Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
d874fca4
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d874fca4
编写于
9月 11, 2017
作者:
L
Liu Yiqun
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Support multiple inputs in FCOp.
上级
c05d319c
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
67 addition
and
49 deletion
+67
-49
paddle/operators/fc_op.cc
paddle/operators/fc_op.cc
+37
-18
python/paddle/v2/framework/tests/test_fc_op.py
python/paddle/v2/framework/tests/test_fc_op.py
+30
-31
未找到文件。
paddle/operators/fc_op.cc
浏览文件 @
d874fca4
...
...
@@ -24,30 +24,49 @@ class FCOp : public NetOp {
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
NetOp
(
type
,
inputs
,
outputs
,
attrs
)
{
// mul_out = X * W
auto
x
=
Inputs
(
"X"
);
auto
w
=
Inputs
(
"W"
);
PADDLE_ENFORCE_EQ
(
x
.
size
(),
w
.
size
(),
"The size of inputs X(%d) should be the same as that of weights W(%d)."
,
x
.
size
(),
w
.
size
());
int
n
=
x
.
size
();
PADDLE_ENFORCE_GE
(
n
,
1
,
"The size of inputs X(%d) should be no less than 1."
,
n
);
// mul_out = X[0] * W[0] + ... + X[n-1] * W[n-1]
AppendOp
(
framework
::
OpRegistry
::
CreateOp
(
"mul"
,
{{
"X"
,
{
x
[
0
]}},
{
"W"
,
{
w
[
0
]}}},
{{
"Out"
,
{
Output
(
"mul_out"
)}}},
{}));
for
(
int
i
=
1
;
i
<
n
;
i
++
)
{
// mul_out = mul_out + X[i] * W[i]
AppendOp
(
framework
::
OpRegistry
::
CreateOp
(
"mul"
,
{{
"X"
,
{
x
[
i
]}},
{
"Y"
,
{
w
[
i
]}}},
{{
"Out"
,
{
Output
(
"add_out"
)}}},
{}));
AppendOp
(
framework
::
OpRegistry
::
CreateOp
(
"mul"
,
{{
"X"
,
{
Input
(
"X"
)}},
{
"Y"
,
{
Input
(
"W
"
)}}},
"add"
,
{{
"X"
,
{
Output
(
"mul_out"
)}},
{
"Y"
,
{
Output
(
"add_out
"
)}}},
{{
"Out"
,
{
Output
(
"mul_out"
)}}},
{}));
}
std
::
string
add_out_name
=
"mul_out"
;
auto
b
=
Input
(
"b"
);
std
::
string
add_out
=
"mul_out"
;
if
(
b
!=
framework
::
kEmptyVarName
)
{
// add_out = mul_out + b
AppendOp
(
framework
::
OpRegistry
::
CreateOp
(
"rowwise_add"
,
{{
"X"
,
{
Output
(
"mul_out"
)}},
{
"b"
,
{
Input
(
"b"
)}}},
{{
"Out"
,
{
Output
(
"add_out"
)}}},
{}));
add_out
_name
=
"add_out"
;
add_out
=
"add_out"
;
}
else
{
auto
add_out
=
Output
(
"add_out"
);
if
(
add_out
!=
framework
::
kEmptyVarName
)
{
this
->
Rename
(
add_out
,
framework
::
kEmptyVarName
);
if
(
Output
(
"add_out"
)
!=
framework
::
kEmptyVarName
)
{
this
->
Rename
(
Output
(
"add_out"
),
framework
::
kEmptyVarName
);
}
}
auto
activation
=
GetAttr
<
std
::
string
>
(
"activation"
);
AppendOp
(
framework
::
OpRegistry
::
CreateOp
(
activation
,
{{
"X"
,
{
Output
(
add_out_name
)}}},
{{
"Y"
,
{
Output
(
"Out"
)}}},
{}));
auto
activation
=
Attr
<
std
::
string
>
(
"activation"
);
AppendOp
(
framework
::
OpRegistry
::
CreateOp
(
activation
,
{{
"X"
,
{
Output
(
add_out
)}}},
{{
"Y"
,
{
Output
(
"Y"
)}}},
{}));
CompleteAddOp
(
false
);
}
};
...
...
@@ -56,11 +75,11 @@ class FCOpMaker : public framework::OpProtoAndCheckerMaker {
public:
FCOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"The 2
D input matrix of FC operator."
);
AddInput
(
"W"
,
"The 2
D weight matrix of FC operator."
);
AddInput
(
"b"
,
"The 1D bias vector of FC operator"
);
AddInput
(
"X"
,
"The 2
-D input matrix of FC operator."
).
AsDuplicable
(
);
AddInput
(
"W"
,
"The 2
-D weight matrix of FC operator."
).
AsDuplicable
(
);
AddInput
(
"b"
,
"The 1
-
D bias vector of FC operator"
);
AddOutput
(
"
Out
"
,
"The activated output matrix of FC operator"
);
AddOutput
(
"
Y
"
,
"The activated output matrix of FC operator"
);
AddOutput
(
"mul_out"
,
"The non-actived output of FC operator, X * W"
)
.
AsIntermediate
();
AddOutput
(
"add_out"
,
"The non-actived output of FC operator, X * W + b"
)
...
...
@@ -78,7 +97,7 @@ learned weights with a matrix multiplication followed by a bias offset
(optionally).
Equation:
Out
= Act(sum_n{X_i * W_i} + b)
Y
= Act(sum_n{X_i * W_i} + b)
where X_i is a 2D matrix of size (M x K), usually M is the minibatch size and
K is the number of features. W_i is also a 2D matrix of size (K x N),
...
...
python/paddle/v2/framework/tests/test_fc_op.py
浏览文件 @
d874fca4
import
unittest
import
numpy
as
np
from
gradient_checker
import
GradientChecker
,
create_op
from
op_test_util
import
OpTestMeta
from
op_test
import
OpTest
import
paddle.v2.framework.core
as
core
from
paddle.v2.framework.op
import
Operator
class
TestFCOp
(
unittest
.
TestCase
):
__metaclass__
=
OpTestMeta
class
TestFCOp
(
OpTest
):
def
setUp
(
self
):
self
.
type
=
"fc"
print
"Run"
self
.
op_type
=
"fc"
x0
=
np
.
random
.
random
((
32
,
256
)).
astype
(
"float32"
)
x1
=
np
.
random
.
random
((
32
,
256
)).
astype
(
"float32"
)
w0
=
np
.
random
.
random
((
256
,
100
)).
astype
(
"float32"
)
w1
=
np
.
random
.
random
((
256
,
100
)).
astype
(
"float32"
)
b
=
np
.
random
.
random
(
100
).
astype
(
"float32"
)
self
.
inputs
=
{
"X"
:
np
.
random
.
random
((
32
,
784
)).
astype
(
"float32"
),
"W"
:
np
.
random
.
random
((
784
,
1000
)).
astype
(
"float32"
),
"b"
:
np
.
random
.
random
(
1000
).
astype
(
"float32"
)
"X"
:
{
"X0"
:
x0
,
"X1"
:
x1
},
"W"
:
{
"W0"
:
w0
,
"W1"
:
w1
},
"b"
:
b
}
self
.
attrs
=
{
"activation"
:
"sigmoid"
}
mul_out
=
np
.
dot
(
self
.
inputs
[
"X"
],
self
.
inputs
[
"W"
])
add_out
=
np
.
add
(
mul_out
,
self
.
inputs
[
"b"
])
sigmoid_out
=
1
/
(
1
+
np
.
exp
(
-
add_out
))
#self.attrs = {"activation": "sigmoid"}
mul_out
=
np
.
dot
(
x0
,
w0
)
+
np
.
dot
(
x1
,
w1
)
add_out
=
np
.
add
(
mul_out
,
b
)
#sigmoid_out = 1 / (1 + np.exp(-add_out))
sigmoid_out
=
add_out
self
.
outputs
=
{
"mul_out"
:
mul_out
,
"add_out"
:
add_out
,
"
Out
"
:
sigmoid_out
"
Y
"
:
sigmoid_out
}
def
test_check_output
(
self
):
self
.
check_output
(
core
.
CPUPlace
())
self
.
check_output
(
core
.
GPUPlace
(
0
))
class
TestFCGradOp
(
GradientChecker
):
def
test_normal
(
self
):
self
.
inputs
=
{
"X"
:
np
.
random
.
random
((
32
,
256
)).
astype
(
"float32"
),
"W"
:
np
.
random
.
random
((
256
,
100
)).
astype
(
"float32"
),
"b"
:
np
.
random
.
random
(
100
).
astype
(
"float32"
)
}
op
=
Operator
(
"fc"
,
X
=
"X"
,
W
=
"W"
,
b
=
"b"
,
Out
=
"Out"
,
mul_out
=
"mul_out"
,
add_out
=
"add_out"
,
activation
=
"sigmoid"
)
self
.
check_grad
(
op
,
self
.
inputs
,
[
"X"
,
"W"
,
"b"
],
"Out"
)
#def test_check_grad(self):
# self.check_grad(["X0", "X1", "W0", "W1", "b"], "Y")
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录