未验证 提交 d5786288 编写于 作者: J JYChen 提交者: GitHub

Add lite hr net (#3793)

* add LiteHRNet backbone and config .YML

* test lite18-network param

acc is same with ori-model 1. fix default darkpose=ON, 2. += is not inplace

add new keypoint model Lite-HRNet

* add new keypoint model Lite-HRNet

* 1. Add description of network type; 2. use channel_shuffle in ops.py

* use normal to init conv2d

* add network type description
上级 55fcc1f7
use_gpu: true
log_iter: 5
save_dir: output
snapshot_epoch: 10
weights: output/lite_hrnet_18_256x192_coco/model_final
epoch: 210
num_joints: &num_joints 17
pixel_std: &pixel_std 200
metric: KeyPointTopDownCOCOEval
num_classes: 1
train_height: &train_height 256
train_width: &train_width 192
trainsize: &trainsize [*train_width, *train_height]
hmsize: &hmsize [48, 64]
flip_perm: &flip_perm [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12], [13, 14], [15, 16]]
#####model
architecture: TopDownHRNet
TopDownHRNet:
backbone: LiteHRNet
post_process: HRNetPostProcess
flip_perm: *flip_perm
num_joints: *num_joints
width: &width 40
loss: KeyPointMSELoss
use_dark: false
LiteHRNet:
network_type: lite_18
freeze_at: -1
freeze_norm: false
return_idx: [0]
KeyPointMSELoss:
use_target_weight: true
loss_scale: 1.0
#####optimizer
LearningRate:
base_lr: 0.002
schedulers:
- !PiecewiseDecay
milestones: [170, 200]
gamma: 0.1
- !LinearWarmup
start_factor: 0.001
steps: 500
OptimizerBuilder:
optimizer:
type: Adam
regularizer:
factor: 0.0
type: L2
#####data
TrainDataset:
!KeypointTopDownCocoDataset
image_dir: train2017
anno_path: annotations/person_keypoints_train2017.json
dataset_dir: dataset/coco
num_joints: *num_joints
trainsize: *trainsize
pixel_std: *pixel_std
use_gt_bbox: True
EvalDataset:
!KeypointTopDownCocoDataset
image_dir: val2017
anno_path: annotations/person_keypoints_val2017.json
dataset_dir: dataset/coco
num_joints: *num_joints
trainsize: *trainsize
pixel_std: *pixel_std
use_gt_bbox: True
image_thre: 0.0
TestDataset:
!ImageFolder
anno_path: dataset/coco/keypoint_imagelist.txt
worker_num: 2
global_mean: &global_mean [0.485, 0.456, 0.406]
global_std: &global_std [0.229, 0.224, 0.225]
TrainReader:
sample_transforms:
- RandomFlipHalfBodyTransform:
scale: 0.25
rot: 30
num_joints_half_body: 8
prob_half_body: 0.3
pixel_std: *pixel_std
trainsize: *trainsize
upper_body_ids: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
flip_pairs: *flip_perm
- TopDownAffine:
trainsize: *trainsize
- ToHeatmapsTopDown:
hmsize: *hmsize
sigma: 2
batch_transforms:
- NormalizeImage:
mean: *global_mean
std: *global_std
is_scale: true
- Permute: {}
batch_size: 64
shuffle: true
drop_last: false
EvalReader:
sample_transforms:
- TopDownAffine:
trainsize: *trainsize
batch_transforms:
- NormalizeImage:
mean: *global_mean
std: *global_std
is_scale: true
- Permute: {}
batch_size: 16
TestReader:
inputs_def:
image_shape: [3, *train_height, *train_width]
sample_transforms:
- Decode: {}
- TopDownEvalAffine:
trainsize: *trainsize
- NormalizeImage:
mean: *global_mean
std: *global_std
is_scale: true
- Permute: {}
batch_size: 1
use_gpu: true
log_iter: 5
save_dir: output
snapshot_epoch: 10
weights: output/lite_hrnet_30_256x192_coco/model_final
epoch: 210
num_joints: &num_joints 17
pixel_std: &pixel_std 200
metric: KeyPointTopDownCOCOEval
num_classes: 1
train_height: &train_height 256
train_width: &train_width 192
trainsize: &trainsize [*train_width, *train_height]
hmsize: &hmsize [48, 64]
flip_perm: &flip_perm [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12], [13, 14], [15, 16]]
#####model
architecture: TopDownHRNet
TopDownHRNet:
backbone: LiteHRNet
post_process: HRNetPostProcess
flip_perm: *flip_perm
num_joints: *num_joints
width: &width 40
loss: KeyPointMSELoss
use_dark: false
LiteHRNet:
network_type: lite_30
freeze_at: -1
freeze_norm: false
return_idx: [0]
KeyPointMSELoss:
use_target_weight: true
loss_scale: 1.0
#####optimizer
LearningRate:
base_lr: 0.002
schedulers:
- !PiecewiseDecay
milestones: [170, 200]
gamma: 0.1
- !LinearWarmup
start_factor: 0.001
steps: 500
OptimizerBuilder:
optimizer:
type: Adam
regularizer:
factor: 0.0
type: L2
#####data
TrainDataset:
!KeypointTopDownCocoDataset
image_dir: train2017
anno_path: annotations/person_keypoints_train2017.json
dataset_dir: dataset/coco
num_joints: *num_joints
trainsize: *trainsize
pixel_std: *pixel_std
use_gt_bbox: True
EvalDataset:
!KeypointTopDownCocoDataset
image_dir: val2017
anno_path: annotations/person_keypoints_val2017.json
dataset_dir: dataset/coco
num_joints: *num_joints
trainsize: *trainsize
pixel_std: *pixel_std
use_gt_bbox: True
image_thre: 0.0
TestDataset:
!ImageFolder
anno_path: dataset/coco/keypoint_imagelist.txt
worker_num: 4
global_mean: &global_mean [0.485, 0.456, 0.406]
global_std: &global_std [0.229, 0.224, 0.225]
TrainReader:
sample_transforms:
- RandomFlipHalfBodyTransform:
scale: 0.25
rot: 30
num_joints_half_body: 8
prob_half_body: 0.3
pixel_std: *pixel_std
trainsize: *trainsize
upper_body_ids: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
flip_pairs: *flip_perm
- TopDownAffine:
trainsize: *trainsize
- ToHeatmapsTopDown:
hmsize: *hmsize
sigma: 2
batch_transforms:
- NormalizeImage:
mean: *global_mean
std: *global_std
is_scale: true
- Permute: {}
batch_size: 64
shuffle: true
drop_last: false
EvalReader:
sample_transforms:
- TopDownAffine:
trainsize: *trainsize
batch_transforms:
- NormalizeImage:
mean: *global_mean
std: *global_std
is_scale: true
- Permute: {}
batch_size: 16
TestReader:
inputs_def:
image_shape: [3, *train_height, *train_width]
sample_transforms:
- Decode: {}
- TopDownEvalAffine:
trainsize: *trainsize
- NormalizeImage:
mean: *global_mean
std: *global_std
is_scale: true
- Permute: {}
batch_size: 1
...@@ -41,18 +41,20 @@ class TopDownHRNet(BaseArch): ...@@ -41,18 +41,20 @@ class TopDownHRNet(BaseArch):
post_process='HRNetPostProcess', post_process='HRNetPostProcess',
flip_perm=None, flip_perm=None,
flip=True, flip=True,
shift_heatmap=True): shift_heatmap=True,
use_dark=True):
""" """
HRNnet network, see https://arxiv.org/abs/1902.09212 HRNet network, see https://arxiv.org/abs/1902.09212
Args: Args:
backbone (nn.Layer): backbone instance backbone (nn.Layer): backbone instance
post_process (object): `HRNetPostProcess` instance post_process (object): `HRNetPostProcess` instance
flip_perm (list): The left-right joints exchange order list flip_perm (list): The left-right joints exchange order list
use_dark(bool): Whether to use DARK in post processing
""" """
super(TopDownHRNet, self).__init__() super(TopDownHRNet, self).__init__()
self.backbone = backbone self.backbone = backbone
self.post_process = HRNetPostProcess() self.post_process = HRNetPostProcess(use_dark)
self.loss = loss self.loss = loss
self.flip_perm = flip_perm self.flip_perm = flip_perm
self.flip = flip self.flip = flip
...@@ -218,7 +220,6 @@ class HRNetPostProcess(object): ...@@ -218,7 +220,6 @@ class HRNetPostProcess(object):
preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords
maxvals: numpy.ndarray([batch_size, num_joints, 1]), the maximum confidence of the keypoints maxvals: numpy.ndarray([batch_size, num_joints, 1]), the maximum confidence of the keypoints
""" """
coords, maxvals = self.get_max_preds(heatmaps) coords, maxvals = self.get_max_preds(heatmaps)
heatmap_height = heatmaps.shape[2] heatmap_height = heatmaps.shape[2]
......
...@@ -18,6 +18,7 @@ from . import darknet ...@@ -18,6 +18,7 @@ from . import darknet
from . import mobilenet_v1 from . import mobilenet_v1
from . import mobilenet_v3 from . import mobilenet_v3
from . import hrnet from . import hrnet
from . import lite_hrnet
from . import blazenet from . import blazenet
from . import ghostnet from . import ghostnet
from . import senet from . import senet
...@@ -31,6 +32,7 @@ from .darknet import * ...@@ -31,6 +32,7 @@ from .darknet import *
from .mobilenet_v1 import * from .mobilenet_v1 import *
from .mobilenet_v3 import * from .mobilenet_v3 import *
from .hrnet import * from .hrnet import *
from .lite_hrnet import *
from .blazenet import * from .blazenet import *
from .ghostnet import * from .ghostnet import *
from .senet import * from .senet import *
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from numbers import Integral
from paddle import ParamAttr
from paddle.regularizer import L2Decay
from paddle.nn.initializer import Normal, Constant
from ppdet.core.workspace import register
from ppdet.modeling.shape_spec import ShapeSpec
from ppdet.modeling.ops import channel_shuffle
from .. import layers as L
__all__ = ['LiteHRNet']
class ConvNormLayer(nn.Layer):
def __init__(self,
ch_in,
ch_out,
filter_size,
stride=1,
groups=1,
norm_type=None,
norm_groups=32,
norm_decay=0.,
freeze_norm=False,
act=None):
super(ConvNormLayer, self).__init__()
self.act = act
norm_lr = 0. if freeze_norm else 1.
if norm_type is not None:
assert (
norm_type in ['bn', 'sync_bn', 'gn'],
"norm_type should be one of ['bn', 'sync_bn', 'gn'], but got {}".
format(norm_type))
param_attr = ParamAttr(
initializer=Constant(1.0),
learning_rate=norm_lr,
regularizer=L2Decay(norm_decay), )
bias_attr = ParamAttr(
learning_rate=norm_lr, regularizer=L2Decay(norm_decay))
global_stats = True if freeze_norm else False
if norm_type in ['bn', 'sync_bn']:
self.norm = nn.BatchNorm(
ch_out,
param_attr=param_attr,
bias_attr=bias_attr,
use_global_stats=global_stats, )
elif norm_type == 'gn':
self.norm = nn.GroupNorm(
num_groups=norm_groups,
num_channels=ch_out,
weight_attr=param_attr,
bias_attr=bias_attr)
norm_params = self.norm.parameters()
if freeze_norm:
for param in norm_params:
param.stop_gradient = True
conv_bias_attr = False
else:
conv_bias_attr = True
self.norm = None
self.conv = nn.Conv2D(
in_channels=ch_in,
out_channels=ch_out,
kernel_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
weight_attr=ParamAttr(initializer=Normal(
mean=0., std=0.001)),
bias_attr=conv_bias_attr)
def forward(self, inputs):
out = self.conv(inputs)
if self.norm is not None:
out = self.norm(out)
if self.act == 'relu':
out = F.relu(out)
elif self.act == 'sigmoid':
out = F.sigmoid(out)
return out
class DepthWiseSeparableConvNormLayer(nn.Layer):
def __init__(self,
ch_in,
ch_out,
filter_size,
stride=1,
dw_norm_type=None,
pw_norm_type=None,
norm_decay=0.,
freeze_norm=False,
dw_act=None,
pw_act=None):
super(DepthWiseSeparableConvNormLayer, self).__init__()
self.depthwise_conv = ConvNormLayer(
ch_in=ch_in,
ch_out=ch_in,
filter_size=filter_size,
stride=stride,
groups=ch_in,
norm_type=dw_norm_type,
act=dw_act,
norm_decay=norm_decay,
freeze_norm=freeze_norm, )
self.pointwise_conv = ConvNormLayer(
ch_in=ch_in,
ch_out=ch_out,
filter_size=1,
stride=1,
norm_type=pw_norm_type,
act=pw_act,
norm_decay=norm_decay,
freeze_norm=freeze_norm, )
def forward(self, x):
x = self.depthwise_conv(x)
x = self.pointwise_conv(x)
return x
class CrossResolutionWeightingModule(nn.Layer):
def __init__(self,
channels,
ratio=16,
norm_type='bn',
freeze_norm=False,
norm_decay=0.):
super(CrossResolutionWeightingModule, self).__init__()
self.channels = channels
total_channel = sum(channels)
self.conv1 = ConvNormLayer(
ch_in=total_channel,
ch_out=total_channel // ratio,
filter_size=1,
stride=1,
norm_type=norm_type,
act='relu',
freeze_norm=freeze_norm,
norm_decay=norm_decay)
self.conv2 = ConvNormLayer(
ch_in=total_channel // ratio,
ch_out=total_channel,
filter_size=1,
stride=1,
norm_type=norm_type,
act='sigmoid',
freeze_norm=freeze_norm,
norm_decay=norm_decay)
def forward(self, x):
mini_size = x[-1].shape[-2:]
out = [F.adaptive_avg_pool2d(s, mini_size) for s in x[:-1]] + [x[-1]]
out = paddle.concat(out, 1)
out = self.conv1(out)
out = self.conv2(out)
out = paddle.split(out, self.channels, 1)
out = [
s * F.interpolate(
a, s.shape[-2:], mode='nearest') for s, a in zip(x, out)
]
return out
class SpatialWeightingModule(nn.Layer):
def __init__(self, in_channel, ratio=16, freeze_norm=False, norm_decay=0.):
super(SpatialWeightingModule, self).__init__()
self.global_avgpooling = nn.AdaptiveAvgPool2D(1)
self.conv1 = ConvNormLayer(
ch_in=in_channel,
ch_out=in_channel // ratio,
filter_size=1,
stride=1,
act='relu',
freeze_norm=freeze_norm,
norm_decay=norm_decay)
self.conv2 = ConvNormLayer(
ch_in=in_channel // ratio,
ch_out=in_channel,
filter_size=1,
stride=1,
act='sigmoid',
freeze_norm=freeze_norm,
norm_decay=norm_decay)
def forward(self, x):
out = self.global_avgpooling(x)
out = self.conv1(out)
out = self.conv2(out)
return x * out
class ConditionalChannelWeightingBlock(nn.Layer):
def __init__(self,
in_channels,
stride,
reduce_ratio,
norm_type='bn',
freeze_norm=False,
norm_decay=0.):
super(ConditionalChannelWeightingBlock, self).__init__()
assert stride in [1, 2]
branch_channels = [channel // 2 for channel in in_channels]
self.cross_resolution_weighting = CrossResolutionWeightingModule(
branch_channels,
ratio=reduce_ratio,
norm_type=norm_type,
freeze_norm=freeze_norm,
norm_decay=norm_decay)
self.depthwise_convs = nn.LayerList([
ConvNormLayer(
channel,
channel,
filter_size=3,
stride=stride,
groups=channel,
norm_type=norm_type,
freeze_norm=freeze_norm,
norm_decay=norm_decay) for channel in branch_channels
])
self.spatial_weighting = nn.LayerList([
SpatialWeightingModule(
channel,
ratio=4,
freeze_norm=freeze_norm,
norm_decay=norm_decay) for channel in branch_channels
])
def forward(self, x):
x = [s.chunk(2, axis=1) for s in x]
x1 = [s[0] for s in x]
x2 = [s[1] for s in x]
x2 = self.cross_resolution_weighting(x2)
x2 = [dw(s) for s, dw in zip(x2, self.depthwise_convs)]
x2 = [sw(s) for s, sw in zip(x2, self.spatial_weighting)]
out = [paddle.concat([s1, s2], axis=1) for s1, s2 in zip(x1, x2)]
out = [channel_shuffle(s, groups=2) for s in out]
return out
class ShuffleUnit(nn.Layer):
def __init__(self,
in_channel,
out_channel,
stride,
norm_type='bn',
freeze_norm=False,
norm_decay=0.):
super(ShuffleUnit, self).__init__()
branch_channel = out_channel // 2
stride = self.stride
if self.stride == 1:
assert (
in_channel == branch_channel * 2,
"when stride=1, in_channel {} should equal to branch_channel*2 {}"
.format(in_channel, branch_channel * 2))
if stride > 1:
self.branch1 = nn.Sequential(
ConvNormLayer(
ch_in=in_channel,
ch_out=in_channel,
filter_size=3,
stride=self.stride,
groups=in_channel,
norm_type=norm_type,
freeze_norm=freeze_norm,
norm_decay=norm_decay),
ConvNormLayer(
ch_in=in_channel,
ch_out=branch_channel,
filter_size=1,
stride=1,
norm_type=norm_type,
act='relu',
freeze_norm=freeze_norm,
norm_decay=norm_decay), )
self.branch2 = nn.Sequential(
ConvNormLayer(
ch_in=branch_channel if stride == 1 else in_channel,
ch_out=branch_channel,
filter_size=1,
stride=1,
norm_type=norm_type,
act='relu',
freeze_norm=freeze_norm,
norm_decay=norm_decay),
ConvNormLayer(
ch_in=branch_channel,
ch_out=branch_channel,
filter_size=3,
stride=self.stride,
groups=branch_channel,
norm_type=norm_type,
freeze_norm=freeze_norm,
norm_decay=norm_decay),
ConvNormLayer(
ch_in=branch_channel,
ch_out=branch_channel,
filter_size=1,
stride=1,
norm_type=norm_type,
act='relu',
freeze_norm=freeze_norm,
norm_decay=norm_decay), )
def forward(self, x):
if self.stride > 1:
x1 = self.branch1(x)
x2 = self.branch2(x)
else:
x1, x2 = x.chunk(2, axis=1)
x2 = self.branch2(x2)
out = paddle.concat([x1, x2], axis=1)
out = channel_shuffle(out, groups=2)
return out
class IterativeHead(nn.Layer):
def __init__(self,
in_channels,
norm_type='bn',
freeze_norm=False,
norm_decay=0.):
super(IterativeHead, self).__init__()
num_branches = len(in_channels)
self.in_channels = in_channels[::-1]
projects = []
for i in range(num_branches):
if i != num_branches - 1:
projects.append(
DepthWiseSeparableConvNormLayer(
ch_in=self.in_channels[i],
ch_out=self.in_channels[i + 1],
filter_size=3,
stride=1,
dw_act=None,
pw_act='relu',
dw_norm_type=norm_type,
pw_norm_type=norm_type,
freeze_norm=freeze_norm,
norm_decay=norm_decay))
else:
projects.append(
DepthWiseSeparableConvNormLayer(
ch_in=self.in_channels[i],
ch_out=self.in_channels[i],
filter_size=3,
stride=1,
dw_act=None,
pw_act='relu',
dw_norm_type=norm_type,
pw_norm_type=norm_type,
freeze_norm=freeze_norm,
norm_decay=norm_decay))
self.projects = nn.LayerList(projects)
def forward(self, x):
x = x[::-1]
y = []
last_x = None
for i, s in enumerate(x):
if last_x is not None:
last_x = F.interpolate(
last_x,
size=s.shape[-2:],
mode='bilinear',
align_corners=True)
s = s + last_x
s = self.projects[i](s)
y.append(s)
last_x = s
return y[::-1]
class Stem(nn.Layer):
def __init__(self,
in_channel,
stem_channel,
out_channel,
expand_ratio,
norm_type='bn',
freeze_norm=False,
norm_decay=0.):
super(Stem, self).__init__()
self.conv1 = ConvNormLayer(
in_channel,
stem_channel,
filter_size=3,
stride=2,
norm_type=norm_type,
act='relu',
freeze_norm=freeze_norm,
norm_decay=norm_decay)
mid_channel = int(round(stem_channel * expand_ratio))
branch_channel = stem_channel // 2
if stem_channel == out_channel:
inc_channel = out_channel - branch_channel
else:
inc_channel = out_channel - stem_channel
self.branch1 = nn.Sequential(
ConvNormLayer(
ch_in=branch_channel,
ch_out=branch_channel,
filter_size=3,
stride=2,
groups=branch_channel,
norm_type=norm_type,
freeze_norm=freeze_norm,
norm_decay=norm_decay),
ConvNormLayer(
ch_in=branch_channel,
ch_out=inc_channel,
filter_size=1,
stride=1,
norm_type=norm_type,
act='relu',
freeze_norm=freeze_norm,
norm_decay=norm_decay), )
self.expand_conv = ConvNormLayer(
ch_in=branch_channel,
ch_out=mid_channel,
filter_size=1,
stride=1,
norm_type=norm_type,
act='relu',
freeze_norm=freeze_norm,
norm_decay=norm_decay)
self.depthwise_conv = ConvNormLayer(
ch_in=mid_channel,
ch_out=mid_channel,
filter_size=3,
stride=2,
groups=mid_channel,
norm_type=norm_type,
freeze_norm=freeze_norm,
norm_decay=norm_decay)
self.linear_conv = ConvNormLayer(
ch_in=mid_channel,
ch_out=branch_channel
if stem_channel == out_channel else stem_channel,
filter_size=1,
stride=1,
norm_type=norm_type,
act='relu',
freeze_norm=freeze_norm,
norm_decay=norm_decay)
def forward(self, x):
x = self.conv1(x)
x1, x2 = x.chunk(2, axis=1)
x1 = self.branch1(x1)
x2 = self.expand_conv(x2)
x2 = self.depthwise_conv(x2)
x2 = self.linear_conv(x2)
out = paddle.concat([x1, x2], axis=1)
out = channel_shuffle(out, groups=2)
return out
class LiteHRNetModule(nn.Layer):
def __init__(self,
num_branches,
num_blocks,
in_channels,
reduce_ratio,
module_type,
multiscale_output=False,
with_fuse=True,
norm_type='bn',
freeze_norm=False,
norm_decay=0.):
super(LiteHRNetModule, self).__init__()
assert (num_branches == len(in_channels),
"num_branches {} should equal to num_in_channels {}"
.format(num_branches, len(in_channels)))
assert (module_type in ['LITE', 'NAIVE'],
"module_type should be one of ['LITE', 'NAIVE']")
self.num_branches = num_branches
self.in_channels = in_channels
self.multiscale_output = multiscale_output
self.with_fuse = with_fuse
self.norm_type = 'bn'
self.module_type = module_type
if self.module_type == 'LITE':
self.layers = self._make_weighting_blocks(
num_blocks,
reduce_ratio,
freeze_norm=freeze_norm,
norm_decay=norm_decay)
elif self.module_type == 'NAIVE':
self.layers = self._make_naive_branches(
num_branches,
num_blocks,
freeze_norm=freeze_norm,
norm_decay=norm_decay)
if self.with_fuse:
self.fuse_layers = self._make_fuse_layers(
freeze_norm=freeze_norm, norm_decay=norm_decay)
self.relu = nn.ReLU()
def _make_weighting_blocks(self,
num_blocks,
reduce_ratio,
stride=1,
freeze_norm=False,
norm_decay=0.):
layers = []
for i in range(num_blocks):
layers.append(
ConditionalChannelWeightingBlock(
self.in_channels,
stride=stride,
reduce_ratio=reduce_ratio,
norm_type=self.norm_type,
freeze_norm=freeze_norm,
norm_decay=norm_decay))
return nn.Sequential(*layers)
def _make_naive_branchs(self,
num_branches,
num_blocks,
freeze_norm=False,
norm_decay=0.):
branches = []
for branch_idx in range(num_branches):
layers = []
for i in range(num_blocks):
layers.append(
ShuffleUnit(
self.in_channels[branch_idx],
self.in_channels[branch_idx],
stride=1,
norm_type=self.norm_type,
freeze_norm=freeze_norm,
norm_decay=norm_decay))
branches.append(nn.Sequential(*layers))
return nn.LayerList(branches)
def _make_fuse_layers(self, freeze_norm=False, norm_decay=0.):
if self.num_branches == 1:
return None
fuse_layers = []
num_out_branches = self.num_branches if self.multiscale_output else 1
for i in range(num_out_branches):
fuse_layer = []
for j in range(self.num_branches):
if j > i:
fuse_layer.append(
nn.Sequential(
L.Conv2d(
self.in_channels[j],
self.in_channels[i],
kernel_size=1,
stride=1,
padding=0,
bias=False, ),
nn.BatchNorm(self.in_channels[i]),
nn.Upsample(
scale_factor=2**(j - i), mode='nearest')))
elif j == i:
fuse_layer.append(None)
else:
conv_downsamples = []
for k in range(i - j):
if k == i - j - 1:
conv_downsamples.append(
nn.Sequential(
L.Conv2d(
self.in_channels[j],
self.in_channels[j],
kernel_size=3,
stride=2,
padding=1,
groups=self.in_channels[j],
bias=False, ),
nn.BatchNorm(self.in_channels[j]),
L.Conv2d(
self.in_channels[j],
self.in_channels[i],
kernel_size=1,
stride=1,
padding=0,
bias=False, ),
nn.BatchNorm(self.in_channels[i])))
else:
conv_downsamples.append(
nn.Sequential(
L.Conv2d(
self.in_channels[j],
self.in_channels[j],
kernel_size=3,
stride=2,
padding=1,
groups=self.in_channels[j],
bias=False, ),
nn.BatchNorm(self.in_channels[j]),
L.Conv2d(
self.in_channels[j],
self.in_channels[j],
kernel_size=1,
stride=1,
padding=0,
bias=False, ),
nn.BatchNorm(self.in_channels[j]),
nn.ReLU()))
fuse_layer.append(nn.Sequential(*conv_downsamples))
fuse_layers.append(nn.LayerList(fuse_layer))
return nn.LayerList(fuse_layers)
def forward(self, x):
if self.num_branches == 1:
return [self.layers[0](x[0])]
if self.module_type == 'LITE':
out = self.layers(x)
elif self.module_type == 'NAIVE':
for i in range(self.num_branches):
x[i] = self.layers(x[i])
out = x
if self.with_fuse:
out_fuse = []
for i in range(len(self.fuse_layers)):
y = out[0] if i == 0 else self.fuse_layers[i][0](out[0])
for j in range(self.num_branches):
if i == j:
y += out[j]
else:
y += self.fuse_layers[i][j](out[j])
if i == 0:
out[i] = y
out_fuse.append(self.relu(y))
out = out_fuse
elif not self.multiscale_output:
out = [out[0]]
return out
@register
class LiteHRNet(nn.Layer):
"""
@inproceedings{Yulitehrnet21,
title={Lite-HRNet: A Lightweight High-Resolution Network},
author={Yu, Changqian and Xiao, Bin and Gao, Changxin and Yuan, Lu and Zhang, Lei and Sang, Nong and Wang, Jingdong},
booktitle={CVPR},year={2021}
}
Args:
network_type (str): the network_type should be one of ["lite_18", "lite_30", "naive", "wider_naive"],
"naive": Simply combining the shuffle block in ShuffleNet and the highresolution design pattern in HRNet.
"wider_naive": Naive network with wider channels in each block.
"lite_18": Lite-HRNet-18, which replaces the pointwise convolution in a shuffle block by conditional channel weighting.
"lite_30": Lite-HRNet-30, with more blocks compared with Lite-HRNet-18.
freeze_at (int): the stage to freeze
freeze_norm (bool): whether to freeze norm in HRNet
norm_decay (float): weight decay for normalization layer weights
return_idx (List): the stage to return
"""
def __init__(self,
network_type,
freeze_at=0,
freeze_norm=True,
norm_decay=0.,
return_idx=[0, 1, 2, 3]):
super(LiteHRNet, self).__init__()
if isinstance(return_idx, Integral):
return_idx = [return_idx]
assert (
network_type in ["lite_18", "lite_30", "naive", "wider_naive"],
"the network_type should be one of [lite_18, lite_30, naive, wider_naive]"
)
assert len(return_idx) > 0, "need one or more return index"
self.freeze_at = freeze_at
self.freeze_norm = freeze_norm
self.norm_decay = norm_decay
self.return_idx = return_idx
self.norm_type = 'bn'
self.module_configs = {
"lite_18": {
"num_modules": [2, 4, 2],
"num_branches": [2, 3, 4],
"num_blocks": [2, 2, 2],
"module_type": ["LITE", "LITE", "LITE"],
"reduce_ratios": [8, 8, 8],
"num_channels": [[40, 80], [40, 80, 160], [40, 80, 160, 320]],
},
"lite_30": {
"num_modules": [3, 8, 3],
"num_branches": [2, 3, 4],
"num_blocks": [2, 2, 2],
"module_type": ["LITE", "LITE", "LITE"],
"reduce_ratios": [8, 8, 8],
"num_channels": [[40, 80], [40, 80, 160], [40, 80, 160, 320]],
},
"naive": {
"num_modules": [2, 4, 2],
"num_branches": [2, 3, 4],
"num_blocks": [2, 2, 2],
"module_type": ["NAIVE", "NAIVE", "NAIVE"],
"reduce_ratios": [1, 1, 1],
"num_channels": [[30, 60], [30, 60, 120], [30, 60, 120, 240]],
},
"wider_naive": {
"num_modules": [2, 4, 2],
"num_branches": [2, 3, 4],
"num_blocks": [2, 2, 2],
"module_type": ["NAIVE", "NAIVE", "NAIVE"],
"reduce_ratios": [1, 1, 1],
"num_channels": [[40, 80], [40, 80, 160], [40, 80, 160, 320]],
},
}
self.stages_config = self.module_configs[network_type]
self.stem = Stem(3, 32, 32, 1)
num_channels_pre_layer = [32]
for stage_idx in range(3):
num_channels = self.stages_config["num_channels"][stage_idx]
setattr(self, 'transition{}'.format(stage_idx),
self._make_transition_layer(num_channels_pre_layer,
num_channels, self.freeze_norm,
self.norm_decay))
stage, num_channels_pre_layer = self._make_stage(
self.stages_config, stage_idx, num_channels, True,
self.freeze_norm, self.norm_decay)
setattr(self, 'stage{}'.format(stage_idx), stage)
self.head_layer = IterativeHead(num_channels_pre_layer, 'bn',
self.freeze_norm, self.norm_decay)
def _make_transition_layer(self,
num_channels_pre_layer,
num_channels_cur_layer,
freeze_norm=False,
norm_decay=0.):
num_branches_pre = len(num_channels_pre_layer)
num_branches_cur = len(num_channels_cur_layer)
transition_layers = []
for i in range(num_branches_cur):
if i < num_branches_pre:
if num_channels_cur_layer[i] != num_channels_pre_layer[i]:
transition_layers.append(
nn.Sequential(
L.Conv2d(
num_channels_pre_layer[i],
num_channels_pre_layer[i],
kernel_size=3,
stride=1,
padding=1,
groups=num_channels_pre_layer[i],
bias=False),
nn.BatchNorm(num_channels_pre_layer[i]),
L.Conv2d(
num_channels_pre_layer[i],
num_channels_cur_layer[i],
kernel_size=1,
stride=1,
padding=0,
bias=False, ),
nn.BatchNorm(num_channels_cur_layer[i]),
nn.ReLU()))
else:
transition_layers.append(None)
else:
conv_downsamples = []
for j in range(i + 1 - num_branches_pre):
conv_downsamples.append(
nn.Sequential(
L.Conv2d(
num_channels_pre_layer[-1],
num_channels_pre_layer[-1],
groups=num_channels_pre_layer[-1],
kernel_size=3,
stride=2,
padding=1,
bias=False, ),
nn.BatchNorm(num_channels_pre_layer[-1]),
L.Conv2d(
num_channels_pre_layer[-1],
num_channels_cur_layer[i]
if j == i - num_branches_pre else
num_channels_pre_layer[-1],
kernel_size=1,
stride=1,
padding=0,
bias=False, ),
nn.BatchNorm(num_channels_cur_layer[i]
if j == i - num_branches_pre else
num_channels_pre_layer[-1]),
nn.ReLU()))
transition_layers.append(nn.Sequential(*conv_downsamples))
return nn.LayerList(transition_layers)
def _make_stage(self,
stages_config,
stage_idx,
in_channels,
multiscale_output,
freeze_norm=False,
norm_decay=0.):
num_modules = stages_config["num_modules"][stage_idx]
num_branches = stages_config["num_branches"][stage_idx]
num_blocks = stages_config["num_blocks"][stage_idx]
reduce_ratio = stages_config['reduce_ratios'][stage_idx]
module_type = stages_config['module_type'][stage_idx]
modules = []
for i in range(num_modules):
if not multiscale_output and i == num_modules - 1:
reset_multiscale_output = False
else:
reset_multiscale_output = True
modules.append(
LiteHRNetModule(
num_branches,
num_blocks,
in_channels,
reduce_ratio,
module_type,
multiscale_output=reset_multiscale_output,
with_fuse=True,
freeze_norm=freeze_norm,
norm_decay=norm_decay))
in_channels = modules[-1].in_channels
return nn.Sequential(*modules), in_channels
def forward(self, inputs):
x = inputs['image']
x = self.stem(x)
y_list = [x]
for stage_idx in range(3):
x_list = []
transition = getattr(self, 'transition{}'.format(stage_idx))
for j in range(self.stages_config["num_branches"][stage_idx]):
if transition[j] is not None:
if j >= len(y_list):
x_list.append(transition[j](y_list[-1]))
else:
x_list.append(transition[j](y_list[j]))
else:
x_list.append(y_list[j])
y_list = getattr(self, 'stage{}'.format(stage_idx))(x_list)
x = self.head_layer(y_list)
res = []
for i, layer in enumerate(x):
if i == self.freeze_at:
layer.stop_gradient = True
if i in self.return_idx:
res.append(layer)
return res
@property
def out_shape(self):
return [
ShapeSpec(
channels=self._out_channels[i], stride=self._out_strides[i])
for i in self.return_idx
]
...@@ -25,26 +25,11 @@ from paddle.nn.initializer import KaimingNormal ...@@ -25,26 +25,11 @@ from paddle.nn.initializer import KaimingNormal
from ppdet.core.workspace import register, serializable from ppdet.core.workspace import register, serializable
from numbers import Integral from numbers import Integral
from ..shape_spec import ShapeSpec from ..shape_spec import ShapeSpec
from ppdet.modeling.ops import channel_shuffle
__all__ = ['ShuffleNetV2'] __all__ = ['ShuffleNetV2']
def channel_shuffle(x, groups):
batch_size, num_channels, height, width = x.shape[0:4]
channels_per_group = num_channels // groups
# reshape
x = paddle.reshape(
x=x, shape=[batch_size, groups, channels_per_group, height, width])
# transpose
x = paddle.transpose(x=x, perm=[0, 2, 1, 3, 4])
# flatten
x = paddle.reshape(x=x, shape=[batch_size, num_channels, height, width])
return x
class ConvBNLayer(nn.Layer): class ConvBNLayer(nn.Layer):
def __init__(self, def __init__(self,
in_channels, in_channels,
......
...@@ -29,7 +29,7 @@ __all__ = ['HrHRNetLoss', 'KeyPointMSELoss'] ...@@ -29,7 +29,7 @@ __all__ = ['HrHRNetLoss', 'KeyPointMSELoss']
@register @register
@serializable @serializable
class KeyPointMSELoss(nn.Layer): class KeyPointMSELoss(nn.Layer):
def __init__(self, use_target_weight=True): def __init__(self, use_target_weight=True, loss_scale=0.5):
""" """
KeyPointMSELoss layer KeyPointMSELoss layer
...@@ -39,6 +39,7 @@ class KeyPointMSELoss(nn.Layer): ...@@ -39,6 +39,7 @@ class KeyPointMSELoss(nn.Layer):
super(KeyPointMSELoss, self).__init__() super(KeyPointMSELoss, self).__init__()
self.criterion = nn.MSELoss(reduction='mean') self.criterion = nn.MSELoss(reduction='mean')
self.use_target_weight = use_target_weight self.use_target_weight = use_target_weight
self.loss_scale = loss_scale
def forward(self, output, records): def forward(self, output, records):
target = records['target'] target = records['target']
...@@ -50,16 +51,16 @@ class KeyPointMSELoss(nn.Layer): ...@@ -50,16 +51,16 @@ class KeyPointMSELoss(nn.Layer):
heatmaps_gt = target.reshape( heatmaps_gt = target.reshape(
(batch_size, num_joints, -1)).split(num_joints, 1) (batch_size, num_joints, -1)).split(num_joints, 1)
loss = 0 loss = 0
for idx in range(num_joints): for idx in range(num_joints):
heatmap_pred = heatmaps_pred[idx].squeeze() heatmap_pred = heatmaps_pred[idx].squeeze()
heatmap_gt = heatmaps_gt[idx].squeeze() heatmap_gt = heatmaps_gt[idx].squeeze()
if self.use_target_weight: if self.use_target_weight:
loss += 0.5 * self.criterion( loss += self.loss_scale * self.criterion(
heatmap_pred.multiply(target_weight[:, idx]), heatmap_pred.multiply(target_weight[:, idx]),
heatmap_gt.multiply(target_weight[:, idx])) heatmap_gt.multiply(target_weight[:, idx]))
else: else:
loss += 0.5 * self.criterion(heatmap_pred, heatmap_gt) loss += self.loss_scale * self.criterion(heatmap_pred,
heatmap_gt)
keypoint_losses = dict() keypoint_losses = dict()
keypoint_losses['loss'] = loss / num_joints keypoint_losses['loss'] = loss / num_joints
return keypoint_losses return keypoint_losses
......
...@@ -1588,3 +1588,15 @@ def smooth_l1(input, label, inside_weight=None, outside_weight=None, ...@@ -1588,3 +1588,15 @@ def smooth_l1(input, label, inside_weight=None, outside_weight=None,
out = paddle.reshape(out, shape=[out.shape[0], -1]) out = paddle.reshape(out, shape=[out.shape[0], -1])
out = paddle.sum(out, axis=1) out = paddle.sum(out, axis=1)
return out return out
def channel_shuffle(x, groups):
batch_size, num_channels, height, width = x.shape[0:4]
assert (num_channels % groups == 0,
'num_channels should be divisible by groups')
channels_per_group = num_channels // groups
x = paddle.reshape(
x=x, shape=[batch_size, groups, channels_per_group, height, width])
x = paddle.transpose(x=x, perm=[0, 2, 1, 3, 4])
x = paddle.reshape(x=x, shape=[batch_size, num_channels, height, width])
return x
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册