Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
d015403e
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
d015403e
编写于
11月 23, 2021
作者:
F
Feng Ni
提交者:
GitHub
11月 23, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[MOT] fix deploy infer of pptracking (#4659)
上级
c4db4e7f
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
113 addition
and
46 deletion
+113
-46
deploy/pptracking/python/mot_jde_infer.py
deploy/pptracking/python/mot_jde_infer.py
+17
-9
deploy/pptracking/python/mot_sde_infer.py
deploy/pptracking/python/mot_sde_infer.py
+96
-37
未找到文件。
deploy/pptracking/python/mot_jde_infer.py
浏览文件 @
d015403e
...
...
@@ -45,7 +45,7 @@ class JDE_Detector(Detector):
model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
batch_size (int): size of p
re batch in inference
batch_size (int): size of p
er batch in inference, default is 1 in tracking models
trt_min_shape (int): min shape for dynamic shape in trt
trt_max_shape (int): max shape for dynamic shape in trt
trt_opt_shape (int): opt shape for dynamic shape in trt
...
...
@@ -111,7 +111,8 @@ class JDE_Detector(Detector):
tid
=
t
.
track_id
tscore
=
t
.
score
if
tscore
<
threshold
:
continue
if
tlwh
[
2
]
*
tlwh
[
3
]
<=
self
.
tracker
.
min_box_area
:
continue
if
tlwh
[
2
]
*
tlwh
[
3
]
<=
self
.
tracker
.
min_box_area
:
continue
if
self
.
tracker
.
vertical_ratio
>
0
and
tlwh
[
2
]
/
tlwh
[
3
]
>
self
.
tracker
.
vertical_ratio
:
continue
...
...
@@ -123,7 +124,8 @@ class JDE_Detector(Detector):
def
predict
(
self
,
image_list
,
threshold
=
0.5
,
warmup
=
0
,
repeats
=
1
):
'''
Args:
image_list (list): list of image
image_list (list[str]): path of images, only support one image path
(batch_size=1) in tracking model
threshold (float): threshold of predicted box' score
Returns:
online_tlwhs, online_scores, online_ids (dict[np.array])
...
...
@@ -159,6 +161,7 @@ class JDE_Detector(Detector):
pred_dets
,
pred_embs
,
threshold
)
self
.
det_times
.
postprocess_time_s
.
end
()
self
.
det_times
.
img_num
+=
1
return
online_tlwhs
,
online_scores
,
online_ids
...
...
@@ -172,7 +175,7 @@ def predict_image(detector, image_list):
for
frame_id
,
img_file
in
enumerate
(
image_list
):
frame
=
cv2
.
imread
(
img_file
)
if
FLAGS
.
run_benchmark
:
detector
.
predict
([
fram
e
],
FLAGS
.
threshold
,
warmup
=
10
,
repeats
=
10
)
detector
.
predict
([
img_fil
e
],
FLAGS
.
threshold
,
warmup
=
10
,
repeats
=
10
)
cm
,
gm
,
gu
=
get_current_memory_mb
()
detector
.
cpu_mem
+=
cm
detector
.
gpu_mem
+=
gm
...
...
@@ -180,10 +183,15 @@ def predict_image(detector, image_list):
print
(
'Test iter {}, file name:{}'
.
format
(
frame_id
,
img_file
))
else
:
online_tlwhs
,
online_scores
,
online_ids
=
detector
.
predict
(
[
frame
],
FLAGS
.
threshold
)
online_im
=
plot_tracking_dict
(
frame
,
num_classes
,
online_tlwhs
,
online_ids
,
online_scores
,
frame_id
,
ids2names
)
[
img_file
],
FLAGS
.
threshold
)
online_im
=
plot_tracking_dict
(
frame
,
num_classes
,
online_tlwhs
,
online_ids
,
online_scores
,
frame_id
=
frame_id
,
ids2names
=
ids2names
)
if
FLAGS
.
save_images
:
if
not
os
.
path
.
exists
(
FLAGS
.
output_dir
):
os
.
makedirs
(
FLAGS
.
output_dir
)
...
...
deploy/pptracking/python/mot_sde_infer.py
浏览文件 @
d015403e
...
...
@@ -61,11 +61,14 @@ def bench_log(detector, img_list, model_info, batch_size=1, name=None):
class
SDE_Detector
(
Detector
):
"""
Detector of SDE methods
Args:
pred_config (object): config of model, defined by `Config(model_dir)`
model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
batch_size (int): size of per batch in inference, default is 1 in tracking models
trt_min_shape (int): min shape for dynamic shape in trt
trt_max_shape (int): max shape for dynamic shape in trt
trt_opt_shape (int): opt shape for dynamic shape in trt
...
...
@@ -99,10 +102,15 @@ class SDE_Detector(Detector):
trt_calib_mode
=
trt_calib_mode
,
cpu_threads
=
cpu_threads
,
enable_mkldnn
=
enable_mkldnn
)
assert
batch_size
==
1
,
"The
JDE Detector only supports batch
size=1 now"
assert
batch_size
==
1
,
"The
detector of tracking models only supports batch_
size=1 now"
self
.
pred_config
=
pred_config
def
postprocess
(
self
,
boxes
,
ori_image_shape
,
threshold
,
scaled
):
def
postprocess
(
self
,
boxes
,
ori_image_shape
,
threshold
,
inputs
,
scaled
=
False
):
over_thres_idx
=
np
.
nonzero
(
boxes
[:,
1
:
2
]
>=
threshold
)[
0
]
if
len
(
over_thres_idx
)
==
0
:
pred_dets
=
np
.
zeros
((
1
,
6
),
dtype
=
np
.
float32
)
...
...
@@ -115,6 +123,9 @@ class SDE_Detector(Detector):
# scaled means whether the coords after detector outputs
# have been scaled back to the original image, set True
# in general detector, set False in JDE YOLOv3.
input_shape
=
inputs
[
'image'
].
shape
[
2
:]
im_shape
=
inputs
[
'im_shape'
][
0
]
scale_factor
=
inputs
[
'scale_factor'
][
0
]
pred_bboxes
=
scale_coords
(
boxes
[:,
2
:],
input_shape
,
im_shape
,
scale_factor
)
else
:
...
...
@@ -138,7 +149,13 @@ class SDE_Detector(Detector):
return
pred_dets
,
pred_xyxys
def
predict
(
self
,
image_path
,
ori_image_shape
,
scaled
,
threshold
=
0.5
,
warmup
=
0
,
repeats
=
1
):
def
predict
(
self
,
image_path
,
ori_image_shape
,
threshold
=
0.5
,
scaled
=
False
,
warmup
=
0
,
repeats
=
1
):
'''
Args:
image_path (list[str]): path of images, only support one image path
...
...
@@ -148,7 +165,8 @@ class SDE_Detector(Detector):
scaled (bool): whether the coords after detector outputs are scaled,
default False in jde yolov3, set True in general detector.
Returns:
pred_dets (np.ndarray, [N, 6])
pred_dets (np.ndarray, [N, 6]): 'x,y,w,h,score,cls_id'
pred_xyxys (np.ndarray, [N, 4]): 'x1,y1,x2,y2'
'''
self
.
det_times
.
preprocess_time_s
.
start
()
inputs
=
self
.
preprocess
(
image_path
)
...
...
@@ -179,20 +197,24 @@ class SDE_Detector(Detector):
pred_xyxys
=
np
.
zeros
((
1
,
4
),
dtype
=
np
.
float32
)
else
:
pred_dets
,
pred_xyxys
=
self
.
postprocess
(
boxes
,
ori_image_shape
,
threshold
,
scaled
)
boxes
,
ori_image_shape
,
threshold
,
inputs
,
scaled
=
scaled
)
self
.
det_times
.
postprocess_time_s
.
end
()
self
.
det_times
.
img_num
+=
1
return
pred_dets
,
pred_xyxys
class
SDE_DetectorPicoDet
(
DetectorPicoDet
):
"""
PicoDet of SDE methods, the postprocess of PicoDet has not been exported as
other detectors, so do postprocess here.
Args:
pred_config (object): config of model, defined by `Config(model_dir)`
model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
batch_size (int): size of per batch in inference, default is 1 in tracking models
trt_min_shape (int): min shape for dynamic shape in trt
trt_max_shape (int): max shape for dynamic shape in trt
trt_opt_shape (int): opt shape for dynamic shape in trt
...
...
@@ -226,11 +248,10 @@ class SDE_DetectorPicoDet(DetectorPicoDet):
trt_calib_mode
=
trt_calib_mode
,
cpu_threads
=
cpu_threads
,
enable_mkldnn
=
enable_mkldnn
)
assert
batch_size
==
1
,
"The
JDE Detector only supports batch
size=1 now"
assert
batch_size
==
1
,
"The
detector of tracking models only supports batch_
size=1 now"
self
.
pred_config
=
pred_config
def
postprocess_bboxes
(
self
,
boxes
,
input_shape
,
im_shape
,
scale_factor
,
threshold
):
def
postprocess
(
self
,
boxes
,
ori_image_shape
,
threshold
):
over_thres_idx
=
np
.
nonzero
(
boxes
[:,
1
:
2
]
>=
threshold
)[
0
]
if
len
(
over_thres_idx
)
==
0
:
pred_dets
=
np
.
zeros
((
1
,
6
),
dtype
=
np
.
float32
)
...
...
@@ -241,8 +262,7 @@ class SDE_DetectorPicoDet(DetectorPicoDet):
pred_bboxes
=
boxes
[:,
2
:]
pred_xyxys
,
keep_idx
=
clip_box
(
pred_bboxes
,
input_shape
,
im_shape
,
scale_factor
)
pred_xyxys
,
keep_idx
=
clip_box
(
pred_bboxes
,
ori_image_shape
)
if
len
(
keep_idx
[
0
])
==
0
:
pred_dets
=
np
.
zeros
((
1
,
6
),
dtype
=
np
.
float32
)
pred_xyxys
=
np
.
zeros
((
1
,
4
),
dtype
=
np
.
float32
)
...
...
@@ -256,20 +276,30 @@ class SDE_DetectorPicoDet(DetectorPicoDet):
pred_dets
=
np
.
concatenate
(
(
pred_tlwhs
,
pred_scores
,
pred_cls_ids
),
axis
=
1
)
return
pred_dets
,
pred_xyxys
def
predict
(
self
,
image
,
scaled
,
threshold
=
0.5
,
warmup
=
0
,
repeats
=
1
):
def
predict
(
self
,
image_path
,
ori_image_shape
,
threshold
=
0.5
,
scaled
=
False
,
warmup
=
0
,
repeats
=
1
):
'''
Args:
image (np.ndarray): image numpy data
image_path (list[str]): path of images, only support one image path
(batch_size=1) in tracking model
ori_image_shape (list[int]: original image shape
threshold (float): threshold of predicted box' score
scaled (bool): whether the coords after detector outputs are scaled,
default False in jde yolov3, set True in general detector.
Returns:
pred_dets (np.ndarray, [N, 6])
pred_dets (np.ndarray, [N, 6]): 'x,y,w,h,score,cls_id'
pred_xyxys (np.ndarray, [N, 4]): 'x1,y1,x2,y2'
'''
self
.
det_times
.
preprocess_time_s
.
start
()
inputs
=
self
.
preprocess
(
image
)
inputs
=
self
.
preprocess
(
image
_path
)
self
.
det_times
.
preprocess_time_s
.
end
()
input_names
=
self
.
predictor
.
get_input_names
()
...
...
@@ -298,32 +328,50 @@ class SDE_DetectorPicoDet(DetectorPicoDet):
np_boxes_list
.
append
(
self
.
predictor
.
get_output_handle
(
output_names
[
out_idx
+
num_outs
]).
copy_to_cpu
())
self
.
det_times
.
inference_time_s
.
end
(
repeats
=
repeats
)
self
.
det_times
.
img_num
+=
1
self
.
det_times
.
postprocess_time_s
.
start
()
self
.
postprocess
=
PicoDetPostProcess
(
self
.
p
icodet_p
ostprocess
=
PicoDetPostProcess
(
inputs
[
'image'
].
shape
[
2
:],
inputs
[
'im_shape'
],
inputs
[
'scale_factor'
],
strides
=
self
.
pred_config
.
fpn_stride
,
nms_threshold
=
self
.
pred_config
.
nms
[
'nms_threshold'
])
boxes
,
boxes_num
=
self
.
postprocess
(
np_score_list
,
np_boxes_list
)
boxes
,
boxes_num
=
self
.
picodet_postprocess
(
np_score_list
,
np_boxes_list
)
if
len
(
boxes
)
==
0
:
pred_dets
=
np
.
zeros
((
1
,
6
),
dtype
=
np
.
float32
)
pred_xyxys
=
np
.
zeros
((
1
,
4
),
dtype
=
np
.
float32
)
else
:
input_shape
=
inputs
[
'image'
].
shape
[
2
:]
im_shape
=
inputs
[
'im_shape'
]
scale_factor
=
inputs
[
'scale_factor'
]
pred_dets
,
pred_xyxys
=
self
.
postprocess_bboxes
(
boxes
,
input_shape
,
im_shape
,
scale_factor
,
threshold
)
pred_dets
,
pred_xyxys
=
self
.
postprocess
(
boxes
,
ori_image_shape
,
threshold
)
self
.
det_times
.
postprocess_time_s
.
end
()
self
.
det_times
.
img_num
+=
1
return
pred_dets
,
pred_xyxys
class
SDE_ReID
(
object
):
"""
ReID of SDE methods
Args:
pred_config (object): config of model, defined by `Config(model_dir)`
model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
batch_size (int): size of per batch in inference, default 50 means at most
50 sub images can be made a batch and send into ReID model
trt_min_shape (int): min shape for dynamic shape in trt
trt_max_shape (int): max shape for dynamic shape in trt
trt_opt_shape (int): opt shape for dynamic shape in trt
trt_calib_mode (bool): If the model is produced by TRT offline quantitative
calibration, trt_calib_mode need to set True
cpu_threads (int): cpu threads
enable_mkldnn (bool): whether to open MKLDNN
"""
def
__init__
(
self
,
pred_config
,
model_dir
,
...
...
@@ -394,7 +442,8 @@ class SDE_ReID(object):
tlwh
=
t
.
to_tlwh
()
tscore
=
t
.
score
tid
=
t
.
track_id
if
tlwh
[
2
]
*
tlwh
[
3
]
<=
tracker
.
min_box_area
:
continue
if
tlwh
[
2
]
*
tlwh
[
3
]
<=
tracker
.
min_box_area
:
continue
if
tracker
.
vertical_ratio
>
0
and
tlwh
[
2
]
/
tlwh
[
3
]
>
tracker
.
vertical_ratio
:
continue
...
...
@@ -422,7 +471,8 @@ class SDE_ReID(object):
tlwh
=
t
.
to_tlwh
()
tscore
=
t
.
score
tid
=
t
.
track_id
if
tlwh
[
2
]
*
tlwh
[
3
]
<=
tracker
.
min_box_area
:
continue
if
tlwh
[
2
]
*
tlwh
[
3
]
<=
tracker
.
min_box_area
:
continue
if
tracker
.
vertical_ratio
>
0
and
tlwh
[
2
]
/
tlwh
[
3
]
>
tracker
.
vertical_ratio
:
continue
...
...
@@ -497,17 +547,23 @@ def predict_image(detector, reid_model, image_list):
image_list
.
sort
()
for
i
,
img_file
in
enumerate
(
image_list
):
frame
=
cv2
.
imread
(
img_file
)
ori_image_shape
=
list
(
frame
.
shape
[:
2
])
if
FLAGS
.
run_benchmark
:
pred_dets
,
pred_xyxys
=
detector
.
predict
(
[
frame
],
FLAGS
.
scaled
,
FLAGS
.
threshold
,
warmup
=
10
,
repeats
=
10
)
[
img_file
],
ori_image_shape
,
FLAGS
.
threshold
,
FLAGS
.
scaled
,
warmup
=
10
,
repeats
=
10
)
cm
,
gm
,
gu
=
get_current_memory_mb
()
detector
.
cpu_mem
+=
cm
detector
.
gpu_mem
+=
gm
detector
.
gpu_util
+=
gu
print
(
'Test iter {}, file name:{}'
.
format
(
i
,
img_file
))
else
:
pred_dets
,
pred_xyxys
=
detector
.
predict
(
[
frame
],
FLAGS
.
scaled
,
FLAGS
.
threshol
d
)
pred_dets
,
pred_xyxys
=
detector
.
predict
(
[
img_file
],
ori_image_shape
,
FLAGS
.
threshold
,
FLAGS
.
scale
d
)
if
len
(
pred_dets
)
==
1
and
np
.
sum
(
pred_dets
)
==
0
:
print
(
'Frame {} has no object, try to modify score threshold.'
.
...
...
@@ -577,8 +633,9 @@ def predict_video(detector, reid_model, camera_id):
if
not
ret
:
break
timer
.
tic
()
pred_dets
,
pred_xyxys
=
detector
.
predict
([
frame
],
FLAGS
.
scaled
,
FLAGS
.
threshold
)
ori_image_shape
=
list
(
frame
.
shape
[:
2
])
pred_dets
,
pred_xyxys
=
detector
.
predict
([
frame
],
ori_image_shape
,
FLAGS
.
threshold
,
FLAGS
.
scaled
)
if
len
(
pred_dets
)
==
1
and
np
.
sum
(
pred_dets
)
==
0
:
print
(
'Frame {} has no object, try to modify score threshold.'
.
...
...
@@ -674,7 +731,8 @@ def predict_mtmct_seq(detector, reid_model, seq_name, output_dir):
results
=
defaultdict
(
list
)
mot_features_dict
=
{}
# cid_tid_fid feats
print
(
'Totally {} frames found in seq {}.'
.
format
(
len
(
image_list
),
seq_name
))
print
(
'Totally {} frames found in seq {}.'
.
format
(
len
(
image_list
),
seq_name
))
for
frame_id
,
img_file
in
enumerate
(
image_list
):
if
frame_id
%
40
==
0
:
...
...
@@ -682,8 +740,8 @@ def predict_mtmct_seq(detector, reid_model, seq_name, output_dir):
frame
=
cv2
.
imread
(
os
.
path
.
join
(
fpath
,
img_file
))
ori_image_shape
=
list
(
frame
.
shape
[:
2
])
frame_path
=
os
.
path
.
join
(
fpath
,
img_file
)
pred_dets
,
pred_xyxys
=
detector
.
predict
([
frame_path
],
ori_image_shape
,
FLAGS
.
scaled
,
FLAGS
.
threshold
)
pred_dets
,
pred_xyxys
=
detector
.
predict
([
frame_path
],
ori_image_shape
,
FLAGS
.
threshold
,
FLAGS
.
scaled
)
if
len
(
pred_dets
)
==
1
and
np
.
sum
(
pred_dets
)
==
0
:
print
(
'Frame {} has no object, try to modify score threshold.'
.
...
...
@@ -765,15 +823,16 @@ def predict_mtmct(detector, reid_model, mtmct_dir, mtmct_cfg):
ext
=
seq
.
split
(
'.'
)[
-
1
]
seq
=
seq
.
split
(
'.'
)[
-
2
]
print
(
'ffmpeg processing of video {}'
.
format
(
fpath
))
frames_path
=
video2frames
(
video_path
=
fpath
,
outpath
=
mtmct_dir
,
frame_rate
=
25
)
frames_path
=
video2frames
(
video_path
=
fpath
,
outpath
=
mtmct_dir
,
frame_rate
=
25
)
fpath
=
os
.
path
.
join
(
mtmct_dir
,
seq
)
if
os
.
path
.
isdir
(
fpath
)
==
False
:
print
(
'{} is not a image folder.'
.
format
(
fpath
))
continue
mot_features_dict
=
predict_mtmct_seq
(
detector
,
reid_model
,
seq
,
output_dir
)
mot_features_dict
=
predict_mtmct_seq
(
detector
,
reid_model
,
seq
,
output_dir
)
cid
=
int
(
re
.
sub
(
'[a-z,A-Z]'
,
""
,
seq
))
tid_data
,
mot_list_break
=
trajectory_fusion
(
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录