef..171d2979a 100644 --- a/paddle/fluid/platform/device_context_test.cu +++ b/paddle/fluid/platform/device_context_test.cu @@ -43,6 +43,9 @@ TEST(Device, CUDADeviceContext) { ASSERT_NE(nullptr, gpu_device); cudnnHandle_t cudnn_handle = device_context->cudnn_handle(); ASSERT_NE(nullptr, cudnn_handle); + cublasHandle_t cublas_handle = device_context->cublas_handle(); + ASSERT_NE(nullptr, cublas_handle); + ASSERT_NE(nullptr, device_context->stream()); delete device_context; } } -- GitLab