提交 d935d88d 编写于 作者: L Luo Tao

mnist api v2

上级 cdecd53b
import paddle.v2 as paddle import paddle.v2 as paddle
def softmax_regression(img):
predict = paddle.layer.fc(input=img,
size=10,
act=paddle.activation.Softmax())
return predict
def multilayer_perceptron(img):
# The first fully-connected layer
hidden1 = paddle.layer.fc(input=img, size=128, act=paddle.activation.Relu())
# The second fully-connected layer and the according activation function
hidden2 = paddle.layer.fc(input=hidden1,
size=64,
act=paddle.activation.Relu())
# The thrid fully-connected layer, note that the hidden size should be 10,
# which is the number of unique digits
predict = paddle.layer.fc(input=hidden2,
size=10,
act=paddle.activation.Softmax())
return predict
def convolutional_neural_network(img):
# first conv layer
conv_pool_1 = paddle.networks.simple_img_conv_pool(
input=img,
filter_size=5,
num_filters=20,
num_channel=1,
pool_size=2,
pool_stride=2,
act=paddle.activation.Tanh())
# second conv layer
conv_pool_2 = paddle.networks.simple_img_conv_pool(
input=conv_pool_1,
filter_size=5,
num_filters=50,
num_channel=20,
pool_size=2,
pool_stride=2,
act=paddle.activation.Tanh())
# The first fully-connected layer
fc1 = paddle.layer.fc(input=conv_pool_2,
size=128,
act=paddle.activation.Tanh())
# The softmax layer, note that the hidden size should be 10,
# which is the number of unique digits
predict = paddle.layer.fc(input=fc1,
size=10,
act=paddle.activation.Softmax())
return predict
def main(): def main():
paddle.init(use_gpu=False, trainer_count=1) paddle.init(use_gpu=True, trainer_count=1)
# define network topology # define network topology
images = paddle.layer.data( images = paddle.layer.data(
name='pixel', type=paddle.data_type.dense_vector(784)) name='pixel', type=paddle.data_type.dense_vector(784))
label = paddle.layer.data( label = paddle.layer.data(
name='label', type=paddle.data_type.integer_value(10)) name='label', type=paddle.data_type.integer_value(10))
hidden1 = paddle.layer.fc(input=images, size=200)
hidden2 = paddle.layer.fc(input=hidden1, size=200) predict = softmax_regression(images)
inference = paddle.layer.fc(input=hidden2, #predict = multilayer_perceptron(images)
size=10, #predict = convolutional_neural_network(images)
act=paddle.activation.Softmax())
cost = paddle.layer.classification_cost(input=inference, label=label) cost = paddle.layer.classification_cost(input=predict, label=label)
parameters = paddle.parameters.create(cost) parameters = paddle.parameters.create(cost)
adam_optimizer = paddle.optimizer.Adam(learning_rate=0.01) optimizer = paddle.optimizer.Momentum(
learning_rate=0.1 / 128.0,
momentum=0.9,
regularization=paddle.optimizer.L2Regularization(rate=0.0005 * 128))
trainer = paddle.trainer.SGD(cost=cost, trainer = paddle.trainer.SGD(cost=cost,
parameters=parameters, parameters=parameters,
update_equation=adam_optimizer) update_equation=optimizer)
def event_handler(event): def event_handler(event):
if isinstance(event, paddle.event.EndIteration): if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 1000 == 0: if event.batch_id % 100 == 0:
result = trainer.test(reader=paddle.reader.batched( result = trainer.test(reader=paddle.reader.batched(
paddle.dataset.mnist.test(), batch_size=256)) paddle.dataset.mnist.test(), batch_size=128))
print "Pass %d, Batch %d, Cost %f, %s, Testing metrics %s" % ( print "Pass %d, Batch %d, Cost %f, %s, Testing metrics %s" % (
event.pass_id, event.batch_id, event.cost, event.metrics, event.pass_id, event.batch_id, event.cost, event.metrics,
result.metrics) result.metrics)
else:
pass
trainer.train( trainer.train(
reader=paddle.reader.batched( reader=paddle.reader.batched(
paddle.reader.shuffle( paddle.reader.shuffle(
paddle.dataset.mnist.train(), buf_size=8192), paddle.dataset.mnist.train(), buf_size=8192),
batch_size=32), batch_size=128),
event_handler=event_handler) event_handler=event_handler,
num_passes=100)
if __name__ == '__main__': if __name__ == '__main__':
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册