Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
d211b51b
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d211b51b
编写于
10月 10, 2017
作者:
Y
Yancey1989
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update comment
上级
0028459b
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
67 addition
and
50 deletion
+67
-50
paddle/operators/sequence_concat_op.cc
paddle/operators/sequence_concat_op.cc
+29
-20
paddle/operators/sequence_concat_op.h
paddle/operators/sequence_concat_op.h
+8
-20
python/paddle/v2/framework/tests/test_seq_concat_op.py
python/paddle/v2/framework/tests/test_seq_concat_op.py
+30
-10
未找到文件。
paddle/operators/sequence_concat_op.cc
浏览文件 @
d211b51b
...
@@ -48,11 +48,11 @@ class SequenceConcatOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -48,11 +48,11 @@ class SequenceConcatOpMaker : public framework::OpProtoAndCheckerMaker {
framework
::
OpAttrChecker
*
op_checker
)
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
AddInput
(
"X"
,
"
The input Multip LoDTensors, which are variable-length
"
"
(A vector of LoDTensor), the input is a vector of LoDTensor,
"
"sequence or nested sequence."
)
"
each of which is a variable-length
sequence or nested sequence."
)
.
AsDuplicable
();
.
AsDuplicable
();
AddOutput
(
"Out"
,
AddOutput
(
"Out"
,
"
A LoDTensor
, the variable-length output of "
"
(A LoDTensor)
, the variable-length output of "
"sequence_concat Op."
);
"sequence_concat Op."
);
AddAttr
<
int
>
(
"axis"
,
AddAttr
<
int
>
(
"axis"
,
"(int, default 0)"
"(int, default 0)"
...
@@ -61,27 +61,36 @@ class SequenceConcatOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -61,27 +61,36 @@ class SequenceConcatOpMaker : public framework::OpProtoAndCheckerMaker {
.
SetDefault
(
0
);
.
SetDefault
(
0
);
AddAttr
<
int
>
(
"level"
,
AddAttr
<
int
>
(
"level"
,
"(int, default 0)"
"(int, default 0)"
"The level which the inputs will be joined with."
"The level at which the inputs will be joined."
"If level is 0, the inputs will be joined with "
"If the level is 0, the inputs will be joined at the nested "
"nested sequences."
"sequence level."
"If level is 1, the inputs will be joined with sequences."
)
"If the level is 1, the inputs will be joined at the "
"sequence level."
)
.
SetDefault
(
0
);
.
SetDefault
(
0
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
The sequence_concat operator concatenates multiple LoDTensors.
The sequence_concat operator concatenates multiple LoDTensors.
It only supports sequence
s ( LoD Tensor with level=
1)
It only supports sequence
(LoD Tensor with level number is
1)
or
nested sequences (LoD tensor with level=0) as its inputs
.
or
a nested sequence (LoD tensor with level number is 2) as its input
.
- Case1:
- Case1:
If the axis is 1, level is 1, the LoD of Inputs are the same,
If the axis is other than 0(here, axis is 1 and level is 1),
LoD(x0) = {{0,2,4},{0,1,2,3,4}}; Dims(x0) = (2,3,4)
each input should have the same LoD information and the LoD
LoD(x1) = {{0,2,4},{0,1,2,3,4}}; Dims(x1) = (2,4,4)
information of the output keeps the same as the input.
LoD(Out) = {{0,2,4},{0,1,2,3,4}}; Dims(Out) = (2,7,4)
LoD(x0) = {{0,2,4}, {0,1,2,3,4}}; Dims(x0) = (4,3,4)
LoD(x1) = {{0,2,4}, {0,1,2,3,4}}; Dims(x1) = (4,4,4)
LoD(Out) = {{0,2,4}, {0,1,2,3,4}}; Dims(Out) = (4,7,4)
- Case2:
- Case2:
If the axis is 0, level is 1, the LoD of inputs are different,
If the axis is 0(here, leve is 0), the inputs are concatenated along
LoD(x0) = {{0,2,4}, {0,1,2,3,4}}; Dims(x0) = (2,3,4)
time steps, the LoD information of the output need to re-compute.
LoD(x1) = {{0,3,5}, {0,1,3,4,5}}; Dims(x1) = (3,3,4)
LoD(x0) = {{0,2,4}, {0,1,2,3,4}}; Dims(x0) = (4,3,4)
LoD(Out) = {{0,5,9}, {0,1,2,4,5,6,7,8,9}}; Dims(Out) = (5,3,4)
LoD(x1) = {{0,3,5}, {0,1,2,3,5}}; Dims(x1) = (5,3,4)
LoD(Out) = {{0,5,9}, {0,1,2,3,4,5,6,7,9}}; Dims(Out) = (9,3,4)
- Case3:
If the axis is 0(here, level is 1).
LoD(x0) = {{0,2,4}, {0,1,2,3,4}}; Dims(x0) = (4,3,4)
LoD(x1) = {{0,3,5}, {0,1,3,4,5}}; Dims(x1) = (5,3,4)
LoD(Out) = {{0,5,9}, {0,2,5,7,9}}; Dims(Out) = (9,3,4)
NOTE: The level of all the inputs should be the same.
NOTE: The level
s
of all the inputs should be the same.
)DOC"
);
)DOC"
);
}
}
};
};
...
@@ -95,7 +104,7 @@ class SequenceConcatGradOp : public framework::OperatorWithKernel {
...
@@ -95,7 +104,7 @@ class SequenceConcatGradOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
"The gradient of Out should not be null."
);
"The gradient of Out should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutputs
(
framework
::
GradVarName
(
"X"
)),
PADDLE_ENFORCE
(
ctx
->
HasOutputs
(
framework
::
GradVarName
(
"X"
)),
"The gradient of X should not be
empty
."
);
"The gradient of X should not be
null
."
);
ctx
->
SetOutputsDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputsDim
(
"X"
));
ctx
->
SetOutputsDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputsDim
(
"X"
));
}
}
};
};
...
...
paddle/operators/sequence_concat_op.h
浏览文件 @
d211b51b
...
@@ -23,35 +23,22 @@ using Tensor = framework::Tensor;
...
@@ -23,35 +23,22 @@ using Tensor = framework::Tensor;
using
LoDTensor
=
framework
::
LoDTensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
using
LoD
=
framework
::
LoD
;
using
LoD
=
framework
::
LoD
;
// Concat LoD, the initialized LoD of Output is lod(x0),
// if axis is not 0, the LoD(Out) will be the same as Inputs, if axis is 0:
// Case1:
// There is one level, the Output LoD will be modified:
// LoD(x0) = {{0,2,4}}
// LoD(x1) = {{0,1,5}}
// LoD(Out) = {{0,3,9}}
// Case2:
// There is two level, and concat level is 1,
// the Output LoD will be modified as followed:
// LoD(x0) = {{0,2,4}, {0,1,2,3,4}}
// LoD(x1) = {{0,3,5}, {0,1,3,4,5}}
// LoD(Out) = {{0,5,9}, {0,1,2,4,5,6,7,8,9}}
template
<
typename
T
>
template
<
typename
T
>
LoD
concatLoD
(
const
std
::
vector
<
const
T
*>
ins
,
const
size_t
axis
,
LoD
concatLoD
(
const
std
::
vector
<
const
T
*>
ins
,
const
size_t
axis
,
const
size_t
level
)
{
const
size_t
level
)
{
auto
out_lod
=
ins
[
0
]
->
lod
();
auto
out_lod
=
ins
[
0
]
->
lod
();
const
size_t
n
=
ins
.
size
();
const
size_t
n
=
ins
.
size
();
if
(
axis
==
0UL
)
{
if
(
axis
==
0UL
)
{
if
(
level
==
0
)
{
if
(
level
==
0
UL
)
{
for
(
size_t
i
=
1
;
i
<
n
;
++
i
)
{
for
(
size_t
i
=
1
;
i
<
n
;
++
i
)
{
for
(
size_t
j
=
0
;
j
<
ins
[
i
]
->
lod
()[
0
].
size
();
++
j
)
{
for
(
size_t
j
=
0
;
j
<
ins
[
i
]
->
lod
()[
0
].
size
();
++
j
)
{
out_lod
[
0
][
j
]
+=
ins
[
i
]
->
lod
()[
0
][
j
];
out_lod
[
0
][
j
]
+=
ins
[
i
]
->
lod
()[
0
][
j
];
}
}
}
}
}
else
if
(
level
==
1
)
{
}
else
if
(
level
==
1
UL
)
{
PADDLE_ENFORCE_EQ
(
ins
[
0
]
->
NumLevels
(),
2UL
,
PADDLE_ENFORCE_EQ
(
ins
[
0
]
->
NumLevels
(),
2UL
,
"If the level is 1, all of the inputs "
"If the level is 1, all of the inputs "
"should be the
the
nested sequence."
);
"should be the nested sequence."
);
for
(
size_t
i
=
1
;
i
<
n
;
++
i
)
{
for
(
size_t
i
=
1
;
i
<
n
;
++
i
)
{
for
(
size_t
j
=
0
;
j
<
ins
[
i
]
->
lod
()[
0
].
size
();
++
j
)
{
for
(
size_t
j
=
0
;
j
<
ins
[
i
]
->
lod
()[
0
].
size
();
++
j
)
{
out_lod
[
0
].
push_back
(
ins
[
i
]
->
lod
()[
0
][
j
]);
out_lod
[
0
].
push_back
(
ins
[
i
]
->
lod
()[
0
][
j
]);
...
@@ -80,16 +67,17 @@ class SequenceConcatOpKernel : public framework::OpKernel<T> {
...
@@ -80,16 +67,17 @@ class SequenceConcatOpKernel : public framework::OpKernel<T> {
"The level number of all the input LoDTensors "
"The level number of all the input LoDTensors "
"should be the same."
);
"should be the same."
);
PADDLE_ENFORCE_EQ
(
ins
[
0
]
->
dims
().
size
(),
ins
[
i
]
->
dims
().
size
(),
PADDLE_ENFORCE_EQ
(
ins
[
0
]
->
dims
().
size
(),
ins
[
i
]
->
dims
().
size
(),
"The dimension
s
size of all the input LoDTensors "
"The dimension size of all the input LoDTensors "
"should be the same."
);
"should be the same."
);
const
size_t
dims_size
=
ins
[
i
]
->
dims
().
size
();
const
size_t
dims_size
=
ins
[
i
]
->
dims
().
size
();
for
(
size_t
j
=
0
;
j
<
dims_size
;
++
j
)
{
for
(
size_t
j
=
0
;
j
<
dims_size
;
++
j
)
{
if
(
j
==
axis
)
continue
;
if
(
j
==
axis
)
continue
;
PADDLE_ENFORCE_EQ
(
ins
[
0
]
->
dims
()[
j
],
ins
[
i
]
->
dims
()[
j
],
PADDLE_ENFORCE_EQ
(
ins
[
0
]
->
dims
()[
j
],
ins
[
i
]
->
dims
()[
j
],
"The dimensions of all the input LoDTensors "
"Except for the dimension of the specified "
"except for the specify axis should be "
"axis along which all the inputs are concatenated, "
"matched exactly."
);
"dimensions of all the other axises of the input "
"LoDTensors should be the same."
);
}
}
}
}
...
...
python/paddle/v2/framework/tests/test_seq_concat_op.py
浏览文件 @
d211b51b
...
@@ -6,16 +6,16 @@ from op_test import OpTest
...
@@ -6,16 +6,16 @@ from op_test import OpTest
class
TestConcatOp
(
OpTest
):
class
TestConcatOp
(
OpTest
):
def
set_data
(
self
):
def
set_data
(
self
):
# two level, batch size is 3
# two level, batch size is 3
x0
=
np
.
random
.
random
((
11
,
6
,
3
)).
astype
(
'float32'
)
x0
=
np
.
random
.
random
((
4
,
6
,
3
)).
astype
(
'float32'
)
lod0
=
[[
0
,
2
,
5
,
11
],
[
0
,
1
,
2
,
5
,
7
,
11
]]
lod0
=
[[
0
,
2
,
4
],
[
0
,
1
,
2
,
3
,
4
]]
x1
=
np
.
random
.
random
((
11
,
8
,
3
)).
astype
(
'float32'
)
x1
=
np
.
random
.
random
((
4
,
8
,
3
)).
astype
(
'float32'
)
lod1
=
[[
0
,
2
,
5
,
11
],
[
0
,
1
,
2
,
5
,
7
,
11
]]
lod1
=
[[
0
,
2
,
4
],
[
0
,
1
,
2
,
3
,
4
]]
axis
=
1
axis
=
1
level
=
1
level
=
1
self
.
inputs
=
{
'X'
:
[(
'x0'
,
(
x0
,
lod0
)),
(
'x1'
,
(
x1
,
lod1
))]}
self
.
inputs
=
{
'X'
:
[(
'x0'
,
(
x0
,
lod0
)),
(
'x1'
,
(
x1
,
lod1
))]}
self
.
attrs
=
{
'axis'
:
axis
,
'level'
:
level
}
self
.
attrs
=
{
'axis'
:
axis
,
'level'
:
level
}
outs
=
[]
outs
=
[]
for
i
in
range
(
5
):
for
i
in
range
(
4
):
sub_x0
=
x0
[
lod0
[
level
][
i
]:
lod0
[
level
][
i
+
1
],
:]
sub_x0
=
x0
[
lod0
[
level
][
i
]:
lod0
[
level
][
i
+
1
],
:]
sub_x1
=
x1
[
lod1
[
level
][
i
]:
lod1
[
level
][
i
+
1
],
:]
sub_x1
=
x1
[
lod1
[
level
][
i
]:
lod1
[
level
][
i
+
1
],
:]
outs
.
append
(
np
.
concatenate
((
sub_x0
,
sub_x1
),
axis
=
axis
))
outs
.
append
(
np
.
concatenate
((
sub_x0
,
sub_x1
),
axis
=
axis
))
...
@@ -36,16 +36,36 @@ class TestConcatOp(OpTest):
...
@@ -36,16 +36,36 @@ class TestConcatOp(OpTest):
class
TestConcatOpDiffLod
(
TestConcatOp
):
class
TestConcatOpDiffLod
(
TestConcatOp
):
def
set_data
(
self
):
def
set_data
(
self
):
# two level, batch size is 3
# two level, batch size is 3
x0
=
np
.
random
.
random
((
12
,
6
,
3
)).
astype
(
'float32'
)
x0
=
np
.
random
.
random
((
4
,
6
,
3
)).
astype
(
'float32'
)
lod0
=
[[
0
,
3
,
9
,
12
],
[
0
,
2
,
3
,
5
,
9
,
12
]]
lod0
=
[[
0
,
2
,
4
],
[
0
,
1
,
2
,
3
,
4
]]
x1
=
np
.
random
.
random
((
11
,
6
,
3
)).
astype
(
'float32'
)
x1
=
np
.
random
.
random
((
5
,
6
,
3
)).
astype
(
'float32'
)
lod1
=
[[
0
,
2
,
5
,
11
],
[
0
,
1
,
2
,
5
,
7
,
11
]]
lod1
=
[[
0
,
3
,
5
],
[
0
,
1
,
2
,
3
,
5
]]
axis
=
0
axis
=
0
level
=
1
level
=
1
self
.
inputs
=
{
'X'
:
[(
'x0'
,
(
x0
,
lod0
)),
(
'x1'
,
(
x1
,
lod1
))]}
self
.
inputs
=
{
'X'
:
[(
'x0'
,
(
x0
,
lod0
)),
(
'x1'
,
(
x1
,
lod1
))]}
self
.
attrs
=
{
'axis'
:
axis
,
'level'
:
level
}
self
.
attrs
=
{
'axis'
:
axis
,
'level'
:
level
}
outs
=
[]
outs
=
[]
for
i
in
range
(
5
):
for
i
in
range
(
4
):
sub_x0
=
x0
[
lod0
[
level
][
i
]:
lod0
[
level
][
i
+
1
],
:]
sub_x1
=
x1
[
lod1
[
level
][
i
]:
lod1
[
level
][
i
+
1
],
:]
outs
.
append
(
np
.
concatenate
((
sub_x0
,
sub_x1
),
axis
=
axis
))
self
.
outputs
=
{
'Out'
:
np
.
concatenate
(
outs
,
axis
=
0
)}
class
TestConcatOpLevelZero
(
TestConcatOp
):
def
set_data
(
self
):
# two level, batch size is 3
x0
=
np
.
random
.
random
((
4
,
3
,
4
)).
astype
(
'float32'
)
lod0
=
[[
0
,
2
,
4
],
[
0
,
1
,
2
,
3
,
4
]]
x1
=
np
.
random
.
random
((
5
,
3
,
4
)).
astype
(
'float32'
)
lod1
=
[[
0
,
3
,
5
],
[
0
,
1
,
3
,
4
,
5
]]
axis
=
0
level
=
0
self
.
inputs
=
{
'X'
:
[(
'x0'
,
(
x0
,
lod0
)),
(
'x1'
,
(
x1
,
lod1
))]}
self
.
attrs
=
{
'axis'
:
axis
,
'level'
:
level
}
outs
=
[]
for
i
in
range
(
2
):
sub_x0
=
x0
[
lod0
[
level
][
i
]:
lod0
[
level
][
i
+
1
],
:]
sub_x0
=
x0
[
lod0
[
level
][
i
]:
lod0
[
level
][
i
+
1
],
:]
sub_x1
=
x1
[
lod1
[
level
][
i
]:
lod1
[
level
][
i
+
1
],
:]
sub_x1
=
x1
[
lod1
[
level
][
i
]:
lod1
[
level
][
i
+
1
],
:]
outs
.
append
(
np
.
concatenate
((
sub_x0
,
sub_x1
),
axis
=
axis
))
outs
.
append
(
np
.
concatenate
((
sub_x0
,
sub_x1
),
axis
=
axis
))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录