提交 d76a168a 编写于 作者: Q qingqing01 提交者: GitHub

Add benchmark (fps) in MODEL_ZOO doc (#3263)

* Add benchmark (fps) in MODEL_ZOO doc
上级 20ca4cc3
......@@ -2,9 +2,9 @@
## Environment
- Python 2.7.1
- PaddlePaddle 1.5
- PaddlePaddle >=1.5
- CUDA 9.0
- CUDNN 7.4
- cuDNN >=7.4
- NCCL 2.1.2
## Common settings
......@@ -13,6 +13,8 @@
- Batch Normalization layers in backbones are replaced by Affine Channel layers.
- Unless otherwise noted, all ResNet backbones adopt the [ResNet-B](https://arxiv.org/pdf/1812.01187) variant..
- For RCNN and RetinaNet models, only horizontal flipping data augmentation was used in the training phase and no augmentations were used in the testing phase.
- **Inf time (fps)**: the inference time is measured with fps (image/s) on a single GPU (Tesla V100) with cuDNN 7.5 by running 'tools/eval.py' on all validation set, which including data loadding, network forward and post processing. The batch size is 1.
## Training Schedules
......@@ -30,50 +32,50 @@ The backbone models pretrained on ImageNet are available. All backbone models ar
### Faster & Mask R-CNN
| Backbone | Type | Image/gpu | Lr schd | Box AP | Mask AP | Download |
| :------------------- | :------------- | :-----: | :-----: | :----: | :-----: | :----------------------------------------------------------: |
| ResNet50 | Faster | 1 | 1x | 35.2 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_1x.tar) |
| ResNet50 | Faster | 1 | 2x | 37.1 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_2x.tar) |
| ResNet50 | Mask | 1 | 1x | 36.5 | 32.2 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_1x.tar) |
| ResNet50 | Mask | 1 | 2x | 38.2 | 33.4 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_2x.tar) |
| ResNet50-vd | Faster | 1 | 1x | 36.4 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_vd_1x.tar) |
| ResNet50-FPN | Faster | 2 | 1x | 37.2 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_fpn_1x.tar) |
| ResNet50-FPN | Faster | 2 | 2x | 37.7 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_fpn_2x.tar) |
| ResNet50-FPN | Mask | 1 | 1x | 37.9 | 34.2 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_fpn_1x.tar) |
| ResNet50-FPN | Mask | 1 | 2x | 38.7 | 34.7 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_fpn_2x.tar) |
| ResNet50-FPN | Cascade Faster | 2 | 1x | 40.9 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_r50_fpn_1x.tar) |
| ResNet50-FPN | Cascade Mask | 1 | 1x | 41.3 | 35.5 | [model](https://paddlemodels.bj.bcebos.com/object_detection/cascade_mask_rcnn_r50_fpn_1x.tar) |
| ResNet50-vd-FPN | Faster | 2 | 2x | 38.9 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_vd_fpn_2x.tar) |
| ResNet50-vd-FPN | Mask | 1 | 2x | 39.8 | 35.4 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_vd_fpn_2x.tar) |
| ResNet101 | Faster | 1 | 1x | 38.3 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_1x.tar) |
| ResNet101-FPN | Faster | 1 | 1x | 38.7 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_fpn_1x.tar) |
| ResNet101-FPN | Faster | 1 | 2x | 39.1 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_fpn_2x.tar) |
| ResNet101-FPN | Mask | 1 | 1x | 39.5 | 35.2 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r101_fpn_1x.tar) |
| ResNet101-vd-FPN | Faster | 1 | 1x | 40.5 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_vd_fpn_1x.tar) |
| ResNet101-vd-FPN | Faster | 1 | 2x | 40.8 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_vd_fpn_2x.tar) |
| ResNet101-vd-FPN | Mask | 1 | 1x | 41.4 | 36.8 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r101_vd_fpn_1x.tar) |
| ResNeXt101-vd-FPN | Faster | 1 | 1x | 42.2 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_x101_vd_64x4d_fpn_1x.tar) |
| ResNeXt101-vd-FPN | Faster | 1 | 2x | 41.7 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_x101_vd_64x4d_fpn_2x.tar) |
| ResNeXt101-vd-FPN | Mask | 1 | 1x | 42.9 | 37.9 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_x101_vd_64x4d_fpn_1x.tar) |
| ResNeXt101-vd-FPN | Mask | 1 | 2x | 42.6 | 37.6 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_x101_vd_64x4d_fpn_2x.tar) |
| SENet154-vd-FPN | Faster | 1 | 1.44x | 42.9 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_se154_vd_fpn_s1x.tar) |
| SENet154-vd-FPN | Mask | 1 | 1.44x | 44.0 | 38.7 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_se154_vd_fpn_s1x.tar) |
| Backbone | Type | Image/gpu | Lr schd | Inf time (fps) | Box AP | Mask AP | Download |
| :---------------------- | :------------- | :-------: | :-----: | :------------: | :----: | :-----: | :----------------------------------------------------------: |
| ResNet50 | Faster | 1 | 1x | 12.747 | 35.2 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_1x.tar) |
| ResNet50 | Faster | 1 | 2x | 12.686 | 37.1 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_2x.tar) |
| ResNet50 | Mask | 1 | 1x | 11.615 | 36.5 | 32.2 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_1x.tar) |
| ResNet50 | Mask | 1 | 2x | 11.494 | 38.2 | 33.4 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_2x.tar) |
| ResNet50-vd | Faster | 1 | 1x | 12.575 | 36.4 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_vd_1x.tar) |
| ResNet50-FPN | Faster | 2 | 1x | 22.273 | 37.2 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_fpn_1x.tar) |
| ResNet50-FPN | Faster | 2 | 2x | 22.297 | 37.7 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_fpn_2x.tar) |
| ResNet50-FPN | Mask | 1 | 1x | 15.184 | 37.9 | 34.2 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_fpn_1x.tar) |
| ResNet50-FPN | Mask | 1 | 2x | 15.881 | 38.7 | 34.7 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_fpn_2x.tar) |
| ResNet50-FPN | Cascade Faster | 2 | 1x | 17.507 | 40.9 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_r50_fpn_1x.tar) |
| ResNet50-FPN | Cascade Mask | 1 | 1x | - | 41.3 | 35.5 | [model](https://paddlemodels.bj.bcebos.com/object_detection/cascade_mask_rcnn_r50_fpn_1x.tar) |
| ResNet50-vd-FPN | Faster | 2 | 2x | 21.847 | 38.9 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_vd_fpn_2x.tar) |
| ResNet50-vd-FPN | Mask | 1 | 2x | 15.825 | 39.8 | 35.4 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_vd_fpn_2x.tar) |
| ResNet101 | Faster | 1 | 1x | 9.316 | 38.3 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_1x.tar) |
| ResNet101-FPN | Faster | 1 | 1x | 17.297 | 38.7 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_fpn_1x.tar) |
| ResNet101-FPN | Faster | 1 | 2x | 17.246 | 39.1 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_fpn_2x.tar) |
| ResNet101-FPN | Mask | 1 | 1x | 12.983 | 39.5 | 35.2 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r101_fpn_1x.tar) |
| ResNet101-vd-FPN | Faster | 1 | 1x | 17.011 | 40.5 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_vd_fpn_1x.tar) |
| ResNet101-vd-FPN | Faster | 1 | 2x | 16.934 | 40.8 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_vd_fpn_2x.tar) |
| ResNet101-vd-FPN | Mask | 1 | 1x | 13.105 | 41.4 | 36.8 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r101_vd_fpn_1x.tar) |
| ResNeXt101-vd-64x4d-FPN | Faster | 1 | 1x | 8.815 | 42.2 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_x101_vd_64x4d_fpn_1x.tar) |
| ResNeXt101-vd-64x4d-FPN | Faster | 1 | 2x | 8.809 | 41.7 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_x101_vd_64x4d_fpn_2x.tar) |
| ResNeXt101-vd-64x4d-FPN | Mask | 1 | 1x | 7.689 | 42.9 | 37.9 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_x101_vd_64x4d_fpn_1x.tar) |
| ResNeXt101-vd-64x4d-FPN | Mask | 1 | 2x | 7.859 | 42.6 | 37.6 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_x101_vd_64x4d_fpn_2x.tar) |
| SENet154-vd-FPN | Faster | 1 | 1.44x | 3.408 | 42.9 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_se154_vd_fpn_s1x.tar) |
| SENet154-vd-FPN | Mask | 1 | 1.44x | 3.233 | 44.0 | 38.7 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_se154_vd_fpn_s1x.tar) |
### Deformable ConvNets v2
| Backbone | Type | Conv | Image/gpu | Lr schd | Box AP | Mask AP | Download |
| :------------------- | :------------- | :-----: |:--------: | :-----: | :----: | :-----: | :----------------------------------------------------------: |
| ResNet50-FPN | Faster | c3-c5 | 2 | 1x | 41.0 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_dcn_r50_fpn_1x.tar) |
| ResNet50-vd-FPN | Faster | c3-c5 | 2 | 2x | 42.4 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_dcn_r50_vd_fpn_2x.tar) |
| ResNet101-vd-FPN | Faster | c3-c5 | 2 | 1x | 44.1 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_dcn_r101_vd_fpn_1x.tar) |
| ResNeXt101-vd-FPN | Faster | c3-c5 | 1 | 1x | 45.2 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_dcn_x101_vd_64x4d_fpn_1x.tar) |
| ResNet50-FPN | Mask | c3-c5 | 1 | 1x | 41.9 | 37.3 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_dcn_r50_fpn_1x.tar) |
| ResNet50-vd-FPN | Mask | c3-c5 | 1 | 2x | 42.9 | 38.0 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_dcn_r50_vd_fpn_2x.tar) |
| ResNet101-vd-FPN | Mask | c3-c5 | 1 | 1x | 44.6 | 39.2 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_dcn_r101_vd_fpn_1x.tar) |
| ResNeXt101-vd-FPN | Mask | c3-c5 | 1 | 1x | 46.2 | 40.4 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_dcn_x101_vd_64x4d_fpn_1x.tar) |
| ResNet50-FPN | Cascade Faster | c3-c5 | 2 | 1x | 44.2 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_dcn_r50_fpn_1x.tar) |
| ResNet101-vd-FPN | Cascade Faster | c3-c5 | 2 | 1x | 46.4 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_dcn_r101_vd_fpn_1x.tar) |
| ResNeXt101-vd-FPN | Cascade Faster | c3-c5 | 2 | 1x | 47.3 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_dcn_x101_vd_64x4d_fpn_1x.tar) |
| Backbone | Type | Conv | Image/gpu | Lr schd | Inf time (fps) | Box AP | Mask AP | Download |
| :---------------------- | :------------- | :---: | :-------: | :-----: | :------------: | :----: | :-----: | :----------------------------------------------------------: |
| ResNet50-FPN | Faster | c3-c5 | 2 | 1x | 19.978 | 41.0 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_dcn_r50_fpn_1x.tar) |
| ResNet50-vd-FPN | Faster | c3-c5 | 2 | 2x | 19.222 | 42.4 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_dcn_r50_vd_fpn_2x.tar) |
| ResNet101-vd-FPN | Faster | c3-c5 | 2 | 1x | 14.477 | 44.1 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_dcn_r101_vd_fpn_1x.tar) |
| ResNeXt101-vd-64x4d-FPN | Faster | c3-c5 | 1 | 1x | 7.209 | 45.2 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_dcn_x101_vd_64x4d_fpn_1x.tar) |
| ResNet50-FPN | Mask | c3-c5 | 1 | 1x | 14.53 | 41.9 | 37.3 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_dcn_r50_fpn_1x.tar) |
| ResNet50-vd-FPN | Mask | c3-c5 | 1 | 2x | 14.832 | 42.9 | 38.0 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_dcn_r50_vd_fpn_2x.tar) |
| ResNet101-vd-FPN | Mask | c3-c5 | 1 | 1x | 11.546 | 44.6 | 39.2 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_dcn_r101_vd_fpn_1x.tar) |
| ResNeXt101-vd-64x4d-FPN | Mask | c3-c5 | 1 | 1x | 6.45 | 46.2 | 40.4 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_dcn_x101_vd_64x4d_fpn_1x.tar) |
| ResNet50-FPN | Cascade Faster | c3-c5 | 2 | 1x | - | 44.2 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_dcn_r50_fpn_1x.tar) |
| ResNet101-vd-FPN | Cascade Faster | c3-c5 | 2 | 1x | - | 46.4 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_dcn_r101_vd_fpn_1x.tar) |
| ResNeXt101-vd-FPN | Cascade Faster | c3-c5 | 2 | 1x | - | 47.3 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_dcn_x101_vd_64x4d_fpn_1x.tar) |
#### Notes:
- Deformable ConvNets v2(dcn_v2) reference from [Deformable ConvNets v2](https://arxiv.org/abs/1811.11168).
......@@ -92,31 +94,32 @@ The backbone models pretrained on ImageNet are available. All backbone models ar
### Yolo v3
| Backbone | Size | Image/gpu | Lr schd | Box AP | Download |
| :----------- | :--: | :-----: | :-----: | :----: | :-------: |
| DarkNet53 | 608 | 8 | 270e | 38.9 | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet.tar) |
| DarkNet53 | 416 | 8 | 270e | 37.5 | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet.tar) |
| DarkNet53 | 320 | 8 | 270e | 34.8 | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet.tar) |
| MobileNet-V1 | 608 | 8 | 270e | 29.3 | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) |
| MobileNet-V1 | 416 | 8 | 270e | 29.3 | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) |
| MobileNet-V1 | 320 | 8 | 270e | 27.1 | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) |
| ResNet34 | 608 | 8 | 270e | 36.2 | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar) |
| ResNet34 | 416 | 8 | 270e | 34.3 | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar) |
| ResNet34 | 320 | 8 | 270e | 31.4 | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar) |
| Backbone | Size | Image/gpu | Lr schd | Inf time (fps) | Box AP | Download |
| :----------- | :--: | :-------: | :-----: | :------------: | :----: | :----------------------------------------------------------: |
| DarkNet53 | 608 | 8 | 270e | 45.571 | 38.9 | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet.tar) |
| DarkNet53 | 416 | 8 | 270e | - | 37.5 | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet.tar) |
| DarkNet53 | 320 | 8 | 270e | - | 34.8 | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet.tar) |
| MobileNet-V1 | 608 | 8 | 270e | 78.302 | 29.3 | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) |
| MobileNet-V1 | 416 | 8 | 270e | - | 29.3 | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) |
| MobileNet-V1 | 320 | 8 | 270e | - | 27.1 | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) |
| ResNet34 | 608 | 8 | 270e | 63.356 | 36.2 | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar) |
| ResNet34 | 416 | 8 | 270e | - | 34.3 | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar) |
| ResNet34 | 320 | 8 | 270e | - | 31.4 | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar) |
### Yolo v3 on Pascal VOC
| Backbone | Size | Image/gpu | Lr schd | Box AP | Download |
| :----------- | :--: | :-----: | :-----: | :----: | :-------: |
| DarkNet53 | 608 | 8 | 270e | 83.5 | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet_voc.tar) |
| DarkNet53 | 416 | 8 | 270e | 83.6 | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet_voc.tar) |
| DarkNet53 | 320 | 8 | 270e | 82.2 | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet_voc.tar) |
| MobileNet-V1 | 608 | 8 | 270e | 76.2 | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar) |
| MobileNet-V1 | 416 | 8 | 270e | 76.7 | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar) |
| MobileNet-V1 | 320 | 8 | 270e | 75.3 | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar) |
| ResNet34 | 608 | 8 | 270e | 82.6 | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34_voc.tar) |
| ResNet34 | 416 | 8 | 270e | 81.9 | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34_voc.tar) |
| ResNet34 | 320 | 8 | 270e | 80.1 | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34_voc.tar) |
| Backbone | Size | Image/gpu | Lr schd | Inf time (fps) | Box AP | Download |
| :----------- | :--: | :-------: | :-----: | :------------: | :----: | :----------------------------------------------------------: |
| DarkNet53 | 608 | 8 | 270e | 54.977 | 83.5 | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet_voc.tar) |
| DarkNet53 | 416 | 8 | 270e | - | 83.6 | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet_voc.tar) |
| DarkNet53 | 320 | 8 | 270e | - | 82.2 | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet_voc.tar) |
| MobileNet-V1 | 608 | 8 | 270e | 104.291 | 76.2 | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar) |
| MobileNet-V1 | 416 | 8 | 270e | - | 76.7 | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar) |
| MobileNet-V1 | 320 | 8 | 270e | - | 75.3 | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar) |
| ResNet34 | 608 | 8 | 270e | 82.247 | 82.6 | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34_voc.tar) |
| ResNet34 | 416 | 8 | 270e | - | 81.9 | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34_voc.tar) |
| ResNet34 | 320 | 8 | 270e | - | 80.1 | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34_voc.tar) |
**Notes:** Yolo v3 is trained in 8 GPU with total batch size as 64 and trained 270 epoches. Yolo v3 training data augmentations: mixup,
randomly color distortion, randomly cropping, randomly expansion, randomly interpolation method, randomly flippling. Yolo v3 used randomly
......@@ -135,20 +138,20 @@ results of image size 608/416/320 above.
### SSD
| Backbone | Size | Image/gpu | Lr schd | Box AP | Download |
| :----------: | :--: | :-------: | :-----: | :----: | :-------: |
| VGG16 | 300 | 8 | 40w | 25.1 | [model](https://paddlemodels.bj.bcebos.com/object_detection/ssd_vgg16_300.tar) |
| VGG16 | 512 | 8 | 40w | 29.1 | [model](https://paddlemodels.bj.bcebos.com/object_detection/ssd_vgg16_512.tar) |
| Backbone | Size | Image/gpu | Lr schd | Inf time (fps) | Box AP | Download |
| :------: | :--: | :-------: | :-----: | :------------: | :----: | :----------------------------------------------------------: |
| VGG16 | 300 | 8 | 40w | 81.613 | 25.1 | [model](https://paddlemodels.bj.bcebos.com/object_detection/ssd_vgg16_300.tar) |
| VGG16 | 512 | 8 | 40w | 46.007 | 29.1 | [model](https://paddlemodels.bj.bcebos.com/object_detection/ssd_vgg16_512.tar) |
**Notes:** VGG-SSD is trained in 4 GPU with total batch size as 32 and trained 400000 iters.
### SSD on Pascal VOC
| Backbone | Size | Image/gpu | Lr schd | Box AP | Download |
| :----------- | :--: | :-----: | :-----: | :----: | :-------: |
| MobileNet v1 | 300 | 32 | 120e | 73.2 | [model](https://paddlemodels.bj.bcebos.com/object_detection/ssd_mobilenet_v1_voc.tar) |
| VGG16 | 300 | 8 | 240e | 77.5 | [model](https://paddlemodels.bj.bcebos.com/object_detection/ssd_vgg16_300_voc.tar) |
| VGG16 | 512 | 8 | 240e | 80.2 | [model](https://paddlemodels.bj.bcebos.com/object_detection/ssd_vgg16_512_voc.tar) |
| Backbone | Size | Image/gpu | Lr schd | Inf time (fps) | Box AP | Download |
| :----------- | :--: | :-------: | :-----: | :------------: | :----: | :----------------------------------------------------------: |
| MobileNet v1 | 300 | 32 | 120e | 159.543 | 73.2 | [model](https://paddlemodels.bj.bcebos.com/object_detection/ssd_mobilenet_v1_voc.tar) |
| VGG16 | 300 | 8 | 240e | 117.279 | 77.5 | [model](https://paddlemodels.bj.bcebos.com/object_detection/ssd_vgg16_300_voc.tar) |
| VGG16 | 512 | 8 | 240e | 65.975 | 80.2 | [model](https://paddlemodels.bj.bcebos.com/object_detection/ssd_vgg16_512_voc.tar) |
**NOTE**: MobileNet-SSD is trained in 2 GPU with totoal batch size as 64 and trained 120 epoches. VGG-SSD is trained in 4 GPU with total batch size as 32 and trained 240 epoches. SSD training data augmentations: randomly color distortion,
randomly cropping, randomly expansion, randomly flipping.
......@@ -3,9 +3,9 @@
## 测试环境
- Python 2.7.1
- PaddlePaddle 1.5
- PaddlePaddle >=1.5
- CUDA 9.0
- CUDNN 7.4
- cuDNN >=7.4
- NCCL 2.1.2
## 通用设置
......@@ -13,6 +13,7 @@
- 所有模型均在COCO17数据集中训练和测试。
- 除非特殊说明,所有ResNet骨干网络采用[ResNet-B](https://arxiv.org/pdf/1812.01187)结构。
- 对于RCNN和RetinaNet系列模型,训练阶段仅使用水平翻转作为数据增强,测试阶段不使用数据增强。
- **推理时间(fps)**: 推理时间是在一张Tesla V100的GPU上通过'tools/eval.py'测试所有验证集得到,单位是fps(图片数/秒), cuDNN版本是7.5,包括数据加载、网络前向执行和后处理, batch size是1。
## 训练策略
......@@ -30,50 +31,50 @@ Paddle提供基于ImageNet的骨架网络预训练模型。所有预训练模型
### Faster & Mask R-CNN
| 骨架网络 | 网络类型 | 每张GPU图片个数 | 学习率策略 | Box AP | Mask AP | 下载 |
| :------------------- | :------------- | :-----: | :-----: | :----: | :-----: | :----------------------------------------------------------: |
| ResNet50 | Faster | 1 | 1x | 35.2 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_1x.tar) |
| ResNet50 | Faster | 1 | 2x | 37.1 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_2x.tar) |
| ResNet50 | Mask | 1 | 1x | 36.5 | 32.2 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_1x.tar) |
| ResNet50 | Mask | 1 | 2x | 38.2 | 33.4 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_2x.tar) |
| ResNet50-vd | Faster | 1 | 1x | 36.4 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_vd_1x.tar) |
| ResNet50-FPN | Faster | 2 | 1x | 37.2 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_fpn_1x.tar) |
| ResNet50-FPN | Faster | 2 | 2x | 37.7 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_fpn_2x.tar) |
| ResNet50-FPN | Mask | 1 | 1x | 37.9 | 34.2 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_fpn_1x.tar) |
| ResNet50-FPN | Mask | 1 | 2x | 38.7 | 34.7 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_fpn_2x.tar) |
| ResNet50-FPN | Cascade Faster | 2 | 1x | 40.9 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_r50_fpn_1x.tar) |
| ResNet50-FPN | Cascade Mask | 1 | 1x | 41.3 | 35.5 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/cascade_mask_rcnn_r50_fpn_1x.tar) |
| ResNet50-vd-FPN | Faster | 2 | 2x | 38.9 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_vd_fpn_2x.tar) |
| ResNet50-vd-FPN | Mask | 1 | 2x | 39.8 | 35.4 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_vd_fpn_2x.tar) |
| ResNet101 | Faster | 1 | 1x | 38.3 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_1x.tar) |
| ResNet101-FPN | Faster | 1 | 1x | 38.7 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_fpn_1x.tar) |
| ResNet101-FPN | Faster | 1 | 2x | 39.1 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_fpn_2x.tar) |
| ResNet101-FPN | Mask | 1 | 1x | 39.5 | 35.2 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r101_fpn_1x.tar) |
| ResNet101-vd-FPN | Faster | 1 | 1x | 40.5 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_vd_fpn_1x.tar) |
| ResNet101-vd-FPN | Faster | 1 | 2x | 40.8 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_vd_fpn_2x.tar) |
| ResNet101-vd-FPN | Mask | 1 | 1x | 41.4 | 36.8 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r101_vd_fpn_1x.tar) |
| ResNeXt101-vd-FPN | Faster | 1 | 1x | 42.2 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_x101_vd_64x4d_fpn_1x.tar) |
| ResNeXt101-vd-FPN | Faster | 1 | 2x | 41.7 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_x101_vd_64x4d_fpn_2x.tar) |
| ResNeXt101-vd-FPN | Mask | 1 | 1x | 42.9 | 37.9 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_x101_vd_64x4d_fpn_1x.tar) |
| ResNeXt101-vd-FPN | Mask | 1 | 2x | 42.6 | 37.6 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_x101_vd_64x4d_fpn_2x.tar) |
| SENet154-vd-FPN | Faster | 1 | 1.44x | 42.9 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_se154_vd_fpn_s1x.tar) |
| SENet154-vd-FPN | Mask | 1 | 1.44x | 44.0 | 38.7 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_se154_vd_fpn_s1x.tar) |
| 骨架网络 | 网络类型 | 每张GPU图片个数 | 学习率策略 |推理时间(fps) | Box AP | Mask AP | 下载 |
| :------------------- | :------------- | :-----: | :-----: | :------------: | :-----: | :-----: | :-----------------------------------------------------: |
| ResNet50 | Faster | 1 | 1x | 12.747 | 35.2 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_1x.tar) |
| ResNet50 | Faster | 1 | 2x | 12.686 | 37.1 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_2x.tar) |
| ResNet50 | Mask | 1 | 1x | 11.615 | 36.5 | 32.2 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_1x.tar) |
| ResNet50 | Mask | 1 | 2x | 11.494 | 38.2 | 33.4 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_2x.tar) |
| ResNet50-vd | Faster | 1 | 1x | 12.575 | 36.4 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_vd_1x.tar) |
| ResNet50-FPN | Faster | 2 | 1x | 22.273 | 37.2 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_fpn_1x.tar) |
| ResNet50-FPN | Faster | 2 | 2x | 22.297 | 37.7 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_fpn_2x.tar) |
| ResNet50-FPN | Mask | 1 | 1x | 15.184 | 37.9 | 34.2 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_fpn_1x.tar) |
| ResNet50-FPN | Mask | 1 | 2x | 15.881 | 38.7 | 34.7 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_fpn_2x.tar) |
| ResNet50-FPN | Cascade Faster | 2 | 1x | 17.507 | 40.9 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_r50_fpn_1x.tar) |
| ResNet50-FPN | Cascade Mask | 1 | 1x | - | 41.3 | 35.5 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/cascade_mask_rcnn_r50_fpn_1x.tar) |
| ResNet50-vd-FPN | Faster | 2 | 2x | 21.847 | 38.9 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_vd_fpn_2x.tar) |
| ResNet50-vd-FPN | Mask | 1 | 2x | 15.825 | 39.8 | 35.4 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_vd_fpn_2x.tar) |
| ResNet101 | Faster | 1 | 1x | 9.316 | 38.3 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_1x.tar) |
| ResNet101-FPN | Faster | 1 | 1x | 17.297 | 38.7 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_fpn_1x.tar) |
| ResNet101-FPN | Faster | 1 | 2x | 17.246 | 39.1 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_fpn_2x.tar) |
| ResNet101-FPN | Mask | 1 | 1x | 12.983 | 39.5 | 35.2 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r101_fpn_1x.tar) |
| ResNet101-vd-FPN | Faster | 1 | 1x | 17.011 | 40.5 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_vd_fpn_1x.tar) |
| ResNet101-vd-FPN | Faster | 1 | 2x | 16.934 | 40.8 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_vd_fpn_2x.tar) |
| ResNet101-vd-FPN | Mask | 1 | 1x | 13.105 | 41.4 | 36.8 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r101_vd_fpn_1x.tar) |
| ResNeXt101-vd-FPN | Faster | 1 | 1x | 8.815 | 42.2 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_x101_vd_64x4d_fpn_1x.tar) |
| ResNeXt101-vd-FPN | Faster | 1 | 2x | 8.809 | 41.7 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_x101_vd_64x4d_fpn_2x.tar) |
| ResNeXt101-vd-FPN | Mask | 1 | 1x | 7.689 | 42.9 | 37.9 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_x101_vd_64x4d_fpn_1x.tar) |
| ResNeXt101-vd-FPN | Mask | 1 | 2x | 7.859 | 42.6 | 37.6 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_x101_vd_64x4d_fpn_2x.tar) |
| SENet154-vd-FPN | Faster | 1 | 1.44x | 3.408 | 42.9 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_se154_vd_fpn_s1x.tar) |
| SENet154-vd-FPN | Mask | 1 | 1.44x | 3.233 | 44.0 | 38.7 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_se154_vd_fpn_s1x.tar) |
### Deformable 卷积网络v2
| 骨架网络 | 网络类型 | 卷积 | 每张GPU图片个数 | 学习率策略 | Box AP | Mask AP | 下载 |
| :------------------- | :------------- | :-----: |:--------: | :-----: | :----: | :-----: | :----------------------------------------------------------: |
| ResNet50-FPN | Faster | c3-c5 | 2 | 1x | 41.0 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_dcn_r50_fpn_1x.tar) |
| ResNet50-vd-FPN | Faster | c3-c5 | 2 | 2x | 42.4 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_dcn_r50_vd_fpn_2x.tar) |
| ResNet101-vd-FPN | Faster | c3-c5 | 2 | 1x | 44.1 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_dcn_r101_vd_fpn_1x.tar) |
| ResNeXt101-vd-FPN | Faster | c3-c5 | 1 | 1x | 45.2 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_dcn_x101_vd_64x4d_fpn_1x.tar) |
| ResNet50-FPN | Mask | c3-c5 | 1 | 1x | 41.9 | 37.3 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_dcn_r50_fpn_1x.tar) |
| ResNet50-vd-FPN | Mask | c3-c5 | 1 | 2x | 42.9 | 38.0 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_dcn_r50_vd_fpn_2x.tar) |
| ResNet101-vd-FPN | Mask | c3-c5 | 1 | 1x | 44.6 | 39.2 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_dcn_r101_vd_fpn_1x.tar) |
| ResNeXt101-vd-FPN | Mask | c3-c5 | 1 | 1x | 46.2 | 40.4 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_dcn_x101_vd_64x4d_fpn_1x.tar) |
| ResNet50-FPN | Cascade Faster | c3-c5 | 2 | 1x | 44.2 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_dcn_r50_fpn_1x.tar) |
| ResNet101-vd-FPN | Cascade Faster | c3-c5 | 2 | 1x | 46.4 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_dcn_r101_vd_fpn_1x.tar) |
| ResNeXt101-vd-FPN | Cascade Faster | c3-c5 | 2 | 1x | 47.3 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_dcn_x101_vd_64x4d_fpn_1x.tar) |
| 骨架网络 | 网络类型 | 卷积 | 每张GPU图片个数 | 学习率策略 |推理时间(fps)| Box AP | Mask AP | 下载 |
| :------------------- | :------------- | :-----: |:--------: | :-----: | :-----------: |:----: | :-----: | :----------------------------------------------------------: |
| ResNet50-FPN | Faster | c3-c5 | 2 | 1x | 19.978 | 41.0 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_dcn_r50_fpn_1x.tar) |
| ResNet50-vd-FPN | Faster | c3-c5 | 2 | 2x | 19.222 | 42.4 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_dcn_r50_vd_fpn_2x.tar) |
| ResNet101-vd-FPN | Faster | c3-c5 | 2 | 1x | 14.477 | 44.1 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_dcn_r101_vd_fpn_1x.tar) |
| ResNeXt101-vd-FPN | Faster | c3-c5 | 1 | 1x | 7.209 | 45.2 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_dcn_x101_vd_64x4d_fpn_1x.tar) |
| ResNet50-FPN | Mask | c3-c5 | 1 | 1x | 14.53 | 41.9 | 37.3 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_dcn_r50_fpn_1x.tar) |
| ResNet50-vd-FPN | Mask | c3-c5 | 1 | 2x | 14.832 | 42.9 | 38.0 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_dcn_r50_vd_fpn_2x.tar) |
| ResNet101-vd-FPN | Mask | c3-c5 | 1 | 1x | 11.546 | 44.6 | 39.2 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_dcn_r101_vd_fpn_1x.tar) |
| ResNeXt101-vd-FPN | Mask | c3-c5 | 1 | 1x | 6.45 | 46.2 | 40.4 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_dcn_x101_vd_64x4d_fpn_1x.tar) |
| ResNet50-FPN | Cascade Faster | c3-c5 | 2 | 1x | - | 44.2 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_dcn_r50_fpn_1x.tar) |
| ResNet101-vd-FPN | Cascade Faster | c3-c5 | 2 | 1x | - | 46.4 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_dcn_r101_vd_fpn_1x.tar) |
| ResNeXt101-vd-FPN | Cascade Faster | c3-c5 | 2 | 1x | - | 47.3 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_dcn_x101_vd_64x4d_fpn_1x.tar) |
#### 注意事项:
- Deformable卷积网络v2(dcn_v2)参考自论文[Deformable ConvNets v2](https://arxiv.org/abs/1811.11168).
......@@ -92,31 +93,31 @@ Paddle提供基于ImageNet的骨架网络预训练模型。所有预训练模型
### Yolo v3
| 骨架网络 | 输入尺寸 | 每张GPU图片个数 | 学习率策略 | Box AP | 下载 |
| :----------- | :--: | :-----: | :-----: | :----: | :-------: |
| DarkNet53 | 608 | 8 | 270e | 38.9 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet.tar) |
| DarkNet53 | 416 | 8 | 270e | 37.5 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet.tar) |
| DarkNet53 | 320 | 8 | 270e | 34.8 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet.tar) |
| MobileNet-V1 | 608 | 8 | 270e | 29.3 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) |
| MobileNet-V1 | 416 | 8 | 270e | 29.3 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) |
| MobileNet-V1 | 320 | 8 | 270e | 27.1 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) |
| ResNet34 | 608 | 8 | 270e | 36.2 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar) |
| ResNet34 | 416 | 8 | 270e | 34.3 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar) |
| ResNet34 | 320 | 8 | 270e | 31.4 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar) |
| 骨架网络 | 输入尺寸 | 每张GPU图片个数 | 学习率策略 |推理时间(fps)| Box AP | 下载 |
| :----------- | :--: | :-----: | :-----: |:------------: |:----: | :-------: |
| DarkNet53 | 608 | 8 | 270e | 45.571 | 38.9 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet.tar) |
| DarkNet53 | 416 | 8 | 270e | - | 37.5 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet.tar) |
| DarkNet53 | 320 | 8 | 270e | - | 34.8 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet.tar) |
| MobileNet-V1 | 608 | 8 | 270e | 78.302 | 29.3 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) |
| MobileNet-V1 | 416 | 8 | 270e | - | 29.3 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) |
| MobileNet-V1 | 320 | 8 | 270e | - | 27.1 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) |
| ResNet34 | 608 | 8 | 270e | 63.356 | 36.2 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar) |
| ResNet34 | 416 | 8 | 270e | - | 34.3 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar) |
| ResNet34 | 320 | 8 | 270e | - | 31.4 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar) |
### Yolo v3 基于Pasacl VOC数据集
| 骨架网络 | 输入尺寸 | 每张GPU图片个数 | 学习率策略 | Box AP | 下载 |
| :----------- | :--: | :-----: | :-----: | :----: | :-------: |
| DarkNet53 | 608 | 8 | 270e | 83.5 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet_voc.tar) |
| DarkNet53 | 416 | 8 | 270e | 83.6 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet_voc.tar) |
| DarkNet53 | 320 | 8 | 270e | 82.2 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet_voc.tar) |
| MobileNet-V1 | 608 | 8 | 270e | 76.2 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar) |
| MobileNet-V1 | 416 | 8 | 270e | 76.7 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar) |
| MobileNet-V1 | 320 | 8 | 270e | 75.3 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar) |
| ResNet34 | 608 | 8 | 270e | 82.6 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34_voc.tar) |
| ResNet34 | 416 | 8 | 270e | 81.9 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34_voc.tar) |
| ResNet34 | 320 | 8 | 270e | 80.1 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34_voc.tar) |
| 骨架网络 | 输入尺寸 | 每张GPU图片个数 | 学习率策略 |推理时间(fps)| Box AP | 下载 |
| :----------- | :--: | :-----: | :-----: |:------------: |:----: | :-------: |
| DarkNet53 | 608 | 8 | 270e | 54.977 | 83.5 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet_voc.tar) |
| DarkNet53 | 416 | 8 | 270e | - | 83.6 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet_voc.tar) |
| DarkNet53 | 320 | 8 | 270e | - | 82.2 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet_voc.tar) |
| MobileNet-V1 | 608 | 8 | 270e | 104.291 | 76.2 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar) |
| MobileNet-V1 | 416 | 8 | 270e | - | 76.7 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar) |
| MobileNet-V1 | 320 | 8 | 270e | - | 75.3 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar) |
| ResNet34 | 608 | 8 | 270e | 82.247 | 82.6 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34_voc.tar) |
| ResNet34 | 416 | 8 | 270e | - | 81.9 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34_voc.tar) |
| ResNet34 | 320 | 8 | 270e | - | 80.1 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34_voc.tar) |
**注意事项:** Yolo v3在8卡,总batch size为64下训练270轮。数据增强包括:mixup, 随机颜色失真,随机剪裁,随机扩张,随机插值法,随机翻转。Yolo v3在训练阶段对minibatch采用随机reshape,可以采用相同的模型测试不同尺寸图片,我们分别提供了尺寸为608/416/320大小的测试结果。
......@@ -132,19 +133,19 @@ Paddle提供基于ImageNet的骨架网络预训练模型。所有预训练模型
### SSD
| 骨架网络 | 输入尺寸 | 每张GPU图片个数 | 学习率策略 | Box AP | 下载 |
| :----------: | :--: | :-------: | :-----: | :----: | :-------: |
| VGG16 | 300 | 8 | 40万 | 25.1 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/ssd_vgg16_300.tar) |
| VGG16 | 512 | 8 | 40万 | 29.1 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/ssd_vgg16_512.tar) |
| 骨架网络 | 输入尺寸 | 每张GPU图片个数 | 学习率策略|推理时间(fps) | Box AP | 下载 |
| :----------: | :--: | :-----: | :-----: |:------------: |:----: | :-------: |
| VGG16 | 300 | 8 | 40万 | 81.613 | 25.1 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/ssd_vgg16_300.tar) |
| VGG16 | 512 | 8 | 40万 | 46.007 | 29.1 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/ssd_vgg16_512.tar) |
**注意事项:** VGG-SSD在总batch size为32下训练40万轮。
### SSD 基于Pascal VOC数据集
| 骨架网络 | 输入尺寸 | 每张GPU图片个数 | 学习率策略 | Box AP | 下载 |
| :----------- | :--: | :-----: | :-----: | :----: | :-------: |
| MobileNet v1 | 300 | 32 | 120e | 73.2 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/ssd_mobilenet_v1_voc.tar) |
| VGG16 | 300 | 8 | 240e | 77.5 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/ssd_vgg16_300_voc.tar) |
| VGG16 | 512 | 8 | 240e | 80.2 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/ssd_vgg16_512_voc.tar) |
| 骨架网络 | 输入尺寸 | 每张GPU图片个数 | 学习率策略 |推理时间(fps)| Box AP | 下载 |
| :----------- | :--: | :-----: | :-----: | :------------: |:----: | :-------: |
| MobileNet v1 | 300 | 32 | 120e | 159.543 | 73.2 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/ssd_mobilenet_v1_voc.tar) |
| VGG16 | 300 | 8 | 240e | 117.279 | 77.5 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/ssd_vgg16_300_voc.tar) |
| VGG16 | 512 | 8 | 240e | 65.975 | 80.2 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/ssd_vgg16_512_voc.tar) |
**注意事项:** MobileNet-SSD在2卡,总batch size为64下训练120周期。VGG-SSD在总batch size为32下训练240周期。数据增强包括:随机颜色失真,随机剪裁,随机扩张,随机翻转。
......@@ -19,6 +19,7 @@ from __future__ import print_function
import logging
import numpy as np
import os
import time
import paddle.fluid as fluid
......@@ -69,6 +70,10 @@ def eval_run(exe, compile_program, pyreader, keys, values, cls):
cls[i].reset(exe)
values.append(accum_map)
images_num = 0
start_time = time.time()
has_bbox = 'bbox' in keys
try:
pyreader.start()
while True:
......@@ -83,10 +88,20 @@ def eval_run(exe, compile_program, pyreader, keys, values, cls):
if iter_id % 100 == 0:
logger.info('Test iter {}'.format(iter_id))
iter_id += 1
images_num += len(res['bbox'][1][0]) if has_bbox else 1
except (StopIteration, fluid.core.EOFException):
pyreader.reset()
logger.info('Test finish iter {}'.format(iter_id))
end_time = time.time()
fps = images_num / (end_time - start_time)
if has_bbox:
logger.info('Total number of images: {}, inference time: {} fps.'.
format(images_num, fps))
else:
logger.info('Total iteration: {}, inference time: {} batch/s.'.format(
images_num, fps))
return results
......@@ -114,7 +129,10 @@ def eval_results(results,
if output_directory:
output = os.path.join(output_directory, 'bbox.json')
box_ap_stats = bbox_eval(results, anno_file, output,
box_ap_stats = bbox_eval(
results,
anno_file,
output,
with_background,
is_bbox_normalized=is_bbox_normalized)
......@@ -130,7 +148,8 @@ def eval_results(results,
box_ap_stats.append(res * 100.)
elif 'bbox' in results[0]:
box_ap = voc_bbox_eval(
results, num_classes,
results,
num_classes,
is_bbox_normalized=is_bbox_normalized,
map_type=map_type)
box_ap_stats.append(box_ap)
......
......@@ -17,7 +17,6 @@ from __future__ import division
from __future__ import print_function
import os
import multiprocessing
def set_paddle_flags(**kwargs):
......@@ -63,12 +62,6 @@ def main():
# check if set use_gpu=True in paddlepaddle cpu version
check_gpu(cfg.use_gpu)
if cfg.use_gpu:
devices_num = fluid.core.get_cuda_device_count()
else:
devices_num = int(
os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
if 'eval_feed' not in cfg:
eval_feed = create(main_arch + 'EvalFeed')
else:
......@@ -100,15 +93,9 @@ def main():
json_eval_results(
eval_feed, cfg.metric, json_directory=FLAGS.output_eval)
return
# compile program for multi-devices
if devices_num <= 1:
compile_program = fluid.compiler.CompiledProgram(eval_prog)
else:
build_strategy = fluid.BuildStrategy()
build_strategy.memory_optimize = False
build_strategy.enable_inplace = False
compile_program = fluid.compiler.CompiledProgram(
eval_prog).with_data_parallel(build_strategy=build_strategy)
eval_prog).with_data_parallel()
# load model
exe.run(startup_prog)
......@@ -132,6 +119,7 @@ def main():
is_bbox_normalized = model.is_bbox_normalized()
results = eval_run(exe, compile_program, pyreader, keys, values, cls)
# evaluation
resolution = None
if 'mask' in results[0]:
......
......@@ -18,16 +18,17 @@ from __future__ import print_function
import os
import time
import multiprocessing
import numpy as np
import datetime
from collections import deque
def set_paddle_flags(**kwargs):
for key, value in kwargs.items():
if os.environ.get(key, None) is None:
os.environ[key] = str(value)
# NOTE(paddle-dev): All of these flags should be set before
# `import paddle`. Otherwise, it would not take any effect.
set_paddle_flags(
......@@ -69,8 +70,7 @@ def main():
if cfg.use_gpu:
devices_num = fluid.core.get_cuda_device_count()
else:
devices_num = int(
os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
devices_num = int(os.environ.get('CPU_NUM', 1))
if 'train_feed' not in cfg:
train_feed = create(main_arch + 'TrainFeed')
......@@ -133,12 +133,10 @@ def main():
# compile program for multi-devices
build_strategy = fluid.BuildStrategy()
build_strategy.memory_optimize = False
build_strategy.enable_inplace = False
sync_bn = getattr(model.backbone, 'norm_type', None) == 'sync_bn'
# only enable sync_bn in multi GPU devices
build_strategy.sync_batch_norm = sync_bn and devices_num > 1 \
and cfg.use_gpu
build_strategy.sync_batch_norm = sync_bn and devices_num > 1 and cfg.use_gpu
train_compile_program = fluid.compiler.CompiledProgram(
train_prog).with_data_parallel(
loss_name=loss.name, build_strategy=build_strategy)
......@@ -202,14 +200,16 @@ def main():
resolution = None
if 'mask' in results[0]:
resolution = model.mask_head.resolution
box_ap_stats = eval_results(results, eval_feed, cfg.metric, cfg.num_classes,
resolution, is_bbox_normalized, FLAGS.output_eval, map_type)
box_ap_stats = eval_results(
results, eval_feed, cfg.metric, cfg.num_classes, resolution,
is_bbox_normalized, FLAGS.output_eval, map_type)
if box_ap_stats[0] > best_box_ap_list[0]:
best_box_ap_list[0] = box_ap_stats[0]
best_box_ap_list[1] = it
checkpoint.save(exe, train_prog, os.path.join(save_dir,"best_model"))
checkpoint.save(exe, train_prog,
os.path.join(save_dir, "best_model"))
logger.info("Best test box ap: {}, in iter: {}".format(
best_box_ap_list[0],best_box_ap_list[1]))
best_box_ap_list[0], best_box_ap_list[1]))
train_pyreader.reset()
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册