Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
d5a7c098
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
d5a7c098
编写于
4月 16, 2019
作者:
H
Hongyu Liu
提交者:
GitHub
4月 16, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #16798 from phlrain/softmax_cross_support_high_rank
softmax cross entropy support high rank
上级
99aea999
d7228416
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
238 addition
and
36 deletion
+238
-36
paddle/fluid/operators/softmax_with_cross_entropy_op.cc
paddle/fluid/operators/softmax_with_cross_entropy_op.cc
+46
-17
paddle/fluid/operators/softmax_with_cross_entropy_op.cu
paddle/fluid/operators/softmax_with_cross_entropy_op.cu
+30
-10
paddle/fluid/operators/softmax_with_cross_entropy_op.h
paddle/fluid/operators/softmax_with_cross_entropy_op.h
+23
-9
python/paddle/fluid/tests/unittests/test_softmax_with_cross_entropy_op.py
...uid/tests/unittests/test_softmax_with_cross_entropy_op.py
+139
-0
未找到文件。
paddle/fluid/operators/softmax_with_cross_entropy_op.cc
浏览文件 @
d5a7c098
...
...
@@ -106,24 +106,36 @@ class SoftmaxWithCrossEntropyOp : public framework::OperatorWithKernel {
auto
logits_dims
=
ctx
->
GetInputDim
(
"Logits"
);
auto
labels_dims
=
ctx
->
GetInputDim
(
"Label"
);
int
rank
=
logits_dims
.
size
();
PADDLE_ENFORCE_EQ
(
logits_dims
.
size
(),
2UL
,
"The input of softmax_with_cross_entropy should be a 2-D tensor."
);
PADDLE_ENFORCE_EQ
(
labels_dims
.
size
(),
2UL
,
"The labels should be a 2-D tensor."
);
rank
,
labels_dims
.
size
(),
"Input(logits) and Input(Label) shall have the same rank."
);
bool
check
=
ctx
->
IsRuntime
()
||
(
framework
::
product
(
logits_dims
)
>
0
&&
framework
::
product
(
labels_dims
)
>
0
);
if
(
check
)
{
PADDLE_ENFORCE_EQ
(
framework
::
slice_ddim
(
logits_dims
,
0
,
rank
-
1
),
framework
::
slice_ddim
(
labels_dims
,
0
,
rank
-
1
),
"Input(X) and Input(Label) shall have the same shape "
"except the last dimension."
);
}
if
(
ctx
->
Attrs
().
Get
<
bool
>
(
"soft_label"
))
{
PADDLE_ENFORCE_EQ
(
logits_dims
[
1
],
labels_dims
[
1
],
"If Attr(soft_label) == true, the 2nd dimension of "
"Input(X) and Input(Label) should be equal."
);
if
(
check
)
{
PADDLE_ENFORCE_EQ
(
logits_dims
[
rank
-
1
],
labels_dims
[
rank
-
1
],
"If Attr(soft_label) == true, the last dimension of "
"Input(X) and Input(Label) should be equal."
);
}
}
else
{
PADDLE_ENFORCE_EQ
(
labels_dims
[
1
],
1UL
,
"If Attr(soft
_label) == false, the 2nd
dimension of "
PADDLE_ENFORCE_EQ
(
labels_dims
[
rank
-
1
],
1UL
,
"If Attr(soft
Label) == false, the last
dimension of "
"Input(Label) should be 1."
);
}
ctx
->
SetOutputDim
(
"Softmax"
,
logits_dims
);
ctx
->
SetOutputDim
(
"Loss"
,
{
logits_dims
[
0
],
1
});
auto
loss_dims
=
logits_dims
;
loss_dims
[
rank
-
1
]
=
1
;
ctx
->
SetOutputDim
(
"Loss"
,
loss_dims
);
ctx
->
ShareLoD
(
"Logits"
,
/*->*/
"Softmax"
);
ctx
->
ShareLoD
(
"Logits"
,
/*->*/
"Loss"
);
...
...
@@ -152,16 +164,33 @@ class SoftmaxWithCrossEntropyOpGrad : public framework::OperatorWithKernel {
auto
softmax_dims
=
ctx
->
GetInputDim
(
"Softmax"
);
auto
labels_dims
=
ctx
->
GetInputDim
(
"Label"
);
PADDLE_ENFORCE_EQ
(
labels_dims
.
size
(),
2UL
,
"The labels should be a 2-D tensor."
);
int
rank
=
softmax_dims
.
size
();
PADDLE_ENFORCE_EQ
(
rank
,
labels_dims
.
size
(),
"Input(logits) and Input(Label) shall have the same rank."
);
bool
check
=
true
;
if
((
!
ctx
->
IsRuntime
())
&&
(
framework
::
product
(
softmax_dims
)
<=
0
||
framework
::
product
(
labels_dims
)
<=
0
))
{
check
=
false
;
}
if
(
check
)
{
PADDLE_ENFORCE_EQ
(
framework
::
slice_ddim
(
softmax_dims
,
0
,
rank
-
1
),
framework
::
slice_ddim
(
labels_dims
,
0
,
rank
-
1
),
"Input(Softmax) and Input(Label) shall have the same shape "
"except the last dimension."
);
}
if
(
ctx
->
Attrs
().
Get
<
bool
>
(
"soft_label"
))
{
PADDLE_ENFORCE_EQ
(
softmax_dims
[
1
],
labels_dims
[
1
],
"When Attr(soft_label) == true, the 2nd dimension of "
"Input(X) and Input(Label) should be equal."
);
if
(
check
)
{
PADDLE_ENFORCE_EQ
(
softmax_dims
[
rank
-
1
],
labels_dims
[
rank
-
1
],
"If Attr(soft_label) == true, the last dimension of "
"Input( Softmax) and Input(Label) should be equal."
);
}
}
else
{
PADDLE_ENFORCE_EQ
(
labels_dims
[
1
],
1UL
,
"
When Attr(soft_label) == false, the 2nd
dimension of "
PADDLE_ENFORCE_EQ
(
labels_dims
[
rank
-
1
],
1UL
,
"
If Attr(softLabel) == false, the last
dimension of "
"Input(Label) should be 1."
);
}
...
...
paddle/fluid/operators/softmax_with_cross_entropy_op.cu
浏览文件 @
d5a7c098
...
...
@@ -400,9 +400,15 @@ class SoftmaxWithCrossEntropyCUDAKernel : public framework::OpKernel<T> {
auto
soft_label
=
context
.
Attr
<
bool
>
(
"soft_label"
);
auto
ignore_index
=
context
.
Attr
<
int
>
(
"ignore_index"
);
int
rank
=
logits
->
dims
().
size
();
if
(
soft_label
)
{
int
batch_size
=
logits
->
dims
()[
0
];
int
feature_size
=
logits
->
dims
()[
1
];
int
batch_size
=
1
;
for
(
int
i
=
0
;
i
<
rank
-
1
;
++
i
)
{
batch_size
*=
logits
->
dims
()[
i
];
}
int
feature_size
=
logits
->
dims
()[
rank
-
1
];
auto
*
logits_data
=
logits
->
data
<
T
>
();
auto
*
labels_data
=
labels
->
data
<
T
>
();
SoftmaxWithCrossEntropyFusedKernel
(
...
...
@@ -410,14 +416,23 @@ class SoftmaxWithCrossEntropyCUDAKernel : public framework::OpKernel<T> {
feature_size
,
context
.
cuda_device_context
().
stream
());
}
else
{
if
(
!
context
.
Attr
<
bool
>
(
"numeric_stable_mode"
))
{
math
::
SoftmaxCUDNNFunctor
<
T
>
()(
context
.
cuda_device_context
(),
logits
,
softmax
);
// reshape to 2d
Tensor
logits_2d
=
framework
::
ReshapeToMatrix
(
*
logits
,
rank
-
1
);
Tensor
softmax_2d
=
framework
::
ReshapeToMatrix
(
*
softmax
,
rank
-
1
);
Tensor
loss_2d
=
framework
::
ReshapeToMatrix
(
*
loss
,
rank
-
1
);
Tensor
labels_2d
=
framework
::
ReshapeToMatrix
(
*
labels
,
rank
-
1
);
math
::
SoftmaxCUDNNFunctor
<
T
>
()(
context
.
cuda_device_context
(),
&
logits_2d
,
&
softmax_2d
);
math
::
CrossEntropyFunctor
<
platform
::
CUDADeviceContext
,
T
>
()(
context
.
cuda_device_context
(),
loss
,
softmax
,
labels
,
false
,
ignore_index
);
context
.
cuda_device_context
(),
&
loss_2d
,
&
softmax_2d
,
&
labels_2d
,
false
,
ignore_index
);
}
else
{
int
batch_size
=
logits
->
dims
()[
0
];
int
feature_size
=
logits
->
dims
()[
1
];
int
batch_size
=
1
;
for
(
int
i
=
0
;
i
<
rank
-
1
;
++
i
)
{
batch_size
*=
logits
->
dims
()[
i
];
}
int
feature_size
=
logits
->
dims
()[
rank
-
1
];
auto
*
logits_data
=
logits
->
data
<
T
>
();
auto
*
labels_data
=
labels
->
data
<
int64_t
>
();
HardLabelSoftmaxWithCrossEntropy
<
T
>
(
...
...
@@ -443,8 +458,13 @@ class SoftmaxWithCrossEntropyGradCUDAKernel : public framework::OpKernel<T> {
context
.
device_context
(),
logit_grad
);
T
*
logit_grad_data
=
logit_grad
->
data
<
T
>
();
const
int
batch_size
=
logit_grad
->
dims
()[
0
];
const
int
class_num
=
logit_grad
->
dims
()[
1
];
int
rank
=
logit_grad
->
dims
().
size
();
int
batch_size
=
1
;
for
(
int
i
=
0
;
i
<
rank
-
1
;
++
i
)
{
batch_size
*=
logit_grad
->
dims
()[
i
];
}
const
int
class_num
=
logit_grad
->
dims
()[
rank
-
1
];
int
block
=
512
;
auto
stream
=
context
.
cuda_device_context
().
stream
();
auto
ignore_index
=
context
.
Attr
<
int
>
(
"ignore_index"
);
...
...
paddle/fluid/operators/softmax_with_cross_entropy_op.h
浏览文件 @
d5a7c098
...
...
@@ -40,15 +40,22 @@ class SoftmaxWithCrossEntropyKernel : public framework::OpKernel<T> {
softmax
->
mutable_data
<
T
>
(
context
.
GetPlace
());
loss
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int
axis_dim
=
logits
->
dims
()[
logits
->
dims
().
size
()
-
1
];
// reshape to 2D tensor
int
rank
=
logits
->
dims
().
size
();
Tensor
logits_2d
=
framework
::
ReshapeToMatrix
(
*
logits
,
rank
-
1
);
Tensor
labels_2d
=
framework
::
ReshapeToMatrix
(
*
labels
,
rank
-
1
);
Tensor
loss_2d
=
framework
::
ReshapeToMatrix
(
*
loss
,
rank
-
1
);
Tensor
softmax_2d
=
framework
::
ReshapeToMatrix
(
*
softmax
,
rank
-
1
);
int
axis_dim
=
logits
->
dims
()[
rank
-
1
];
auto
&
dev_ctx
=
context
.
template
device_context
<
platform
::
CPUDeviceContext
>();
math
::
SoftmaxFunctor
<
platform
::
CPUDeviceContext
,
T
,
false
>
()(
dev_ctx
,
axis_dim
,
logits
,
softmax
);
dev_ctx
,
axis_dim
,
&
logits_2d
,
&
softmax_2d
);
math
::
CrossEntropyFunctor
<
platform
::
CPUDeviceContext
,
T
>
()(
dev_ctx
,
loss
,
softmax
,
labels
,
context
.
Attr
<
bool
>
(
"soft_label"
)
,
context
.
Attr
<
int
>
(
"ignore_index"
));
dev_ctx
,
&
loss_2d
,
&
softmax_2d
,
&
labels_2d
,
context
.
Attr
<
bool
>
(
"soft_label"
),
context
.
Attr
<
int
>
(
"ignore_index"
));
}
};
...
...
@@ -63,13 +70,19 @@ class SoftmaxWithCrossEntropyGradKernel : public framework::OpKernel<T> {
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Logits"
));
logit_grad
->
ShareDataWith
(
*
context
.
Input
<
Tensor
>
(
"Softmax"
));
const
int
class_num
=
logit_grad
->
dims
()[
1
];
auto
out_grad_mat
=
EigenMatrix
<
T
>::
From
(
*
out_grad
);
auto
logit_grad_mat
=
EigenMatrix
<
T
>::
From
(
*
logit_grad
);
int
rank
=
logit_grad
->
dims
().
size
();
const
int
class_num
=
logit_grad
->
dims
()[
rank
-
1
];
// reshape to 2d
Tensor
logit_grad_2d
=
framework
::
ReshapeToMatrix
(
*
logit_grad
,
rank
-
1
);
Tensor
out_grad_2d
=
framework
::
ReshapeToMatrix
(
*
out_grad
,
rank
-
1
);
auto
out_grad_mat
=
EigenMatrix
<
T
>::
From
(
out_grad_2d
);
auto
logit_grad_mat
=
EigenMatrix
<
T
>::
From
(
logit_grad_2d
);
auto
&
place
=
*
context
.
template
device_context
<
platform
::
CPUDeviceContext
>()
.
eigen_device
();
if
(
context
.
Attr
<
bool
>
(
"soft_label"
))
{
auto
lbl_mat
=
EigenMatrix
<
T
>::
From
(
*
labels
);
Tensor
labels_2d
=
framework
::
ReshapeToMatrix
(
*
labels
,
rank
-
1
);
auto
lbl_mat
=
EigenMatrix
<
T
>::
From
(
labels_2d
);
logit_grad_mat
.
device
(
place
)
=
out_grad_mat
.
broadcast
(
Eigen
::
DSizes
<
int
,
2
>
(
1
,
class_num
))
*
(
logit_grad_mat
-
lbl_mat
);
...
...
@@ -78,7 +91,8 @@ class SoftmaxWithCrossEntropyGradKernel : public framework::OpKernel<T> {
logit_grad_mat
*
out_grad_mat
.
broadcast
(
Eigen
::
DSizes
<
int
,
2
>
(
1
,
class_num
));
const
int
batch_size
=
logit_grad
->
dims
()[
0
];
const
int
batch_size
=
logit_grad_2d
.
dims
()[
0
];
const
int64_t
*
label_data
=
labels
->
data
<
int64_t
>
();
T
*
logit_grad_data
=
logit_grad
->
data
<
T
>
();
const
T
*
out_grad_data
=
out_grad
->
data
<
T
>
();
...
...
python/paddle/fluid/tests/unittests/test_softmax_with_cross_entropy_op.py
浏览文件 @
d5a7c098
...
...
@@ -195,5 +195,144 @@ class TestSoftmaxWithCrossEntropyOp3NoCudnn(TestSoftmaxWithCrossEntropyOp3):
self
.
numeric_stable_mode
=
True
class
TestSoftmaxWithCrossEntropyOp5
(
OpTest
):
"""
Test softmax with cross entropy operator with ignore_index.
"""
def
initParams
(
self
):
self
.
numeric_stable_mode
=
False
def
setUp
(
self
):
self
.
initParams
()
self
.
op_type
=
"softmax_with_cross_entropy"
batch_size
=
[
6
,
10
]
class_num
=
47
logits
=
np
.
random
.
uniform
(
0.1
,
1.0
,
tuple
(
batch_size
+
[
class_num
])).
astype
(
"float64"
)
softmax
=
np
.
apply_along_axis
(
stable_softmax
,
2
,
logits
)
labels
=
np
.
random
.
randint
(
0
,
class_num
,
tuple
(
batch_size
+
[
1
]),
dtype
=
"int64"
)
ignore_index
=
7
softmax_2d
=
np
.
reshape
(
softmax
,
[
-
1
,
class_num
])
labels_2d
=
np
.
reshape
(
labels
,
[
-
1
,
1
])
cross_entropy
=
np
.
asmatrix
(
[[
-
np
.
log
(
softmax_2d
[
i
][
labels_2d
[
i
][
0
]])]
if
labels_2d
[
i
]
!=
ignore_index
else
[
0
]
for
i
in
range
(
softmax_2d
.
shape
[
0
])],
dtype
=
"float64"
)
cross_entropy
=
np
.
reshape
(
cross_entropy
,
batch_size
)
output_shape
=
tuple
(
batch_size
+
[
1
])
output_res
=
cross_entropy
.
astype
(
"float64"
)
output_res
=
np
.
expand_dims
(
output_res
,
axis
=
2
)
self
.
inputs
=
{
"Logits"
:
logits
,
"Label"
:
labels
}
self
.
outputs
=
{
"Softmax"
:
softmax
.
astype
(
"float64"
),
"Loss"
:
output_res
,
}
self
.
attrs
=
{
"ignore_index"
:
ignore_index
,
"numeric_stable_mode"
:
self
.
numeric_stable_mode
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
"Logits"
],
"Loss"
)
class
TestSoftmaxWithCrossEntropyOp5NoCudnn
(
TestSoftmaxWithCrossEntropyOp5
):
def
initParams
(
self
):
self
.
numeric_stable_mode
=
True
class
TestSoftmaxWithCrossEntropyOp6
(
OpTest
):
"""
Test softmax with cross entropy operator with soft labels.
"""
def
setUp
(
self
):
self
.
op_type
=
"softmax_with_cross_entropy"
batch_size
=
[
6
,
10
]
class_num
=
37
logits
=
np
.
random
.
uniform
(
0.1
,
1.0
,
tuple
(
batch_size
+
[
class_num
])).
astype
(
"float64"
)
softmax
=
np
.
apply_along_axis
(
stable_softmax
,
2
,
logits
)
labels
=
np
.
random
.
uniform
(
0.1
,
1.0
,
tuple
(
batch_size
+
[
class_num
])).
astype
(
"float64"
)
labels
/=
np
.
sum
(
labels
,
axis
=
2
,
keepdims
=
True
)
cross_entropy
=
(
-
labels
*
np
.
log
(
softmax
)).
sum
(
axis
=
2
,
keepdims
=
True
).
astype
(
"float64"
)
self
.
inputs
=
{
"Logits"
:
logits
,
"Label"
:
labels
}
self
.
outputs
=
{
"Softmax"
:
softmax
.
astype
(
"float64"
),
"Loss"
:
cross_entropy
.
astype
(
"float64"
)
}
self
.
attrs
=
{
"soft_label"
:
True
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
"Logits"
],
"Loss"
)
class
TestSoftmaxWithCrossEntropyOpFp16_2
(
TestSoftmaxWithCrossEntropyOp
):
def
initParams
(
self
):
self
.
numeric_stable_mode
=
False
self
.
dtype
=
np
.
float16
def
setUp
(
self
):
self
.
initParams
()
self
.
op_type
=
"softmax_with_cross_entropy"
batch_size
=
[
64
,
10
]
class_num
=
37
# NOTE: numpy float16 have very low accuracy, use float32 for numpy check.
logits
=
np
.
random
.
uniform
(
0.1
,
1.0
,
tuple
(
batch_size
+
[
class_num
])).
astype
(
np
.
float32
)
softmax
=
np
.
apply_along_axis
(
stable_softmax
,
2
,
logits
)
labels
=
np
.
random
.
randint
(
0
,
class_num
,
tuple
(
batch_size
+
[
1
]),
dtype
=
"int64"
)
softmax_2d
=
np
.
reshape
(
softmax
,
[
-
1
,
class_num
])
labels_2d
=
np
.
reshape
(
labels
,
[
-
1
,
1
])
cross_entropy
=
np
.
asmatrix
(
[[
-
np
.
log
(
softmax_2d
[
i
][
labels_2d
[
i
][
0
]])]
for
i
in
range
(
softmax_2d
.
shape
[
0
])],
dtype
=
np
.
float32
)
cross_entropy
=
np
.
reshape
(
cross_entropy
,
batch_size
)
output_shape
=
tuple
(
batch_size
+
[
1
])
output_res
=
cross_entropy
.
astype
(
self
.
dtype
)
output_res
=
np
.
expand_dims
(
output_res
,
axis
=
2
)
self
.
inputs
=
{
"Logits"
:
logits
,
"Label"
:
labels
}
self
.
inputs
=
{
"Logits"
:
logits
.
astype
(
self
.
dtype
).
view
(
np
.
uint16
),
"Label"
:
labels
}
self
.
outputs
=
{
"Softmax"
:
softmax
.
astype
(
self
.
dtype
),
"Loss"
:
output_res
,
}
self
.
attrs
=
{
"numeric_stable_mode"
:
self
.
numeric_stable_mode
}
def
test_check_output
(
self
):
self
.
check_output
(
atol
=
1e-2
)
def
test_check_grad
(
self
):
self
.
check_grad
([
"Logits"
],
"Loss"
,
max_relative_error
=
0.1
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录