Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
d8704f28
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
d8704f28
编写于
7月 24, 2020
作者:
S
sunxl1988
提交者:
GitHub
7月 24, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
test=dygraph split target op into label&sample op (#1093)
split target op into label&sample op
上级
8af1c07f
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
328 addition
and
312 deletion
+328
-312
ppdet/py_op/post_process.py
ppdet/py_op/post_process.py
+54
-52
ppdet/py_op/target.py
ppdet/py_op/target.py
+274
-260
未找到文件。
ppdet/py_op/post_process.py
浏览文件 @
d8704f28
...
...
@@ -6,6 +6,7 @@ from .bbox import delta2bbox, clip_bbox, expand_bbox, nms
def
bbox_post_process
(
bboxes
,
bbox_nums
,
bbox_probs
,
bbox_deltas
,
im_info
,
...
...
@@ -14,30 +15,32 @@ def bbox_post_process(bboxes,
nms_thresh
=
0.5
,
class_nums
=
81
,
bbox_reg_weights
=
[
0.1
,
0.1
,
0.2
,
0.2
]):
bbox_nums
=
[
0
,
bboxes
.
shape
[
0
]]
bboxes_v
=
np
.
array
(
bboxes
)
bbox_probs_v
=
np
.
array
(
bbox_probs
)
bbox_deltas_v
=
np
.
array
(
bbox_deltas
)
variance_v
=
np
.
array
(
bbox_reg_weights
)
new_bboxes
=
[[]
for
_
in
range
(
len
(
bbox_nums
)
-
1
)]
new_bboxes
=
[[]
for
_
in
range
(
len
(
bbox_nums
))]
new_bbox_nums
=
[
0
]
for
i
in
range
(
len
(
bbox_nums
)
-
1
):
start
=
bbox_nums
[
i
]
end
=
bbox_nums
[
i
+
1
]
if
start
==
end
:
continue
bbox_deltas_n
=
bbox_deltas_v
[
start
:
end
,
:]
# box delta
rois_n
=
bboxes_v
[
start
:
end
,
:]
# box
rois_n
=
rois_n
/
im_info
[
i
][
2
]
# scale
rois_n
=
delta2bbox
(
bbox_deltas_n
,
rois_n
,
variance_v
)
rois_n
=
clip_bbox
(
rois_n
,
im_info
[
i
][:
2
]
/
im_info
[
i
][
2
])
st_num
=
0
end_num
=
0
for
i
in
range
(
len
(
bbox_nums
)):
bbox_num
=
bbox_nums
[
i
]
end_num
+=
bbox_num
bbox
=
bboxes
[
st_num
:
end_num
,
:]
# bbox
bbox
=
bbox
/
im_info
[
i
][
2
]
# scale
bbox_delta
=
bbox_deltas
[
st_num
:
end_num
,
:]
# bbox delta
# step1: decode
bbox
=
delta2bbox
(
bbox_delta
,
bbox
,
bbox_reg_weights
)
# step2: clip
bbox
=
clip_bbox
(
bbox
,
im_info
[
i
][:
2
]
/
im_info
[
i
][
2
])
# step3: nms
cls_boxes
=
[[]
for
_
in
range
(
class_nums
)]
scores_n
=
bbox_probs
_v
[
start
:
end
,
:]
scores_n
=
bbox_probs
[
st_num
:
end_num
,
:]
for
j
in
range
(
1
,
class_nums
):
inds
=
np
.
where
(
scores_n
[:,
j
]
>
score_thresh
)[
0
]
scores_j
=
scores_n
[
inds
,
j
]
rois_j
=
rois_n
[
inds
,
j
*
4
:(
j
+
1
)
*
4
]
rois_j
=
bbox
[
inds
,
j
*
4
:(
j
+
1
)
*
4
]
dets_j
=
np
.
hstack
((
scores_j
[:,
np
.
newaxis
],
rois_j
)).
astype
(
np
.
float32
,
copy
=
False
)
keep
=
nms
(
dets_j
,
nms_thresh
)
...
...
@@ -48,6 +51,8 @@ def bbox_post_process(bboxes,
np
.
float32
,
copy
=
False
)
cls_boxes
[
j
]
=
nms_dets
st_num
+=
bbox_num
# Limit to max_per_image detections **over all classes**
image_scores
=
np
.
hstack
(
[
cls_boxes
[
j
][:,
1
]
for
j
in
range
(
1
,
class_nums
)])
...
...
@@ -58,7 +63,7 @@ def bbox_post_process(bboxes,
cls_boxes
[
j
]
=
cls_boxes
[
j
][
keep
,
:]
new_bboxes_n
=
np
.
vstack
([
cls_boxes
[
j
]
for
j
in
range
(
1
,
class_nums
)])
new_bboxes
[
i
]
=
new_bboxes_n
new_bbox_nums
.
append
(
len
(
new_bboxes_n
)
+
new_bbox_nums
[
-
1
]
)
new_bbox_nums
.
append
(
len
(
new_bboxes_n
))
labels
=
new_bboxes_n
[:,
0
]
scores
=
new_bboxes_n
[:,
1
]
boxes
=
new_bboxes_n
[:,
2
:]
...
...
@@ -68,27 +73,29 @@ def bbox_post_process(bboxes,
@
jit
def
mask_post_process
(
bbox_nums
,
bboxes
,
masks
,
im_info
):
bboxes
=
np
.
array
(
bboxes
)
M
=
cfg
.
resolution
scale
=
(
M
+
2.0
)
/
M
masks_v
=
np
.
array
(
masks
)
def
mask_post_process
(
bboxes
,
bbox_nums
,
masks
,
im_info
,
resolution
=
14
):
scale
=
(
resolution
+
2.0
)
/
resolution
boxes
=
bboxes
[:,
2
:]
labels
=
bboxes
[:,
0
]
segms_results
=
[[]
for
_
in
range
(
len
(
bbox_nums
)
-
1
)]
segms_results
=
[[]
for
_
in
range
(
len
(
bbox_nums
))]
sum
=
0
for
i
in
range
(
len
(
bbox_nums
)
-
1
):
bboxes_n
=
bboxes
[
bbox_nums
[
i
]:
bbox_nums
[
i
+
1
]]
st_num
=
0
end_num
=
0
for
i
in
range
(
len
(
bbox_nums
)):
bbox_num
=
bbox_nums
[
i
]
end_num
+=
bbox_num
cls_segms
=
[]
masks_n
=
masks_v
[
bbox_nums
[
i
]:
bbox_nums
[
i
+
1
]]
boxes_n
=
boxes
[
bbox_nums
[
i
]:
bbox_nums
[
i
+
1
]]
labels_n
=
labels
[
bbox_nums
[
i
]:
bbox_nums
[
i
+
1
]]
boxes_n
=
boxes
[
st_num
:
end_num
]
labels_n
=
labels
[
st_num
:
end_num
]
masks_n
=
masks
[
st_num
:
end_num
]
im_h
=
int
(
round
(
im_info
[
i
][
0
]
/
im_info
[
i
][
2
]))
im_w
=
int
(
round
(
im_info
[
i
][
1
]
/
im_info
[
i
][
2
]))
boxes_n
=
expand_boxes
(
boxes_n
,
scale
)
boxes_n
=
boxes_n
.
astype
(
np
.
int32
)
padded_mask
=
np
.
zeros
((
M
+
2
,
M
+
2
),
dtype
=
np
.
float32
)
for
j
in
range
(
len
(
b
b
oxes_n
)):
for
j
in
range
(
len
(
boxes_n
)):
class_id
=
int
(
labels_n
[
j
])
padded_mask
[
1
:
-
1
,
1
:
-
1
]
=
masks_n
[
j
,
class_id
,
:,
:]
...
...
@@ -114,28 +121,24 @@ def mask_post_process(bbox_nums, bboxes, masks, im_info):
im_mask
[:,
:,
np
.
newaxis
],
order
=
'F'
))[
0
]
cls_segms
.
append
(
rle
)
segms_results
[
i
]
=
np
.
array
(
cls_segms
)[:,
np
.
newaxis
]
segms_results
=
np
.
vstack
([
segms_results
[
k
]
for
k
in
range
(
len
(
lod
)
-
1
)])
segms_results
=
np
.
vstack
([
segms_results
[
k
]
for
k
in
range
(
len
(
bbox_nums
)
)])
bboxes
=
np
.
hstack
([
segms_results
,
bboxes
])
return
bboxes
[:,
:
3
]
@
jit
def
get_det_res
(
bbox_nums
,
bbox
,
image_id
,
num_id_to_cat_id_map
,
batch_size
=
1
):
def
get_det_res
(
bboxes
,
bbox_nums
,
image_id
,
num_id_to_cat_id_map
,
batch_size
=
1
):
det_res
=
[]
bbox_v
=
np
.
array
(
bbox
)
if
bbox_v
.
shape
==
(
1
,
1
,
):
return
dts_res
assert
(
len
(
bbox_nums
)
==
batch_size
+
1
),
\
"Error bbox_nums Tensor offset dimension. bbox_nums({}) vs. batch_size({})"
\
.
format
(
len
(
bbox_nums
),
batch_size
)
k
=
0
for
i
in
range
(
batch_size
):
dt_num_this_img
=
bbox_nums
[
i
+
1
]
-
bbox_nums
[
i
]
for
i
in
range
(
len
(
bbox_nums
)):
image_id
=
int
(
image_id
[
i
][
0
])
for
j
in
range
(
dt_num_this_img
):
dt
=
bbox_v
[
k
]
image_width
=
int
(
image_shape
[
i
][
1
])
image_height
=
int
(
image_shape
[
i
][
2
])
det_nums
=
bbox_nums
[
i
]
for
j
in
range
(
det_nums
):
dt
=
bboxes
[
k
]
k
=
k
+
1
num_id
,
score
,
xmin
,
ymin
,
xmax
,
ymax
=
dt
.
tolist
()
category_id
=
num_id_to_cat_id_map
[
num_id
]
...
...
@@ -153,15 +156,14 @@ def get_det_res(bbox_nums, bbox, image_id, num_id_to_cat_id_map, batch_size=1):
@
jit
def
get_seg_res
(
mask
_nums
,
mask
,
image_id
,
num_id_to_cat_id_map
,
batch_size
=
1
):
def
get_seg_res
(
mask
s
,
mask_nums
,
image_id
,
num_id_to_cat_id_map
):
seg_res
=
[]
mask_v
=
np
.
array
(
mask
)
k
=
0
for
i
in
range
(
batch_size
):
for
i
in
range
(
len
(
mask_nums
)
):
image_id
=
int
(
image_id
[
i
][
0
])
d
t_num_this_img
=
mask_nums
[
i
+
1
]
-
mask_nums
[
i
]
for
j
in
range
(
d
t_num_this_img
):
dt
=
mask
_v
[
k
]
d
et_nums
=
mask_nums
[
i
]
for
j
in
range
(
d
et_nums
):
dt
=
mask
s
[
k
]
k
=
k
+
1
sg
,
num_id
,
score
=
dt
.
tolist
()
cat_id
=
num_id_to_cat_id_map
[
num_id
]
...
...
ppdet/py_op/target.py
浏览文件 @
d8704f28
...
...
@@ -7,7 +7,7 @@ from .mask import *
@
jit
def
generate_rpn_anchor_target
(
anchor
_box
,
def
generate_rpn_anchor_target
(
anchor
s
,
gt_boxes
,
is_crowd
,
im_info
,
...
...
@@ -16,85 +16,106 @@ def generate_rpn_anchor_target(anchor_box,
rpn_positive_overlap
,
rpn_negative_overlap
,
rpn_fg_fraction
,
use_random
=
True
):
anchor_num
=
anchor_box
.
shape
[
0
]
use_random
=
True
,
anchor_reg_weights
=
[
1.
,
1.
,
1.
,
1.
]):
anchor_num
=
anchors
.
shape
[
0
]
batch_size
=
gt_boxes
.
shape
[
0
]
loc_indexes
=
[]
cls_indexes
=
[]
tgt_labels
=
[]
tgt_deltas
=
[]
anchor_inside_weights
=
[]
for
i
in
range
(
batch_size
):
# TODO: move anchor filter into anchor generator
im_height
=
im_info
[
i
][
0
]
im_width
=
im_info
[
i
][
1
]
im_scale
=
im_info
[
i
][
2
]
if
rpn_straddle_thresh
>=
0
:
# Only keep anchors inside the image by a margin of straddle_thresh
inds_inside
=
np
.
where
(
(
anchor_box
[:,
0
]
>=
-
rpn_straddle_thresh
)
&
(
anchor_box
[:,
1
]
>=
-
rpn_straddle_thresh
)
&
(
anchor_box
[:,
2
]
<
im_width
+
rpn_straddle_thresh
)
&
(
anchor_box
[:,
3
]
<
im_height
+
rpn_straddle_thresh
))[
0
]
# keep only inside anchors
inside_anchors
=
anchor_box
[
inds_inside
,
:]
anchor_inds
=
np
.
where
((
anchors
[:,
0
]
>=
-
rpn_straddle_thresh
)
&
(
anchors
[:,
1
]
>=
-
rpn_straddle_thresh
)
&
(
anchors
[:,
2
]
<
im_width
+
rpn_straddle_thresh
)
&
(
anchors
[:,
3
]
<
im_height
+
rpn_straddle_thresh
))[
0
]
anchor
=
anchors
[
anchor_inds
,
:]
else
:
inds_inside
=
np
.
arange
(
anchor_box
.
shape
[
0
])
inside_anchors
=
anchor_box
gt_boxes_slice
=
gt_boxes
[
i
]
*
im_scale
is_crowd_slice
=
is_crowd
[
i
]
anchor_inds
=
np
.
arange
(
anchors
.
shape
[
0
])
anchor
=
anchors
gt_bbox
=
gt_boxes
[
i
]
*
im_scale
is_crowd_slice
=
is_crowd
[
i
]
not_crowd_inds
=
np
.
where
(
is_crowd_slice
==
0
)[
0
]
gt_boxes_slice
=
gt_boxes_slice
[
not_crowd_inds
]
iou
=
bbox_overlaps
(
inside_anchors
,
gt_boxes_slice
)
loc_inds
,
score_inds
,
labels
,
gt_inds
,
bbox_inside_weight
=
_sample_anchor
(
iou
,
rpn_batch_size_per_im
,
rpn_positive_overlap
,
rpn_negative_overlap
,
rpn_fg_fraction
,
use_random
)
# unmap to all anchor
loc_inds
=
inds_inside
[
loc_inds
]
score_inds
=
inds_inside
[
score_inds
]
sampled_anchor
=
anchor_box
[
loc_inds
]
sampled_gt
=
gt_boxes_slice
[
gt_inds
]
box_deltas
=
bbox2delta
(
sampled_anchor
,
sampled_gt
,
[
1.
,
1.
,
1.
,
1.
])
if
i
==
0
:
loc_indexes
=
loc_inds
score_indexes
=
score_inds
tgt_labels
=
labels
tgt_bboxes
=
box_deltas
bbox_inside_weights
=
bbox_inside_weight
else
:
loc_indexes
=
np
.
concatenate
(
[
loc_indexes
,
loc_inds
+
i
*
anchor_num
])
score_indexes
=
np
.
concatenate
(
[
score_indexes
,
score_inds
+
i
*
anchor_num
])
tgt_labels
=
np
.
concatenate
([
tgt_labels
,
labels
])
tgt_bboxes
=
np
.
vstack
([
tgt_bboxes
,
box_deltas
])
bbox_inside_weights
=
np
.
vstack
([
bbox_inside_weights
,
\
bbox_inside_weight
])
tgt_labels
=
tgt_labels
.
astype
(
'float32'
)
tgt_bboxes
=
tgt_bboxes
.
astype
(
'float32'
)
return
loc_indexes
,
score_indexes
,
tgt_labels
,
tgt_bboxes
,
bbox_inside_weights
gt_bbox
=
gt_bbox
[
not_crowd_inds
]
# Step1: match anchor and gt_bbox
anchor_gt_bbox_inds
,
anchor_gt_bbox_iou
,
labels
=
label_anchor
(
anchor
,
gt_bbox
)
# Step2: sample anchor
fg_inds
,
bg_inds
,
fg_fake_inds
,
fake_num
=
sample_anchor
(
anchor_gt_bbox_iou
,
labels
,
rpn_positive_overlap
,
rpn_negative_overlap
,
rpn_batch_size_per_im
,
rpn_fg_fraction
,
use_random
)
# Step3: make output
loc_inds
=
np
.
hstack
([
fg_fake_inds
,
fg_inds
])
cls_inds
=
np
.
hstack
([
fg_inds
,
bg_inds
])
sampled_labels
=
labels
[
cls_inds
]
sampled_anchors
=
anchor
[
loc_inds
]
sampled_gt_boxes
=
gt_bbox
[
anchor_gt_bbox_inds
[
loc_inds
]]
sampled_deltas
=
bbox2delta
(
sampled_anchors
,
sampled_gt_boxes
,
anchor_reg_weights
)
anchor_inside_weight
=
np
.
zeros
((
len
(
loc_inds
),
4
),
dtype
=
np
.
float32
)
anchor_inside_weight
[
fake_num
:,
:]
=
1
loc_indexes
.
append
(
anchor_inds
[
loc_inds
]
+
i
*
anchor_num
)
cls_indexes
.
append
(
anchor_inds
[
cls_inds
]
+
i
*
anchor_num
)
tgt_labels
.
append
(
sampled_labels
)
tgt_deltas
.
append
(
sampled_deltas
)
anchor_inside_weights
.
append
(
anchor_inside_weight
)
loc_indexes
=
np
.
concatenate
(
loc_indexes
)
cls_indexes
=
np
.
concatenate
(
cls_indexes
)
tgt_labels
=
np
.
concatenate
(
tgt_labels
).
astype
(
'float32'
)
tgt_deltas
=
np
.
vstack
(
tgt_deltas
).
astype
(
'float32'
)
anchor_inside_weights
=
np
.
vstack
(
anchor_inside_weights
)
return
loc_indexes
,
cls_indexes
,
tgt_labels
,
tgt_deltas
,
anchor_inside_weights
@
jit
def
_sample_anchor
(
anchor_by_gt_overlap
,
rpn_batch_size_per_im
,
rpn_positive_overlap
,
rpn_negative_overlap
,
rpn_fg_fraction
,
use_random
=
True
):
anchor_to_gt_argmax
=
anchor_by_gt_overlap
.
argmax
(
axis
=
1
)
anchor_to_gt_max
=
anchor_by_gt_overlap
[
np
.
arange
(
anchor_by_gt_overlap
.
shape
[
0
]),
anchor_to_gt_argmax
]
gt_to_anchor_argmax
=
anchor_by_gt_overlap
.
argmax
(
axis
=
0
)
gt_to_anchor_max
=
anchor_by_gt_overlap
[
gt_to_anchor_argmax
,
np
.
arange
(
anchor_by_gt_overlap
.
shape
[
1
])]
anchors_with_max_overlap
=
np
.
where
(
anchor_by_gt_overlap
==
gt_to_anchor_max
)[
0
]
labels
=
np
.
ones
((
anchor_by_gt_overlap
.
shape
[
0
],
),
dtype
=
np
.
int32
)
*
-
1
labels
[
anchors_with_max_overlap
]
=
1
labels
[
anchor_to_gt_max
>=
rpn_positive_overlap
]
=
1
def
label_anchor
(
anchors
,
gt_boxes
):
iou
=
compute_iou
(
anchors
,
gt_boxes
)
# every gt's anchor's index
gt_bbox_anchor_inds
=
iou
.
argmax
(
axis
=
0
)
gt_bbox_anchor_iou
=
iou
[
gt_bbox_anchor_inds
,
np
.
arange
(
iou
.
shape
[
1
])]
gt_bbox_anchor_iou_inds
=
np
.
where
(
iou
==
gt_bbox_anchor_iou
)[
0
]
# every anchor's gt bbox's index
anchor_gt_bbox_inds
=
iou
.
argmax
(
axis
=
1
)
anchor_gt_bbox_iou
=
iou
[
np
.
arange
(
iou
.
shape
[
0
]),
anchor_gt_bbox_inds
]
labels
=
np
.
ones
((
iou
.
shape
[
0
],
),
dtype
=
np
.
int32
)
*
-
1
labels
[
gt_bbox_anchor_iou_inds
]
=
1
return
anchor_gt_bbox_inds
,
anchor_gt_bbox_iou
,
labels
@
jit
def
sample_anchor
(
anchor_gt_bbox_iou
,
labels
,
rpn_positive_overlap
,
rpn_negative_overlap
,
rpn_batch_size_per_im
,
rpn_fg_fraction
,
use_random
=
True
):
labels
[
anchor_gt_bbox_iou
>=
rpn_positive_overlap
]
=
1
num_fg
=
int
(
rpn_fg_fraction
*
rpn_batch_size_per_im
)
fg_inds
=
np
.
where
(
labels
==
1
)[
0
]
if
len
(
fg_inds
)
>
num_fg
and
use_random
:
...
...
@@ -102,12 +123,11 @@ def _sample_anchor(anchor_by_gt_overlap,
fg_inds
,
size
=
(
len
(
fg_inds
)
-
num_fg
),
replace
=
False
)
else
:
disable_inds
=
fg_inds
[
num_fg
:]
labels
[
disable_inds
]
=
-
1
fg_inds
=
np
.
where
(
labels
==
1
)[
0
]
num_bg
=
rpn_batch_size_per_im
-
np
.
sum
(
labels
==
1
)
bg_inds
=
np
.
where
(
anchor_
to_gt_max
<
rpn_negative_overlap
)[
0
]
bg_inds
=
np
.
where
(
anchor_
gt_bbox_iou
<
rpn_negative_overlap
)[
0
]
if
len
(
bg_inds
)
>
num_bg
and
use_random
:
enable_inds
=
bg_inds
[
np
.
random
.
randint
(
len
(
bg_inds
),
size
=
num_bg
)]
else
:
...
...
@@ -125,15 +145,7 @@ def _sample_anchor(anchor_by_gt_overlap,
fg_inds
=
np
.
where
(
labels
==
1
)[
0
]
bg_inds
=
np
.
where
(
labels
==
0
)[
0
]
loc_index
=
np
.
hstack
([
fg_fake_inds
,
fg_inds
])
score_index
=
np
.
hstack
([
fg_inds
,
bg_inds
])
labels
=
labels
[
score_index
]
gt_inds
=
anchor_to_gt_argmax
[
loc_index
]
bbox_inside_weight
=
np
.
zeros
((
len
(
loc_index
),
4
),
dtype
=
np
.
float32
)
bbox_inside_weight
[
fake_num
:,
:]
=
1
return
loc_index
,
score_index
,
labels
,
gt_inds
,
bbox_inside_weight
return
fg_inds
,
bg_inds
,
fg_fake_inds
,
fake_num
@
jit
...
...
@@ -155,148 +167,153 @@ def generate_proposal_target(rpn_rois,
is_cascade_rcnn
=
False
):
rois
=
[]
labels_int32
=
[]
bbox_target
s
=
[]
bbox
_inside_weights
=
[]
bbox
_outside_weights
=
[]
tgt_labels
=
[]
tgt_delta
s
=
[]
rois
_inside_weights
=
[]
rois
_outside_weights
=
[]
rois_nums
=
[]
batch_size
=
gt_boxes
.
shape
[
0
]
# TODO: modify here
# rpn_rois = rpn_rois.reshape(batch_size, -1, 4)
st_num
=
0
end_num
=
0
for
im_i
in
range
(
len
(
rpn_rois_nums
)):
rpn_rois_num
=
rpn_rois_nums
[
im_i
]
frcn_blobs
=
_sample_rois
(
rpn_rois
[
st_num
:
rpn_rois_num
],
gt_classes
[
im_i
],
is_crowd
[
im_i
],
gt_boxes
[
im_i
],
im_info
[
im_i
],
batch_size_per_im
,
fg_fraction
,
fg_thresh
,
bg_thresh_hi
,
bg_thresh_lo
,
bbox_reg_weights
,
class_nums
,
end_num
+=
rpn_rois_num
rpn_roi
=
rpn_rois
[
st_num
:
end_num
]
im_scale
=
im_info
[
im_i
][
2
]
rpn_roi
=
rpn_roi
/
im_scale
gt_bbox
=
gt_boxes
[
im_i
]
if
is_cascade_rcnn
:
rpn_roi
=
rpn_roi
[
gt_bbox
.
shape
[
0
]:,
:]
bbox
=
np
.
vstack
([
gt_bbox
,
rpn_roi
])
# Step1: label bbox
roi_gt_bbox_inds
,
roi_gt_bbox_iou
,
labels
,
=
label_bbox
(
bbox
,
gt_bbox
,
gt_classes
[
im_i
],
is_crowd
[
im_i
])
# Step2: sample bbox
if
is_cascade_rcnn
:
ws
=
bbox
[:,
2
]
-
bbox
[:,
0
]
+
1
hs
=
bbox
[:,
3
]
-
bbox
[:,
1
]
+
1
keep
=
np
.
where
((
ws
>
0
)
&
(
hs
>
0
))[
0
]
bbox
=
bbox
[
keep
]
fg_inds
,
bg_inds
,
fg_nums
=
sample_bbox
(
roi_gt_bbox_iou
,
batch_size_per_im
,
fg_fraction
,
fg_thresh
,
bg_thresh_hi
,
bg_thresh_lo
,
bbox_reg_weights
,
class_nums
,
use_random
,
is_cls_agnostic
,
is_cascade_rcnn
)
st_num
=
rpn_rois_num
rois
.
append
(
frcn_blobs
[
'rois'
])
labels_int32
.
append
(
frcn_blobs
[
'labels_int32'
])
bbox_targets
.
append
(
frcn_blobs
[
'bbox_targets'
])
bbox_inside_weights
.
append
(
frcn_blobs
[
'bbox_inside_weights'
])
bbox_outside_weights
.
append
(
frcn_blobs
[
'bbox_outside_weights'
])
rois_nums
.
append
(
frcn_blobs
[
'rois'
].
shape
[
0
])
# Step3: make output
sampled_inds
=
np
.
append
(
fg_inds
,
bg_inds
)
sampled_labels
=
labels
[
sampled_inds
]
sampled_labels
[
fg_nums
:]
=
0
sampled_boxes
=
bbox
[
sampled_inds
]
sampled_gt_boxes
=
gt_bbox
[
roi_gt_bbox_inds
[
sampled_inds
]]
sampled_gt_boxes
[
fg_nums
:,
:]
=
gt_bbox
[
0
]
sampled_deltas
=
compute_bbox_targets
(
sampled_boxes
,
sampled_gt_boxes
,
sampled_labels
,
bbox_reg_weights
)
sampled_deltas
,
bbox_inside_weights
=
expand_bbox_targets
(
sampled_deltas
,
class_nums
,
is_cls_agnostic
)
bbox_outside_weights
=
np
.
array
(
bbox_inside_weights
>
0
,
dtype
=
bbox_inside_weights
.
dtype
)
roi
=
sampled_boxes
*
im_scale
st_num
+=
rpn_rois_num
rois
.
append
(
roi
)
rois_nums
.
append
(
roi
.
shape
[
0
])
tgt_labels
.
append
(
sampled_labels
)
tgt_deltas
.
append
(
sampled_deltas
)
rois_inside_weights
.
append
(
bbox_inside_weights
)
rois_outside_weights
.
append
(
bbox_outside_weights
)
rois
=
np
.
concatenate
(
rois
,
axis
=
0
).
astype
(
np
.
float32
)
bbox
_labels
=
np
.
concatenate
(
labels_int32
,
axis
=
0
).
astype
(
np
.
int32
).
reshape
(
-
1
,
1
)
bbox_gts
=
np
.
concatenate
(
bbox_target
s
,
axis
=
0
).
astype
(
np
.
float32
)
bbox
_inside_weights
=
np
.
concatenate
(
bbox
_inside_weights
,
axis
=
0
).
astype
(
np
.
float32
)
bbox
_outside_weights
=
np
.
concatenate
(
bbox
_outside_weights
,
axis
=
0
).
astype
(
np
.
float32
)
tgt
_labels
=
np
.
concatenate
(
tgt_labels
,
axis
=
0
).
astype
(
np
.
int32
).
reshape
(
-
1
,
1
)
tgt_deltas
=
np
.
concatenate
(
tgt_delta
s
,
axis
=
0
).
astype
(
np
.
float32
)
rois
_inside_weights
=
np
.
concatenate
(
rois
_inside_weights
,
axis
=
0
).
astype
(
np
.
float32
)
rois
_outside_weights
=
np
.
concatenate
(
rois
_outside_weights
,
axis
=
0
).
astype
(
np
.
float32
)
rois_nums
=
np
.
asarray
(
rois_nums
,
np
.
int32
)
return
rois
,
bbox_labels
,
bbox_gts
,
bbox_inside_weights
,
bbox
_outside_weights
,
rois_nums
return
rois
,
tgt_labels
,
tgt_deltas
,
rois_inside_weights
,
rois
_outside_weights
,
rois_nums
@
jit
def
_sample_rois
(
rpn_rois
,
gt_classes
,
is_crowd
,
gt_boxes
,
im_info
,
batch_size_per_im
,
fg_fraction
,
fg_thresh
,
bg_thresh_hi
,
bg_thresh_lo
,
bbox_reg_weights
,
class_nums
,
use_random
=
True
,
is_cls_agnostic
=
False
,
is_cascade_rcnn
=
False
):
rois_per_image
=
int
(
batch_size_per_im
)
fg_rois_per_im
=
int
(
np
.
round
(
fg_fraction
*
rois_per_image
))
# Roidb
im_scale
=
im_info
[
2
]
inv_im_scale
=
1.
/
im_scale
rpn_rois
=
rpn_rois
*
inv_im_scale
if
is_cascade_rcnn
:
rpn_rois
=
rpn_rois
[
gt_boxes
.
shape
[
0
]:,
:]
boxes
=
np
.
vstack
([
gt_boxes
,
rpn_rois
])
gt_overlaps
=
np
.
zeros
((
boxes
.
shape
[
0
],
class_nums
))
box_to_gt_ind_map
=
np
.
zeros
((
boxes
.
shape
[
0
]),
dtype
=
np
.
int32
)
if
len
(
gt_boxes
)
>
0
:
proposal_to_gt_overlaps
=
bbox_overlaps
(
boxes
,
gt_boxes
)
overlaps_argmax
=
proposal_to_gt_overlaps
.
argmax
(
axis
=
1
)
overlaps_max
=
proposal_to_gt_overlaps
.
max
(
axis
=
1
)
# Boxes which with non-zero overlap with gt boxes
overlapped_boxes_ind
=
np
.
where
(
overlaps_max
>
0
)[
0
].
astype
(
'int32'
)
overlapped_boxes_gt_classes
=
gt_classes
[
overlaps_argmax
[
overlapped_boxes_ind
]].
astype
(
'int32'
)
gt_overlaps
[
overlapped_boxes_ind
,
overlapped_boxes_gt_classes
]
=
overlaps_max
[
overlapped_boxes_ind
]
box_to_gt_ind_map
[
overlapped_boxes_ind
]
=
overlaps_argmax
[
overlapped_boxes_ind
]
def
label_bbox
(
boxes
,
gt_boxes
,
gt_classes
,
is_crowd
,
class_nums
=
81
,
is_cascade_rcnn
=
False
):
iou
=
compute_iou
(
boxes
,
gt_boxes
)
# every roi's gt box's index
roi_gt_bbox_inds
=
np
.
zeros
((
boxes
.
shape
[
0
]),
dtype
=
np
.
int32
)
roi_gt_bbox_iou
=
np
.
zeros
((
boxes
.
shape
[
0
],
class_nums
))
iou_argmax
=
iou
.
argmax
(
axis
=
1
)
iou_max
=
iou
.
max
(
axis
=
1
)
overlapped_boxes_ind
=
np
.
where
(
iou_max
>
0
)[
0
].
astype
(
'int32'
)
roi_gt_bbox_inds
[
overlapped_boxes_ind
]
=
iou_argmax
[
overlapped_boxes_ind
]
overlapped_boxes_gt_classes
=
gt_classes
[
iou_argmax
[
overlapped_boxes_ind
]].
astype
(
'int32'
)
roi_gt_bbox_iou
[
overlapped_boxes_ind
,
overlapped_boxes_gt_classes
]
=
iou_max
[
overlapped_boxes_ind
]
crowd_ind
=
np
.
where
(
is_crowd
)[
0
]
gt_overlaps
[
crowd_ind
]
=
-
1
roi_gt_bbox_iou
[
crowd_ind
]
=
-
1
labels
=
roi_gt_bbox_iou
.
argmax
(
axis
=
1
)
max_overlaps
=
gt_overlaps
.
max
(
axis
=
1
)
max_classes
=
gt_overlaps
.
argmax
(
axis
=
1
)
return
roi_gt_bbox_inds
,
roi_gt_bbox_iou
,
labels
@
jit
def
sample_bbox
(
roi_gt_bbox_iou
,
batch_size_per_im
,
fg_fraction
,
fg_thresh
,
bg_thresh_hi
,
bg_thresh_lo
,
bbox_reg_weights
,
class_nums
,
use_random
=
True
,
is_cls_agnostic
=
False
,
is_cascade_rcnn
=
False
):
roi_gt_bbox_iou_max
=
roi_gt_bbox_iou
.
max
(
axis
=
1
)
rois_per_image
=
int
(
batch_size_per_im
)
fg_rois_per_im
=
int
(
np
.
round
(
fg_fraction
*
rois_per_image
))
# Cascade RCNN Decode Filter
if
is_cascade_rcnn
:
ws
=
boxes
[:,
2
]
-
boxes
[:,
0
]
+
1
hs
=
boxes
[:,
3
]
-
boxes
[:,
1
]
+
1
keep
=
np
.
where
((
ws
>
0
)
&
(
hs
>
0
))[
0
]
boxes
=
boxes
[
keep
]
fg_inds
=
np
.
where
(
max_overlaps
>=
fg_thresh
)[
0
]
bg_inds
=
np
.
where
((
max_overlaps
<
bg_thresh_hi
)
&
(
max_overlaps
>=
bg_thresh_lo
))[
0
]
fg_rois_per_this_image
=
fg_inds
.
shape
[
0
]
bg_rois_per_this_image
=
bg_inds
.
shape
[
0
]
fg_inds
=
np
.
where
(
roi_gt_bbox_iou_max
>=
fg_thresh
)[
0
]
bg_inds
=
np
.
where
((
roi_gt_bbox_iou_max
<
bg_thresh_hi
)
&
(
roi_gt_bbox_iou_max
>=
bg_thresh_lo
))[
0
]
fg_nums
=
fg_inds
.
shape
[
0
]
bg_nums
=
bg_inds
.
shape
[
0
]
else
:
# Foreground
fg_inds
=
np
.
where
(
max_overlaps
>=
fg_thresh
)[
0
]
fg_rois_per_this_image
=
np
.
minimum
(
fg_rois_per_im
,
fg_inds
.
shape
[
0
])
# Sample foreground if there are too many
if
(
fg_inds
.
shape
[
0
]
>
fg_rois_per_this_image
)
and
use_random
:
fg_inds
=
np
.
random
.
choice
(
fg_inds
,
size
=
fg_rois_per_this_image
,
replace
=
False
)
fg_inds
=
fg_inds
[:
fg_rois_per_this_image
]
# Background
bg_inds
=
np
.
where
((
max_overlaps
<
bg_thresh_hi
)
&
(
max_overlaps
>=
bg_thresh_lo
))[
0
]
bg_rois_per_this_image
=
rois_per_image
-
fg_rois_per_this_image
bg_rois_per_this_image
=
np
.
minimum
(
bg_rois_per_this_image
,
bg_inds
.
shape
[
0
])
# Sample background if there are too many
if
(
bg_inds
.
shape
[
0
]
>
bg_rois_per_this_image
)
and
use_random
:
bg_inds
=
np
.
random
.
choice
(
bg_inds
,
size
=
bg_rois_per_this_image
,
replace
=
False
)
bg_inds
=
bg_inds
[:
bg_rois_per_this_image
]
keep_inds
=
np
.
append
(
fg_inds
,
bg_inds
)
sampled_labels
=
max_classes
[
keep_inds
]
sampled_labels
[
fg_rois_per_this_image
:]
=
0
sampled_boxes
=
boxes
[
keep_inds
]
sampled_gts
=
gt_boxes
[
box_to_gt_ind_map
[
keep_inds
]]
sampled_gts
[
fg_rois_per_this_image
:,
:]
=
gt_boxes
[
0
]
bbox_label_targets
=
compute_bbox_targets
(
sampled_boxes
,
sampled_gts
,
sampled_labels
,
bbox_reg_weights
)
bbox_targets
,
bbox_inside_weights
=
expand_bbox_targets
(
bbox_label_targets
,
class_nums
,
is_cls_agnostic
)
bbox_outside_weights
=
np
.
array
(
bbox_inside_weights
>
0
,
dtype
=
bbox_inside_weights
.
dtype
)
# sampe fg
fg_inds
=
np
.
where
(
roi_gt_bbox_iou_max
>=
fg_thresh
)[
0
]
fg_nums
=
np
.
minimum
(
fg_rois_per_im
,
fg_inds
.
shape
[
0
])
if
(
fg_inds
.
shape
[
0
]
>
fg_nums
)
and
use_random
:
fg_inds
=
np
.
random
.
choice
(
fg_inds
,
size
=
fg_nums
,
replace
=
False
)
fg_inds
=
fg_inds
[:
fg_nums
]
# Scale rois
sampled_rois
=
sampled_boxes
*
im_scale
# sample bg
bg_inds
=
np
.
where
((
roi_gt_bbox_iou_max
<
bg_thresh_hi
)
&
(
roi_gt_bbox_iou_max
>=
bg_thresh_lo
))[
0
]
bg_nums
=
rois_per_image
-
fg_nums
bg_nums
=
np
.
minimum
(
bg_nums
,
bg_inds
.
shape
[
0
])
if
(
bg_inds
.
shape
[
0
]
>
bg_nums
)
and
use_random
:
bg_inds
=
np
.
random
.
choice
(
bg_inds
,
size
=
bg_nums
,
replace
=
False
)
bg_inds
=
bg_inds
[:
bg_nums
]
# Faster RCNN blobs
frcn_blobs
=
dict
(
rois
=
sampled_rois
,
labels_int32
=
sampled_labels
,
bbox_targets
=
bbox_targets
,
bbox_inside_weights
=
bbox_inside_weights
,
bbox_outside_weights
=
bbox_outside_weights
)
return
frcn_blobs
return
fg_inds
,
bg_inds
,
fg_nums
@
jit
...
...
@@ -306,16 +323,42 @@ def generate_mask_target(im_info, gt_classes, is_crowd, gt_segms, rois,
rois_has_mask_int32
=
[]
mask_int32
=
[]
st_num
=
0
for
i
in
range
(
len
(
rois_nums
)):
rois_num
=
rois_nums
[
i
]
mask_blob
=
_sample_mask
(
rois
[
st_num
:
rois_num
],
labels_int32
[
st_num
:
rois_num
],
gt_segms
[
i
],
im_info
[
i
],
gt_classes
[
i
],
is_crowd
[
i
],
num_classes
,
resolution
)
st_num
=
rois_num
mask_rois
.
append
(
mask_blob
[
'mask_rois'
])
rois_has_mask_int32
.
append
(
mask_blob
[
'roi_has_mask_int32'
])
mask_int32
.
append
(
mask_blob
[
'mask_int32'
])
end_num
=
0
for
k
in
range
(
len
(
rois_nums
)):
rois_num
=
rois_nums
[
k
]
end_num
+=
rois_num
# remove padding
gt_polys
=
gt_segms
[
k
]
new_gt_polys
=
[]
for
i
in
range
(
gt_polys
.
shape
[
0
]):
gt_segs
=
[]
for
j
in
range
(
gt_polys
[
i
].
shape
[
0
]):
new_poly
=
[]
polys
=
gt_polys
[
i
][
j
]
for
ii
in
range
(
polys
.
shape
[
0
]):
x
,
y
=
polys
[
ii
]
if
(
x
==
-
1
and
y
==
-
1
):
continue
elif
(
x
>=
0
and
y
>=
0
):
new_poly
.
append
([
x
,
y
])
# array, one poly
if
len
(
new_poly
)
>
0
:
gt_segs
.
append
(
new_poly
)
new_gt_polys
.
append
(
gt_segs
)
im_scale
=
im_info
[
k
][
2
]
boxes
=
rois
[
st_num
:
end_num
]
/
im_scale
bbox_fg
,
bbox_has_mask
,
masks
=
sample_mask
(
boxes
,
new_gt_polys
,
labels_int32
[
st_num
:
rois_num
],
gt_classes
[
k
],
is_crowd
[
k
],
num_classes
,
resolution
)
st_num
+=
rois_num
mask_rois
.
append
(
bbox_fg
*
im_scale
)
rois_has_mask_int32
.
append
(
bbox_has_mask
)
mask_int32
.
append
(
masks
)
mask_rois
=
np
.
concatenate
(
mask_rois
,
axis
=
0
).
astype
(
np
.
float32
)
rois_has_mask_int32
=
np
.
concatenate
(
rois_has_mask_int32
,
axis
=
0
).
astype
(
np
.
int32
)
...
...
@@ -325,73 +368,44 @@ def generate_mask_target(im_info, gt_classes, is_crowd, gt_segms, rois,
@
jit
def
_sample_mask
(
rois
,
label_int32
,
def
sample_mask
(
boxes
,
gt_polys
,
im_info
,
label_int32
,
gt_classes
,
is_crowd
,
num_classes
,
resolution
,
):
# remove padding
new_gt_polys
=
[]
for
i
in
range
(
gt_polys
.
shape
[
0
]):
gt_segs
=
[]
for
j
in
range
(
gt_polys
[
i
].
shape
[
0
]):
new_poly
=
[]
polys
=
gt_polys
[
i
][
j
]
for
ii
in
range
(
polys
.
shape
[
0
]):
x
,
y
=
polys
[
ii
]
if
(
x
==
-
1
and
y
==
-
1
):
continue
elif
(
x
>=
0
and
y
>=
0
):
new_poly
.
append
([
x
,
y
])
# array, one poly
if
len
(
new_poly
)
>
0
:
gt_segs
.
append
(
new_poly
)
new_gt_polys
.
append
(
gt_segs
)
im_scale
=
im_info
[
2
]
sample_boxes
=
rois
/
im_scale
polys_gt_inds
=
np
.
where
((
gt_classes
>
0
)
&
(
is_crowd
==
0
))[
0
]
polys_gt
=
[
new_gt_polys
[
i
]
for
i
in
polys_gt_inds
]
boxes_from_polys
=
polys_to_boxes
(
polys_gt
)
gt_polys_inds
=
np
.
where
((
gt_classes
>
0
)
&
(
is_crowd
==
0
))[
0
]
_gt_polys
=
[
gt_polys
[
i
]
for
i
in
gt_polys_inds
]
boxes_from_polys
=
polys_to_boxes
(
_gt_polys
)
fg_inds
=
np
.
where
(
label_int32
>
0
)[
0
]
roi
_has_mask
=
fg_inds
.
copy
()
bbox
_has_mask
=
fg_inds
.
copy
()
if
fg_inds
.
shape
[
0
]
>
0
:
mask_class_labels
=
label_int32
[
fg_inds
]
masks
=
np
.
zeros
((
fg_inds
.
shape
[
0
],
resolution
**
2
),
dtype
=
np
.
int32
)
rois_fg
=
sample_
boxes
[
fg_inds
]
labels_fg
=
label_int32
[
fg_inds
]
masks
_fg
=
np
.
zeros
((
fg_inds
.
shape
[
0
],
resolution
**
2
),
dtype
=
np
.
int32
)
bbox_fg
=
boxes
[
fg_inds
]
overlaps_bbfg_bbpolys
=
bbox_overlaps_mask
(
rois
_fg
,
boxes_from_polys
)
fg_polys_inds
=
np
.
argmax
(
overlaps_bbfg_bbpolys
,
axis
=
1
)
iou
=
bbox_overlaps_mask
(
bbox
_fg
,
boxes_from_polys
)
fg_polys_inds
=
np
.
argmax
(
iou
,
axis
=
1
)
for
i
in
range
(
rois_fg
.
shape
[
0
]):
fg_polys_ind
=
fg_polys_inds
[
i
]
poly_gt
=
polys_gt
[
fg_polys_ind
]
roi_fg
=
rois_fg
[
i
]
for
i
in
range
(
bbox_fg
.
shape
[
0
]):
poly_gt
=
_gt_polys
[
fg_polys_inds
[
i
]]
roi_fg
=
bbox_fg
[
i
]
mask
=
polys_to_mask_wrt_box
(
poly_gt
,
roi_fg
,
resolution
)
mask
=
np
.
array
(
mask
>
0
,
dtype
=
np
.
int32
)
masks
[
i
,
:]
=
np
.
reshape
(
mask
,
resolution
**
2
)
masks
_fg
[
i
,
:]
=
np
.
reshape
(
mask
,
resolution
**
2
)
else
:
bg_inds
=
np
.
where
(
label_int32
==
0
)[
0
]
rois_fg
=
sample_boxes
[
bg_inds
[
0
]].
reshape
((
1
,
-
1
))
masks
=
-
np
.
ones
((
1
,
resolution
**
2
),
dtype
=
np
.
int32
)
mask_class_labels
=
np
.
zeros
((
1
,
))
roi_has_mask
=
np
.
append
(
roi_has_mask
,
0
)
masks
=
expand_mask_targets
(
masks
,
mask_class_labels
,
resolution
,
num_classes
)
bbox_fg
=
boxes
[
bg_inds
[
0
]].
reshape
((
1
,
-
1
))
masks_fg
=
-
np
.
ones
((
1
,
resolution
**
2
),
dtype
=
np
.
int32
)
labels_fg
=
np
.
zeros
((
1
,
))
bbox_has_mask
=
np
.
append
(
bbox_has_mask
,
0
)
rois_fg
*=
im_scale
mask_blob
=
dict
()
mask_blob
[
'mask_rois'
]
=
rois_fg
mask_blob
[
'roi_has_mask_int32'
]
=
roi_has_mask
mask_blob
[
'mask_int32'
]
=
masks
masks
=
expand_mask_targets
(
masks_fg
,
labels_fg
,
resolution
,
num_classes
)
return
mask_blob
return
bbox_fg
,
bbox_has_mask
,
masks
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录