提交 d2ee3c98 编写于 作者: S sweetsky0901

format code

上级 2d42fa74
......@@ -19,8 +19,8 @@ namespace math {
template <typename T>
class Unpool2dMaxFunctor<platform::CPUPlace, T> {
public:
void operator()(
const platform::DeviceContext& context, const framework::Tensor& input,
void operator()(const platform::DeviceContext& context,
const framework::Tensor& input,
const framework::Tensor& indices, framework::Tensor* output) {
const int batch_size = input.dims()[0];
const int input_height = input.dims()[2];
......@@ -50,10 +50,12 @@ class Unpool2dMaxFunctor<platform::CPUPlace, T> {
template <class T>
class Unpool2dMaxGradFunctor<platform::CPUPlace, T> {
public:
void operator()(
const platform::DeviceContext& context, const framework::Tensor& input,
const framework::Tensor& indices, const framework::Tensor& output,
const framework::Tensor& output_grad, framework::Tensor* input_grad) {
void operator()(const platform::DeviceContext& context,
const framework::Tensor& input,
const framework::Tensor& indices,
const framework::Tensor& output,
const framework::Tensor& output_grad,
framework::Tensor* input_grad) {
const int batch_size = input.dims()[0];
const int input_height = input.dims()[2];
const int input_width = input.dims()[3];
......
......@@ -19,10 +19,12 @@ namespace paddle {
namespace operators {
namespace math {
template <typename T>
__global__ void KernelUnpool2dMax(
const int nthreads, const T* input_data, const int* indices_data,
const int input_height, const int input_width, const int channels,
T* output_data, const int output_height, const int output_width) {
__global__ void KernelUnpool2dMax(const int nthreads, const T* input_data,
const int* indices_data,
const int input_height, const int input_width,
const int channels, T* output_data,
const int output_height,
const int output_width) {
int in_n_stride = input_height * input_width * channels;
int in_c_stride = input_height * input_width;
int out_n_stride = output_height * output_width * channels;
......@@ -40,10 +42,11 @@ __global__ void KernelUnpool2dMax(
}
}
template <typename T>
__global__ void KernelUnpool2dMaxGrad(
const int nthreads, const T* input_data, const int* indices_data,
const int input_height, const int input_width, const int channels,
const T* output_data, const T* output_grad, const int output_height,
__global__ void KernelUnpool2dMaxGrad(const int nthreads, const T* input_data,
const int* indices_data,
const int input_height, const int input_width,
const int channels, const T* output_data,
const T* output_grad, const int output_height,
const int output_width, T* input_grad) {
int in_n_stride = input_height * input_width * channels;
int in_c_stride = input_height * input_width;
......@@ -67,9 +70,9 @@ __global__ void KernelUnpool2dMaxGrad(
template <typename T>
class Unpool2dMaxFunctor<platform::GPUPlace, T> {
public:
void operator()(
const platform::DeviceContext& context, const framework::Tensor& input,
const framework::Tensor& indices, framework::Tensor* output) {
void operator()(const platform::DeviceContext& context,
const framework::Tensor& input, const framework::Tensor& indices,
framework::Tensor* output) {
const int batch_size = input.dims()[0];
const int input_height = input.dims()[2];
const int input_width = input.dims()[3];
......@@ -81,7 +84,8 @@ class Unpool2dMaxFunctor<platform::GPUPlace, T> {
T* output_data = output->mutable_data<T>(context.GetPlace());
int threads = 1024;
int grid = (input.numel() + threads - 1) / threads;
KernelUnpool2dMax<T><<<grid, threads, 0,
KernelUnpool2dMax<
T><<<grid, threads, 0,
reinterpret_cast<const platform::CUDADeviceContext&>(context)
.stream()>>>(input.numel(), input_data, indices_data,
input_height, input_width, output_channels,
......@@ -113,11 +117,13 @@ class Unpool2dMaxGradFunctor<platform::GPUPlace, T> {
T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
int threads = 1024;
int grid = (input.numel() + threads - 1) / threads;
KernelUnpool2dMaxGrad<T><<<grid, threads, 0,
KernelUnpool2dMaxGrad<
T><<<grid, threads, 0,
reinterpret_cast<const platform::CUDADeviceContext&>(context)
.stream()>>>(input.numel(), input_data, indices_data,
input_height, input_width, output_channels, output_data,
output_grad_data, output_height, output_width, input_grad_data);
output_grad_data, output_height, output_width,
input_grad_data);
}
};
template class Unpool2dMaxGradFunctor<platform::GPUPlace, float>;
......
......@@ -21,17 +21,20 @@ namespace math {
template <typename Place, typename T>
class Unpool2dMaxFunctor {
public:
void operator()(
const platform::DeviceContext& context, const framework::Tensor& input,
const framework::Tensor& indices, framework::Tensor* output);
void operator()(const platform::DeviceContext& context,
const framework::Tensor& input,
const framework::Tensor& indices,
framework::Tensor* output);
};
template <typename Place, class T>
class Unpool2dMaxGradFunctor {
public:
void operator()(
const platform::DeviceContext& context, const framework::Tensor& input,
const framework::Tensor& indices, const framework::Tensor& output,
const framework::Tensor& output_grad, framework::Tensor* input_grad);
void operator()(const platform::DeviceContext& context,
const framework::Tensor& input,
const framework::Tensor& indices,
const framework::Tensor& output,
const framework::Tensor& output_grad,
framework::Tensor* input_grad);
};
} // namespace math
} // namespace operators
......
......@@ -41,13 +41,11 @@ class Unpool2dOpMaker : public framework::OpProtoAndCheckerMaker {
"ksize",
"(vector), the unpooling window size(height, width) "
"of unpooling operator.");
AddAttr<std::vector<int>>(
"strides",
AddAttr<std::vector<int>>("strides",
"(vector, default:{1, 1}), "
"strides (height, width) of unpooling operator.")
.SetDefault({1, 1});
AddAttr<std::vector<int>>(
"paddings",
AddAttr<std::vector<int>>("paddings",
"(vector defalut:{0,0}), "
"paddings (height, width) of unpooling operator.")
.SetDefault({0, 0});
......
......@@ -78,5 +78,6 @@ class TestUnpoolOp(OpTest):
self.strides = [2, 2]
self.paddings = [0, 0]
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册