未验证 提交 d655417f 编写于 作者: W Wu Yi 提交者: GitHub

Merge pull request #9956 from typhoonzero/split_byref_op

Split byref op
...@@ -82,7 +82,7 @@ void SerializeToByteBuffer(const std::string& name, framework::Variable* var, ...@@ -82,7 +82,7 @@ void SerializeToByteBuffer(const std::string& name, framework::Variable* var,
platform::CPUPlace cpu; platform::CPUPlace cpu;
auto& gpu_dev_ctx = auto& gpu_dev_ctx =
static_cast<const platform::CUDADeviceContext&>(ctx); static_cast<const platform::CUDADeviceContext&>(ctx);
auto copy_size = tensor.memory_size(); auto copy_size = tensor.numel() * framework::SizeOfType(tensor.type());
payload = memory::Alloc(cpu, copy_size); payload = memory::Alloc(cpu, copy_size);
memory::Copy(cpu, payload, memory::Copy(cpu, payload,
...@@ -99,7 +99,7 @@ void SerializeToByteBuffer(const std::string& name, framework::Variable* var, ...@@ -99,7 +99,7 @@ void SerializeToByteBuffer(const std::string& name, framework::Variable* var,
} else { } else {
payload = tensor.data<void>(); payload = tensor.data<void>();
} }
payload_size = tensor.memory_size(); payload_size = tensor.numel() * framework::SizeOfType(tensor.type());
e.WriteVarlengthBeginning(VarMsg::kSerializedFieldNumber, payload_size); e.WriteVarlengthBeginning(VarMsg::kSerializedFieldNumber, payload_size);
} break; } break;
case framework::proto::VarType_Type_SELECTED_ROWS: { case framework::proto::VarType_Type_SELECTED_ROWS: {
...@@ -118,7 +118,8 @@ void SerializeToByteBuffer(const std::string& name, framework::Variable* var, ...@@ -118,7 +118,8 @@ void SerializeToByteBuffer(const std::string& name, framework::Variable* var,
platform::CPUPlace cpu; platform::CPUPlace cpu;
auto& gpu_dev_ctx = auto& gpu_dev_ctx =
static_cast<const platform::CUDADeviceContext&>(ctx); static_cast<const platform::CUDADeviceContext&>(ctx);
auto copy_size = tensor->memory_size(); auto copy_size =
tensor->numel() * framework::SizeOfType(tensor->type());
payload = memory::Alloc(cpu, copy_size); payload = memory::Alloc(cpu, copy_size);
memory::Copy(cpu, payload, memory::Copy(cpu, payload,
boost::get<platform::CUDAPlace>(tensor->place()), boost::get<platform::CUDAPlace>(tensor->place()),
...@@ -133,7 +134,7 @@ void SerializeToByteBuffer(const std::string& name, framework::Variable* var, ...@@ -133,7 +134,7 @@ void SerializeToByteBuffer(const std::string& name, framework::Variable* var,
} else { } else {
payload = slr->mutable_value()->data<void>(); payload = slr->mutable_value()->data<void>();
} }
payload_size = tensor->memory_size(); payload_size = tensor->numel() * framework::SizeOfType(tensor->type());
e.WriteVarlengthBeginning(VarMsg::kSerializedFieldNumber, payload_size); e.WriteVarlengthBeginning(VarMsg::kSerializedFieldNumber, payload_size);
} break; } break;
default: default:
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/split_byref_op.h"
#include "paddle/fluid/operators/split_op.h"
namespace paddle {
namespace operators {
using framework::Tensor;
class SplitByrefOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"),
"Input(X) of SplitOp should not be null.");
PADDLE_ENFORCE_GE(ctx->Outputs("Out").size(), 1UL,
"Outputs(Out) of SplitOp should not be empty.");
auto in_dims = ctx->GetInputDim("X");
auto outs_names = ctx->Outputs("Out");
size_t num = static_cast<size_t>(ctx->Attrs().Get<int>("num"));
std::vector<int> sections = static_cast<std::vector<int>>(
ctx->Attrs().Get<std::vector<int>>("sections"));
const size_t outs_number = outs_names.size();
std::vector<framework::DDim> outs_dims;
outs_dims.reserve(outs_number);
if (num > 0) {
int64_t in_axis_dim = in_dims[0];
PADDLE_ENFORCE_EQ(in_axis_dim % num, 0,
"tensor split does not result"
" in an equal division");
size_t out_axis_dim = in_axis_dim / num;
for (size_t i = 0; i < outs_number; ++i) {
auto dim = in_dims;
dim[0] = out_axis_dim;
outs_dims.push_back(dim);
}
} else if (sections.size() > 0) {
PADDLE_ENFORCE_EQ(sections.size(), outs_number,
"tensor split sections size"
"should be equal to output size.");
for (size_t i = 0; i < outs_number; ++i) {
auto dim = in_dims;
dim[0] = sections[i];
outs_dims.push_back(dim);
}
}
ctx->SetOutputsDim("Out", outs_dims);
}
};
class SplitByrefOpMaker : public framework::OpProtoAndCheckerMaker {
public:
SplitByrefOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "(Tensor) Input tensor of the split operator.");
AddOutput("Out", "(Tensor) Output tensors of the split operator.")
.AsDuplicable();
AddComment(R"DOC(
SplitByref operator
Split source tensor to sevaral tensors by axis 0. No copy in this operator
is performed, output tensor shares the same blocks of memory.
)DOC");
AddAttr<std::vector<int>>("sections",
"(vector<int>) "
"the length of each output along the "
"specified axis.")
.SetDefault(std::vector<int>{});
AddAttr<int>("num",
"(int, default 0)"
"Number of sub-tensors. This must evenly divide "
"Input.dims()[axis]")
.SetDefault(0);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
// NOTE: concat op default axis must be 0!
USE_CPU_ONLY_OP(concat);
REGISTER_OPERATOR(split_byref, ops::SplitByrefOp, ops::SplitByrefOpMaker,
ops::SplitGradMaker);
REGISTER_OP_CPU_KERNEL(
split_byref, ops::SplitByrefOpKernel<paddle::platform::CPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/split_byref_op.h"
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
split_byref,
ops::SplitByrefOpKernel<paddle::platform::CUDADeviceContext, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
template <typename DeviceContext, typename T>
class SplitByrefOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* in = ctx.Input<framework::Tensor>("X");
auto outs = ctx.MultiOutput<framework::Tensor>("Out");
auto place = ctx.GetPlace();
size_t row_offset = 0;
for (size_t i = 0; i < outs.size(); ++i) {
// NOTE: no need to call mutable_data here to allocate memory.
auto* out = outs[i];
VLOG(3) << "spliting by ref: " << row_offset << " " << out->dims()[0];
*out = std::move(in->Slice(row_offset, row_offset + out->dims()[0]));
row_offset += out->dims()[0];
}
}
};
} // namespace operators
} // namespace paddle
...@@ -108,21 +108,6 @@ Example: ...@@ -108,21 +108,6 @@ Example:
} }
}; };
class SplitGradMaker : public framework::SingleGradOpDescMaker {
public:
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
protected:
std::unique_ptr<framework::OpDesc> Apply() const override {
auto op = new framework::OpDesc();
op->SetType("concat");
op->SetInput("X", OutputGrad("Out"));
op->SetOutput("Out", InputGrad("X"));
op->SetAttrMap(Attrs());
return std::unique_ptr<framework::OpDesc>(op);
}
};
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
......
...@@ -44,5 +44,20 @@ class SplitOpKernel : public framework::OpKernel<T> { ...@@ -44,5 +44,20 @@ class SplitOpKernel : public framework::OpKernel<T> {
} }
}; };
class SplitGradMaker : public framework::SingleGradOpDescMaker {
public:
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
protected:
std::unique_ptr<framework::OpDesc> Apply() const override {
auto op = new framework::OpDesc();
op->SetType("concat");
op->SetInput("X", OutputGrad("Out"));
op->SetOutput("Out", InputGrad("X"));
op->SetAttrMap(Attrs());
return std::unique_ptr<framework::OpDesc>(op);
}
};
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
...@@ -825,7 +825,7 @@ class DistributeTranspiler: ...@@ -825,7 +825,7 @@ class DistributeTranspiler:
for v in splited_vars: for v in splited_vars:
sections.append(v.shape[0]) sections.append(v.shape[0])
program.global_block().append_op( program.global_block().append_op(
type="split", type="split_byref",
inputs={"X": orig_var}, inputs={"X": orig_var},
outputs={"Out": splited_vars}, outputs={"Out": splited_vars},
attrs={"sections": sections} # assume split evenly attrs={"sections": sections} # assume split evenly
......
...@@ -19,7 +19,7 @@ from op_test import OpTest ...@@ -19,7 +19,7 @@ from op_test import OpTest
class TestSplitOp(OpTest): class TestSplitOp(OpTest):
def setUp(self): def setUp(self):
self.op_type = "split" self._set_op_type()
axis = 1 axis = 1
x = np.random.random((4, 5, 6)).astype('float32') x = np.random.random((4, 5, 6)).astype('float32')
out = np.split(x, [2, 3], axis) out = np.split(x, [2, 3], axis)
...@@ -28,6 +28,9 @@ class TestSplitOp(OpTest): ...@@ -28,6 +28,9 @@ class TestSplitOp(OpTest):
self.outputs = {'Out': [('out%d' % i, out[i]) \ self.outputs = {'Out': [('out%d' % i, out[i]) \
for i in xrange(len(out))]} for i in xrange(len(out))]}
def _set_op_type(self):
self.op_type = "split"
def test_check_output(self): def test_check_output(self):
self.check_output() self.check_output()
...@@ -35,5 +38,10 @@ class TestSplitOp(OpTest): ...@@ -35,5 +38,10 @@ class TestSplitOp(OpTest):
self.check_grad(['X'], ['out0', 'out1', 'out2']) self.check_grad(['X'], ['out0', 'out1', 'out2'])
class TestSplitByrefOp(OpTest):
def _set_op_type(self):
self.op_type = "split_byref"
if __name__ == '__main__': if __name__ == '__main__':
unittest.main() unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册