Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
cf685f36
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
694
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
cf685f36
编写于
11月 19, 2018
作者:
T
Tao Luo
提交者:
GitHub
11月 19, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #14458 from tpatejko/tpatejko/mkldnn-skip-connections
[WIP] Correcting and extending MKLDNN residual connection fuse pass
上级
f4c869d8
53da846d
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
527 addition
and
155 deletion
+527
-155
paddle/fluid/framework/ir/conv_elementwise_add_mkldnn_fuse_pass.cc
...uid/framework/ir/conv_elementwise_add_mkldnn_fuse_pass.cc
+356
-72
paddle/fluid/framework/ir/conv_elementwise_add_mkldnn_fuse_pass.h
...luid/framework/ir/conv_elementwise_add_mkldnn_fuse_pass.h
+100
-5
paddle/fluid/framework/ir/conv_elementwise_add_mkldnn_fuse_pass_tester.cc
...mework/ir/conv_elementwise_add_mkldnn_fuse_pass_tester.cc
+67
-70
paddle/fluid/framework/ir/graph_pattern_detector.cc
paddle/fluid/framework/ir/graph_pattern_detector.cc
+3
-7
paddle/fluid/framework/ir/graph_pattern_detector.h
paddle/fluid/framework/ir/graph_pattern_detector.h
+1
-1
未找到文件。
paddle/fluid/framework/ir/conv_elementwise_add_mkldnn_fuse_pass.cc
浏览文件 @
cf685f36
...
...
@@ -14,14 +14,15 @@
#include "paddle/fluid/framework/ir/conv_elementwise_add_mkldnn_fuse_pass.h"
#include <functional>
#include <utility>
#include <list>
#include <map>
#include <tuple>
#include "paddle/fluid/framework/ir/graph_traits.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
namespace
{
// The function keeps the graph consistent by replacing
// a node 'from' in the set of inputs nodes
...
...
@@ -51,74 +52,117 @@ void CorrectGraphEdges(Graph* graph, Node* from, Node* to) {
}
}
}
}
// namespace
using
graph_ptr
=
std
::
unique_ptr
<
ir
::
Graph
>
;
graph_ptr
ConvElementwiseAddMKLDNNFusePass
::
ApplyImpl
(
graph_ptr
graph
)
const
{
FusePassBase
::
Init
(
name_scope_
,
graph
.
get
());
bool
IsReachable
(
ir
::
Graph
*
graph
,
Node
*
from
,
Node
*
to
)
{
auto
find_node
=
[](
ir
::
Graph
*
graph
,
const
Node
*
node
)
->
Node
*
{
for
(
auto
n
:
graph
->
Nodes
())
{
if
(
n
==
node
)
{
return
n
;
}
}
GraphPatternDetector
gpd
;
auto
pattern
=
gpd
.
mutable_pattern
()
;
return
nullptr
;
}
;
patterns
::
Conv
conv_pattern
{
pattern
,
name_scope_
};
auto
conv_output
=
conv_pattern
();
if
(
from
==
to
)
{
return
true
;
}
patterns
::
ElementwiseAdd
elementwise_add_pattern
{
pattern
,
name_scope_
};
elementwise_add_pattern
(
conv_output
);
std
::
map
<
Node
*
,
bool
>
visited
;
conv_output
->
AsIntermediate
();
for
(
auto
&
node
:
GraphTraits
::
DFS
(
*
graph
))
{
visited
[
&
node
]
=
false
;
}
visited
[
from
]
=
true
;
std
::
list
<
Node
*>
queue
;
queue
.
push_back
(
from
);
while
(
!
queue
.
empty
())
{
auto
cur
=
find_node
(
graph
,
queue
.
front
());
queue
.
pop_front
();
if
(
!
cur
)
return
false
;
auto
conv_op_has_bias
=
[](
const
Node
&
conv_op
)
->
std
::
pair
<
bool
,
Node
*>
{
auto
bias_input_names
=
conv_op
.
Op
()
->
Inputs
();
auto
bias_it
=
bias_input_names
.
find
(
"Bias"
);
for
(
auto
n
:
cur
->
outputs
)
{
if
(
n
==
to
)
{
return
true
;
}
if
(
!
visited
[
n
])
{
visited
[
n
]
=
true
;
queue
.
push_back
(
n
);
}
}
}
return
false
;
}
boost
::
optional
<
Node
*>
HasBias
(
const
Node
&
op
,
const
std
::
string
&
bias_name
)
{
auto
bias_input_names
=
op
.
Op
()
->
Inputs
();
auto
bias_it
=
bias_input_names
.
find
(
bias_name
);
if
(
bias_it
!=
std
::
end
(
bias_input_names
))
{
bool
has_bias
=
!
bias_it
->
second
.
empty
();
if
(
has_bias
)
{
auto
conv_
bias_names
=
bias_it
->
second
;
auto
conv_
bias_names_it
=
std
::
find_if
(
std
::
begin
(
conv_op
.
inputs
),
std
::
end
(
conv_
op
.
inputs
),
[
&
conv_
bias_names
](
Node
*
n
)
->
bool
{
return
n
->
Name
()
==
conv_
bias_names
[
0
];
auto
bias_names
=
bias_it
->
second
;
auto
bias_names_it
=
std
::
find_if
(
std
::
begin
(
op
.
inputs
),
std
::
end
(
op
.
inputs
),
[
&
bias_names
](
Node
*
n
)
->
bool
{
return
n
->
Name
()
==
bias_names
[
0
];
});
return
std
::
make_pair
(
has_bias
,
*
conv_bias_names_it
)
;
return
*
bias_names_it
;
}
}
return
std
::
make_pair
(
false
,
nullptr
);
};
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
g
)
{
GET_IR_NODE_FROM_SUBGRAPH
(
conv_op
,
conv_op
,
conv_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
conv_input
,
conv_input
,
conv_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
conv_filter
,
conv_filter
,
conv_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
conv_output
,
conv_output
,
conv_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
elementwise_add_op
,
elementwise_add_op
,
elementwise_add_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
elementwise_add_x
,
elementwise_add_x
,
elementwise_add_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
elementwise_add_out
,
elementwise_add_out
,
elementwise_add_pattern
);
return
boost
::
none
;
}
if
(
FindFuseOption
(
*
conv_op
,
*
elementwise_add_op
)
!=
FUSE_MKLDNN
)
return
;
ResidualConnectionMKLDNNFusePass
::
IdentityFuseHandle
::
IdentityFuseHandle
(
const
ResidualConnectionMKLDNNFusePass
::
CanFuseFunc
&
can_fuse_func
,
const
ResidualConnectionMKLDNNFusePass
::
IdentityConvFunc
&
get_node_from_conv_op
,
const
ResidualConnectionMKLDNNFusePass
::
IdentityElementwiseAddFunc
&
get_node_from_elementwise_add_op
)
:
fusion_stats
{
std
::
make_shared
<
int
>
(
0
)},
can_fuse_func
{
can_fuse_func
},
get_node_from_conv_op
{
get_node_from_conv_op
},
get_node_from_elementwise_add_op
{
get_node_from_elementwise_add_op
}
{}
void
ResidualConnectionMKLDNNFusePass
::
IdentityFuseHandle
::
operator
()(
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
graph
)
{
Node
*
conv_op
;
Node
*
conv_input
;
Node
*
conv_filter
;
Node
*
conv_output
;
Node
*
elementwise_add_op
;
Node
*
elementwise_add_identity
;
Node
*
elementwise_add_out
;
std
::
tie
(
conv_op
,
conv_input
,
conv_filter
,
conv_output
)
=
get_node_from_conv_op
(
subgraph
);
std
::
tie
(
elementwise_add_op
,
elementwise_add_identity
,
elementwise_add_out
)
=
get_node_from_elementwise_add_op
(
subgraph
);
if
(
!
can_fuse_func
(
conv_op
,
elementwise_add_op
))
return
;
if
(
!
IsReachable
(
graph
,
elementwise_add_identity
,
conv_output
))
return
;
OpDesc
op_desc
;
op_desc
.
SetType
(
"conv2d"
);
op_desc
.
SetInput
(
"Input"
,
{
conv_input
->
Name
()});
op_desc
.
SetInput
(
"Filter"
,
{
conv_filter
->
Name
()});
op_desc
.
SetInput
(
"ResidualData"
,
{
elementwise_add_x
->
Name
()});
op_desc
.
SetInput
(
"ResidualData"
,
{
elementwise_add_identity
->
Name
()});
op_desc
.
SetOutput
(
"Output"
,
{
conv_output
->
Name
()});
bool
has_bias
;
Node
*
conv_bias
;
std
::
tie
(
has_bias
,
conv_bias
)
=
conv_op_has_bias
(
*
conv_op
);
auto
conv_bias
=
HasBias
(
*
conv_op
,
"Bias"
);
if
(
has
_bias
)
{
op_desc
.
SetInput
(
"Bias"
,
{
conv_bias
->
Name
()});
if
(
conv
_bias
)
{
op_desc
.
SetInput
(
"Bias"
,
{(
*
conv_bias
)
->
Name
()});
}
for
(
const
auto
&
attr
:
conv_op
->
Op
()
->
GetAttrMap
())
{
...
...
@@ -127,23 +171,263 @@ graph_ptr ConvElementwiseAddMKLDNNFusePass::ApplyImpl(graph_ptr graph) const {
op_desc
.
SetAttr
(
"fuse_residual_connection"
,
true
);
auto
fused_conv_op
=
g
->
CreateOpNode
(
&
op_desc
);
auto
fused_conv_op
=
graph
->
CreateOpNode
(
&
op_desc
);
IR_NODE_LINK_TO
(
conv_input
,
fused_conv_op
);
IR_NODE_LINK_TO
(
conv_filter
,
fused_conv_op
);
IR_NODE_LINK_TO
(
elementwise_add_x
,
fused_conv_op
);
IR_NODE_LINK_TO
(
elementwise_add_identity
,
fused_conv_op
);
IR_NODE_LINK_TO
(
fused_conv_op
,
conv_output
);
if
(
has
_bias
)
{
IR_NODE_LINK_TO
(
conv_bias
,
fused_conv_op
);
if
(
conv
_bias
)
{
IR_NODE_LINK_TO
((
*
conv_bias
)
,
fused_conv_op
);
}
CorrectGraphEdges
(
g
,
elementwise_add_out
,
conv_output
);
GraphSafeRemoveNodes
(
g
,
{
elementwise_add_out
,
conv_op
,
elementwise_add_op
});
CorrectGraphEdges
(
graph
,
elementwise_add_out
,
conv_output
);
GraphSafeRemoveNodes
(
graph
,
{
elementwise_add_out
,
conv_op
,
elementwise_add_op
});
(
*
fusion_stats
)
++
;
}
ResidualConnectionMKLDNNFusePass
::
ProjectionFuseHandle
::
ProjectionFuseHandle
(
const
ResidualConnectionMKLDNNFusePass
::
CanFuseFunc
&
can_fuse_func
,
const
ResidualConnectionMKLDNNFusePass
::
ProjectionConvFunc
&
get_node_from_conv_x_op
,
const
ResidualConnectionMKLDNNFusePass
::
ProjectionConvFunc
&
get_node_from_conv_y_op
,
const
ResidualConnectionMKLDNNFusePass
::
ProjectionElementwiseAddFunc
&
get_node_from_elementwise_add_op
)
:
fusion_stats
{
std
::
make_shared
<
int
>
(
0
)},
can_fuse_func
{
can_fuse_func
},
get_node_from_conv_x_op
{
get_node_from_conv_x_op
},
get_node_from_conv_y_op
{
get_node_from_conv_y_op
},
get_node_from_elementwise_add_op
{
get_node_from_elementwise_add_op
}
{}
void
ResidualConnectionMKLDNNFusePass
::
ProjectionFuseHandle
::
operator
()(
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
graph
)
{
Node
*
conv_x_op
;
Node
*
conv_x_input
;
Node
*
conv_x_filter
;
Node
*
conv_x_output
;
Node
*
conv_y_op
;
Node
*
conv_y_input
;
Node
*
conv_y_filter
;
Node
*
conv_y_output
;
Node
*
elementwise_add_op
;
Node
*
elementwise_add_out
;
std
::
tie
(
conv_x_op
,
conv_x_input
,
conv_x_filter
,
conv_x_output
)
=
get_node_from_conv_x_op
(
subgraph
);
std
::
tie
(
conv_y_op
,
conv_y_input
,
conv_y_filter
,
conv_y_output
)
=
get_node_from_conv_y_op
(
subgraph
);
std
::
tie
(
elementwise_add_op
,
elementwise_add_out
)
=
get_node_from_elementwise_add_op
(
subgraph
);
if
(
!
can_fuse_func
(
conv_x_op
,
elementwise_add_op
))
return
;
if
(
!
can_fuse_func
(
conv_y_op
,
elementwise_add_op
))
return
;
Node
*
projection_node
;
Node
*
residual_conv_op
;
Node
*
residual_conv_input
;
Node
*
residual_conv_filter
;
Node
*
residual_conv_output
;
if
(
IsReachable
(
graph
,
conv_x_input
,
conv_y_output
))
{
projection_node
=
conv_x_output
;
residual_conv_op
=
conv_y_op
;
residual_conv_input
=
conv_y_input
;
residual_conv_filter
=
conv_y_filter
;
residual_conv_output
=
conv_y_output
;
}
else
if
(
IsReachable
(
graph
,
conv_y_input
,
conv_x_output
))
{
projection_node
=
conv_y_output
;
residual_conv_op
=
conv_x_op
;
residual_conv_input
=
conv_x_input
;
residual_conv_filter
=
conv_x_filter
;
residual_conv_output
=
conv_x_output
;
}
else
{
return
;
}
OpDesc
op_desc
;
op_desc
.
SetType
(
"conv2d"
);
op_desc
.
SetInput
(
"Input"
,
{
residual_conv_input
->
Name
()});
op_desc
.
SetInput
(
"Filter"
,
{
residual_conv_filter
->
Name
()});
op_desc
.
SetInput
(
"ResidualData"
,
{
projection_node
->
Name
()});
op_desc
.
SetOutput
(
"Output"
,
{
residual_conv_output
->
Name
()});
auto
residual_conv_bias
=
HasBias
(
*
residual_conv_op
,
"Bias"
);
if
(
residual_conv_bias
)
{
op_desc
.
SetInput
(
"Bias"
,
{(
*
residual_conv_bias
)
->
Name
()});
}
for
(
const
auto
&
attr
:
residual_conv_op
->
Op
()
->
GetAttrMap
())
{
op_desc
.
SetAttr
(
attr
.
first
,
attr
.
second
);
}
op_desc
.
SetAttr
(
"fuse_residual_connection"
,
true
);
auto
fused_conv_op
=
graph
->
CreateOpNode
(
&
op_desc
);
IR_NODE_LINK_TO
(
residual_conv_input
,
fused_conv_op
);
IR_NODE_LINK_TO
(
residual_conv_filter
,
fused_conv_op
);
IR_NODE_LINK_TO
(
projection_node
,
fused_conv_op
);
IR_NODE_LINK_TO
(
fused_conv_op
,
residual_conv_output
);
if
(
residual_conv_bias
)
{
IR_NODE_LINK_TO
((
*
residual_conv_bias
),
fused_conv_op
);
}
CorrectGraphEdges
(
graph
,
elementwise_add_out
,
residual_conv_output
);
GraphSafeRemoveNodes
(
graph
,
{
elementwise_add_out
,
residual_conv_op
,
elementwise_add_op
});
(
*
fusion_stats
)
++
;
}
std
::
tuple
<
Node
*
,
Node
*
,
Node
*
,
Node
*>
ResidualConnectionMKLDNNFusePass
::
GetNodesFromConv
(
const
patterns
::
Conv
&
conv_pattern
,
const
GraphPatternDetector
::
subgraph_t
&
subgraph
)
const
{
GET_IR_NODE_FROM_SUBGRAPH
(
conv_op
,
conv_op
,
conv_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
conv_input
,
conv_input
,
conv_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
conv_filter
,
conv_filter
,
conv_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
conv_output
,
conv_output
,
conv_pattern
);
return
std
::
make_tuple
(
conv_op
,
conv_input
,
conv_filter
,
conv_output
);
}
GraphWithStats
ResidualConnectionMKLDNNFusePass
::
FuseConvAsX
(
const
std
::
string
&
name_scope
,
const
GraphWithStats
&
graph_with_stats
)
const
{
ir
::
Graph
*
graph
;
int
stats
;
std
::
tie
(
graph
,
stats
)
=
graph_with_stats
;
GraphPatternDetector
gpd
;
auto
pattern
=
gpd
.
mutable_pattern
();
patterns
::
Conv
conv_pattern
{
pattern
,
name_scope
};
auto
conv_output
=
conv_pattern
();
patterns
::
ElementwiseAdd
elementwise_add_pattern
{
pattern
,
name_scope
};
elementwise_add_pattern
(
conv_output
,
pattern
->
NewNode
(
elementwise_add_pattern
.
elementwise_add_y_repr
()));
conv_output
->
AsIntermediate
();
auto
get_node_from_elementwise_add
=
[
&
elementwise_add_pattern
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
)
->
std
::
tuple
<
Node
*
,
Node
*
,
Node
*>
{
GET_IR_NODE_FROM_SUBGRAPH
(
elementwise_add_op
,
elementwise_add_op
,
elementwise_add_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
elementwise_add_y
,
elementwise_add_y
,
elementwise_add_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
elementwise_add_out
,
elementwise_add_out
,
elementwise_add_pattern
);
return
std
::
make_tuple
(
elementwise_add_op
,
elementwise_add_y
,
elementwise_add_out
);
};
return
ExecuteHandleOnGraph
<
IdentityFuseHandle
>
(
&
gpd
,
graph_with_stats
,
[
this
,
&
conv_pattern
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
)
{
return
GetNodesFromConv
(
conv_pattern
,
subgraph
);
},
get_node_from_elementwise_add
);
}
GraphWithStats
ResidualConnectionMKLDNNFusePass
::
FuseConvAsY
(
const
std
::
string
&
name_scope
,
const
GraphWithStats
&
graph_with_stats
)
const
{
GraphPatternDetector
gpd
;
auto
pattern
=
gpd
.
mutable_pattern
();
patterns
::
Conv
conv_pattern
{
pattern
,
name_scope
};
auto
conv_output
=
conv_pattern
();
patterns
::
ElementwiseAdd
elementwise_add_pattern
{
pattern
,
name_scope
};
elementwise_add_pattern
(
pattern
->
NewNode
(
elementwise_add_pattern
.
elementwise_add_x_repr
()),
conv_output
);
conv_output
->
AsIntermediate
();
auto
get_node_from_elementwise_add
=
[
&
elementwise_add_pattern
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
)
->
std
::
tuple
<
Node
*
,
Node
*
,
Node
*>
{
GET_IR_NODE_FROM_SUBGRAPH
(
elementwise_add_op
,
elementwise_add_op
,
elementwise_add_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
elementwise_add_x
,
elementwise_add_x
,
elementwise_add_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
elementwise_add_out
,
elementwise_add_out
,
elementwise_add_pattern
);
return
std
::
make_tuple
(
elementwise_add_op
,
elementwise_add_x
,
elementwise_add_out
);
};
gpd
(
graph
.
get
(),
handler
);
return
ExecuteHandleOnGraph
<
IdentityFuseHandle
>
(
&
gpd
,
graph_with_stats
,
[
this
,
&
conv_pattern
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
)
{
return
GetNodesFromConv
(
conv_pattern
,
subgraph
);
},
get_node_from_elementwise_add
);
}
GraphWithStats
ResidualConnectionMKLDNNFusePass
::
FuseProjectionConv
(
const
std
::
string
&
name_scope
,
const
GraphWithStats
&
graph_with_stats
)
const
{
GraphPatternDetector
gpd
;
auto
pattern
=
gpd
.
mutable_pattern
();
patterns
::
Conv
conv_x_pattern
{
pattern
,
name_scope
};
auto
conv_x_output
=
conv_x_pattern
();
patterns
::
Conv
conv_y_pattern
{
pattern
,
name_scope
};
auto
conv_y_output
=
conv_y_pattern
();
patterns
::
ElementwiseAdd
elementwise_add_pattern
{
pattern
,
name_scope
};
elementwise_add_pattern
(
conv_x_output
,
conv_y_output
);
conv_x_output
->
AsIntermediate
();
conv_y_output
->
AsIntermediate
();
auto
get_node_from_elementwise_add
=
[
&
elementwise_add_pattern
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
)
->
std
::
tuple
<
Node
*
,
Node
*>
{
GET_IR_NODE_FROM_SUBGRAPH
(
elementwise_add_op
,
elementwise_add_op
,
elementwise_add_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
elementwise_add_out
,
elementwise_add_out
,
elementwise_add_pattern
);
return
std
::
make_tuple
(
elementwise_add_op
,
elementwise_add_out
);
};
return
ExecuteHandleOnGraph
<
ProjectionFuseHandle
>
(
&
gpd
,
graph_with_stats
,
[
this
,
&
conv_x_pattern
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
)
{
return
GetNodesFromConv
(
conv_x_pattern
,
subgraph
);
},
[
this
,
&
conv_y_pattern
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
)
{
return
GetNodesFromConv
(
conv_y_pattern
,
subgraph
);
},
get_node_from_elementwise_add
);
}
graph_ptr
ResidualConnectionMKLDNNFusePass
::
ApplyImpl
(
graph_ptr
graph
)
const
{
FusePassBase
::
Init
(
name_scope_
,
graph
.
get
());
auto
fused_graph_with_stats
=
FuseConvAsY
(
name_scope_
,
FuseConvAsX
(
name_scope_
,
FuseProjectionConv
(
name_scope_
,
std
::
make_pair
(
graph
.
get
(),
0
))));
std
::
cout
<<
"Fused graph "
<<
fused_graph_with_stats
.
second
<<
std
::
endl
;
AddStatis
(
fused_graph_with_stats
.
second
);
return
graph
;
}
}
// namespace ir
...
...
@@ -151,4 +435,4 @@ graph_ptr ConvElementwiseAddMKLDNNFusePass::ApplyImpl(graph_ptr graph) const {
}
// namespace paddle
REGISTER_PASS
(
conv_elementwise_add_mkldnn_fuse_pass
,
paddle
::
framework
::
ir
::
ConvElementwiseAdd
MKLDNNFusePass
);
paddle
::
framework
::
ir
::
ResidualConnection
MKLDNNFusePass
);
paddle/fluid/framework/ir/conv_elementwise_add_mkldnn_fuse_pass.h
浏览文件 @
cf685f36
...
...
@@ -15,24 +15,119 @@
#pragma once
#include <string>
#include <tuple>
#include <utility>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include <boost/optional.hpp>
namespace
paddle
{
namespace
framework
{
namespace
ir
{
class
ConvElementwiseAddMKLDNNFusePass
:
public
FusePassBase
{
using
graph_ptr
=
std
::
unique_ptr
<
ir
::
Graph
>
;
using
GraphWithStats
=
std
::
pair
<
ir
::
Graph
*
,
int
>
;
void
CorrectGraphEdges
(
Graph
*
graph
,
Node
*
from
,
Node
*
to
);
bool
IsReachable
(
ir
::
Graph
*
graph
,
Node
*
from
,
Node
*
to
);
boost
::
optional
<
Node
*>
HasBias
(
const
Node
&
op
,
const
std
::
string
&
bias_name
);
class
ResidualConnectionMKLDNNFusePass
:
public
FusePassBase
{
private:
GraphWithStats
FuseConvAsX
(
const
std
::
string
&
name_scope
,
const
GraphWithStats
&
graph_with_stats
)
const
;
GraphWithStats
FuseConvAsY
(
const
std
::
string
&
name_scope
,
const
GraphWithStats
&
graph_with_stats
)
const
;
GraphWithStats
FuseProjectionConv
(
const
std
::
string
&
name_scope
,
const
GraphWithStats
&
graph_with_stats
)
const
;
template
<
typename
RetType
>
using
GetNodeFunc
=
std
::
function
<
RetType
(
const
GraphPatternDetector
::
subgraph_t
&
subgraph
)
>
;
using
IdentityConvFunc
=
GetNodeFunc
<
std
::
tuple
<
Node
*
,
Node
*
,
Node
*
,
Node
*>>
;
using
IdentityElementwiseAddFunc
=
GetNodeFunc
<
std
::
tuple
<
Node
*
,
Node
*
,
Node
*>>
;
using
ProjectionConvFunc
=
IdentityConvFunc
;
using
ProjectionElementwiseAddFunc
=
GetNodeFunc
<
std
::
tuple
<
Node
*
,
Node
*>>
;
using
CanFuseFunc
=
std
::
function
<
bool
(
Node
*
,
Node
*
)
>
;
std
::
tuple
<
Node
*
,
Node
*
,
Node
*
,
Node
*>
GetNodesFromConv
(
const
patterns
::
Conv
&
conv_pattern
,
const
GraphPatternDetector
::
subgraph_t
&
subgraph
)
const
;
std
::
tuple
<
Node
*
,
Node
*
,
Node
*
,
Node
*>
GetNodesFromProjectionConv
(
const
patterns
::
Conv
&
conv_pattern
,
const
GraphPatternDetector
::
subgraph_t
&
subgraph
)
const
;
template
<
typename
HandleType
,
typename
...
OpFuncs
>
GraphWithStats
ExecuteHandleOnGraph
(
GraphPatternDetector
*
gpd
,
const
GraphWithStats
&
graph_with_stats
,
OpFuncs
&&
...
op_funcs
)
const
{
ir
::
Graph
*
graph
;
int
stats
;
std
::
tie
(
graph
,
stats
)
=
graph_with_stats
;
auto
can_fuse
=
[
this
](
Node
*
op1
,
Node
*
op2
)
->
bool
{
return
this
->
FindFuseOption
(
*
op1
,
*
op2
)
==
FUSE_MKLDNN
;
};
auto
fuse_handle
=
HandleType
{
can_fuse
,
std
::
forward
<
OpFuncs
>
(
op_funcs
)...};
(
*
gpd
)(
graph
,
fuse_handle
);
return
std
::
make_pair
(
graph
,
stats
+
fuse_handle
.
get_stats
());
}
struct
IdentityFuseHandle
{
IdentityFuseHandle
(
const
CanFuseFunc
&
can_fuse_func
,
const
IdentityConvFunc
&
get_node_from_conv_op
,
const
IdentityElementwiseAddFunc
&
get_node_from_elementwise_add_op
);
void
operator
()(
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
graph
);
int
get_stats
()
const
{
return
*
fusion_stats
;
}
private:
std
::
shared_ptr
<
int
>
fusion_stats
;
CanFuseFunc
can_fuse_func
;
IdentityConvFunc
get_node_from_conv_op
;
IdentityElementwiseAddFunc
get_node_from_elementwise_add_op
;
};
struct
ProjectionFuseHandle
{
ProjectionFuseHandle
(
const
CanFuseFunc
&
can_fuse_func
,
const
ProjectionConvFunc
&
get_node_from_conv_x_op
,
const
ProjectionConvFunc
&
get_node_from_conv_y_op
,
const
ProjectionElementwiseAddFunc
&
get_node_from_elementwise_add_op
);
void
operator
()(
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
graph
);
int
get_stats
()
const
{
return
*
fusion_stats
;
}
private:
std
::
shared_ptr
<
int
>
fusion_stats
;
CanFuseFunc
can_fuse_func
;
ProjectionConvFunc
get_node_from_conv_x_op
;
ProjectionConvFunc
get_node_from_conv_y_op
;
ProjectionElementwiseAddFunc
get_node_from_elementwise_add_op
;
};
public:
virtual
~
ConvElementwiseAdd
MKLDNNFusePass
()
{}
virtual
~
ResidualConnection
MKLDNNFusePass
()
{}
protected:
std
::
unique_ptr
<
ir
::
Graph
>
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
;
std
::
unique_ptr
<
ir
::
Graph
>
ApplyImpl
(
graph_ptr
graph
)
const
;
const
std
::
string
name_scope_
{
"residual_connection
s
_fuse_pass"
};
const
std
::
string
name_scope_
{
"residual_connection_fuse_pass"
};
};
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/conv_elementwise_add_mkldnn_fuse_pass_tester.cc
浏览文件 @
cf685f36
...
...
@@ -40,7 +40,7 @@ void SetOp(ProgramDesc* prog, const std::string& type,
op
->
SetOutput
(
output
.
first
,
{
output
.
second
});
}
struct
IsReachable
{
struct
Test
IsReachable
{
using
func
=
std
::
function
<
bool
(
const
std
::
string
&
,
const
std
::
string
&
)
>
;
auto
operator
()(
const
std
::
unique_ptr
<
ir
::
Graph
>&
graph
)
->
func
{
...
...
@@ -89,7 +89,9 @@ struct IsReachable {
}
};
void
AssertOpsCount
(
const
std
::
unique_ptr
<
ir
::
Graph
>&
graph
)
{
void
AssertOpsCount
(
const
std
::
unique_ptr
<
ir
::
Graph
>&
graph
,
int
expected_conv_count
,
int
expected_elementwise_add_count
=
0
)
{
int
conv_count
=
0
;
int
elementwise_add_count
=
0
;
...
...
@@ -101,8 +103,8 @@ void AssertOpsCount(const std::unique_ptr<ir::Graph>& graph) {
++
elementwise_add_count
;
}
}
EXPECT_EQ
(
conv_count
,
1
);
EXPECT_EQ
(
elementwise_add_count
,
0
);
EXPECT_EQ
(
conv_count
,
expected_conv_count
);
EXPECT_EQ
(
elementwise_add_count
,
expected_elementwise_add_count
);
}
ProgramDesc
BuildProgramDesc
(
const
std
::
vector
<
std
::
string
>&
transient_vars
,
...
...
@@ -127,22 +129,13 @@ ProgramDesc BuildProgramDesc(const std::vector<std::string>& transient_vars,
return
prog
;
}
}
// namespace
TEST
(
ConvElementwiseAddMKLDNNFusePass
,
ConvolutionWithElementwiseAddRelu
)
{
auto
prog
=
BuildProgramDesc
({
"a"
,
"b"
,
"c"
,
"d"
,
"e"
,
"f"
},
{
"bias"
,
"weights"
});
SetOp
(
&
prog
,
"conv2d"
,
{{
"Input"
,
"a"
},
{
"Bias"
,
"bias"
},
{
"Filter"
,
"weights"
}},
{
"Output"
,
"b"
});
SetOp
(
&
prog
,
"elementwise_add"
,
{{
"X"
,
"b"
},
{
"Y"
,
"c"
}},
{
"Out"
,
"d"
});
SetOp
(
&
prog
,
"relu"
,
{{
"X"
,
"d"
}},
{
"Out"
,
"e"
});
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
prog
));
void
RunPassAndAssert
(
ProgramDesc
*
prog
,
const
std
::
string
&
from
,
const
std
::
string
&
to
,
int
expected_conv_num
)
{
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
*
prog
));
IsReachable
is_reachable
;
EXPECT_TRUE
(
is_reachable
(
graph
)(
"a"
,
"relu"
));
Test
IsReachable
is_reachable
;
EXPECT_TRUE
(
is_reachable
(
graph
)(
from
,
to
));
auto
pass
=
PassRegistry
::
Instance
().
Get
(
"conv_elementwise_add_mkldnn_fuse_pass"
);
...
...
@@ -150,82 +143,87 @@ TEST(ConvElementwiseAddMKLDNNFusePass, ConvolutionWithElementwiseAddRelu) {
graph
=
pass
->
Apply
(
std
::
move
(
graph
));
int
current_nodes_num
=
graph
->
Nodes
().
size
();
EXPECT_TRUE
(
is_reachable
(
graph
)(
"a"
,
"relu"
));
EXPECT_TRUE
(
is_reachable
(
graph
)(
from
,
to
));
EXPECT_EQ
(
original_nodes_num
-
nodes_removed
+
nodes_added
,
current_nodes_num
);
AssertOpsCount
(
graph
);
AssertOpsCount
(
graph
,
expected_conv_num
);
}
}
// namespace
TEST
(
ConvElementwiseAddMKLDNNFusePass
,
ConvolutionWithElementwiseAddReluNoBias
)
{
auto
prog
=
BuildProgramDesc
({
"a"
,
"b"
,
"c"
,
"d"
,
"e"
},
{
"weights"
});
SetOp
(
&
prog
,
"conv2d"
,
{{
"Input"
,
"a"
},
{
"Filter"
,
"weights"
}},
{
"Output"
,
"b"
});
SetOp
(
&
prog
,
"elementwise_add"
,
{{
"X"
,
"b"
},
{
"Y"
,
"c"
}},
{
"Out"
,
"d"
});
SetOp
(
&
prog
,
"relu"
,
{{
"X"
,
"d"
}},
{
"Out"
,
"e"
});
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
prog
));
TEST
(
ConvElementwiseAddMKLDNNFusePass
,
ConvolutionAsYWithElementwiseAddRelu
)
{
auto
prog
=
BuildProgramDesc
({
"a"
,
"b"
,
"c"
,
"d"
,
"e"
},
{
"bias"
,
"weights"
});
IsReachable
is_reachable
;
SetOp
(
&
prog
,
"sigmoid"
,
{{
"X"
,
"a"
}},
{
"Out"
,
"b"
});
SetOp
(
&
prog
,
"conv2d"
,
{{
"Input"
,
"b"
},
{
"Bias"
,
"bias"
},
{
"Filter"
,
"weights"
}},
{
"Output"
,
"c"
});
EXPECT_TRUE
(
is_reachable
(
graph
)(
"a"
,
"relu"
));
SetOp
(
&
prog
,
"elementwise_add"
,
{{
"X"
,
"a"
},
{
"Y"
,
"c"
}},
{
"Out"
,
"d"
});
SetOp
(
&
prog
,
"relu"
,
{{
"X"
,
"d"
}},
{
"Out"
,
"e"
});
auto
pass
=
PassRegistry
::
Instance
().
Get
(
"conv_elementwise_add_mkldnn_fuse_pass"
);
int
original_nodes_num
=
graph
->
Nodes
().
size
();
graph
=
pass
->
Apply
(
std
::
move
(
graph
));
int
current_nodes_num
=
graph
->
Nodes
().
size
();
RunPassAndAssert
(
&
prog
,
"a"
,
"relu"
,
1
);
}
EXPECT_TRUE
(
is_reachable
(
graph
)(
"a"
,
"relu"
));
TEST
(
ConvElementwiseAddMKLDNNFusePass
,
ConvolutionAsYWithElementwiseAddReluNoBias
)
{
auto
prog
=
BuildProgramDesc
({
"a"
,
"b"
,
"c"
,
"d"
,
"e"
},
{
"weights"
});
EXPECT_EQ
(
original_nodes_num
-
nodes_removed
+
nodes_added
,
current_nodes_num
);
SetOp
(
&
prog
,
"sigmoid"
,
{{
"X"
,
"a"
}},
{
"Out"
,
"b"
});
SetOp
(
&
prog
,
"conv2d"
,
{{
"Input"
,
"b"
},
{
"Filter"
,
"weights"
}},
{
"Output"
,
"c"
});
SetOp
(
&
prog
,
"elementwise_add"
,
{{
"X"
,
"a"
},
{
"Y"
,
"c"
}},
{
"Out"
,
"d"
});
SetOp
(
&
prog
,
"relu"
,
{{
"X"
,
"d"
}},
{
"Out"
,
"e"
});
AssertOpsCount
(
graph
);
RunPassAndAssert
(
&
prog
,
"a"
,
"relu"
,
1
);
}
TEST
(
ConvElementwiseAddMKLDNNFusePass
,
ConvolutionElementwiseAdd
)
{
auto
prog
=
BuildProgramDesc
({
"a"
,
"b"
,
"c"
,
"d"
},
{
"bias"
,
"weights"
});
TEST
(
ConvElementwiseAddMKLDNNFusePass
,
ConvolutionAsXWithElementwiseAddRelu
)
{
auto
prog
=
BuildProgramDesc
({
"a"
,
"b"
,
"c"
,
"d"
,
"e"
},
{
"bias"
,
"weights"
});
SetOp
(
&
prog
,
"sigmoid"
,
{{
"X"
,
"a"
}},
{
"Out"
,
"b"
});
SetOp
(
&
prog
,
"conv2d"
,
{{
"Input"
,
"a"
},
{
"Bias"
,
"bias"
},
{
"Filter"
,
"weights"
}},
{
"Output"
,
"b"
});
SetOp
(
&
prog
,
"elementwise_add"
,
{{
"X"
,
"b"
},
{
"Y"
,
"c"
}},
{
"Out"
,
"d"
});
{{
"Input"
,
"b"
},
{
"Bias"
,
"bias"
},
{
"Filter"
,
"weights"
}},
{
"Output"
,
"c"
});
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
prog
));
SetOp
(
&
prog
,
"elementwise_add"
,
{{
"X"
,
"c"
},
{
"Y"
,
"a"
}},
{
"Out"
,
"d"
});
SetOp
(
&
prog
,
"relu"
,
{{
"X"
,
"d"
}},
{
"Out"
,
"e"
});
IsReachable
is_reachable
;
EXPECT_TRUE
(
is_reachable
(
graph
)(
"a"
,
"d"
));
RunPassAndAssert
(
&
prog
,
"a"
,
"relu"
,
1
)
;
}
auto
pass
=
PassRegistry
::
Instance
().
Get
(
"conv_elementwise_add_mkldnn_fuse_pass"
);
int
original_nodes_num
=
graph
->
Nodes
().
size
();
graph
=
pass
->
Apply
(
std
::
move
(
graph
));
int
current_nodes_num
=
graph
->
Nodes
().
size
();
TEST
(
ConvElementwiseAddMKLDNNFusePass
,
ConvolutionAsXWithElementwiseAddReluNoBias
)
{
auto
prog
=
BuildProgramDesc
({
"a"
,
"b"
,
"c"
,
"d"
,
"e"
},
{
"weights"
});
EXPECT_FALSE
(
is_reachable
(
graph
)(
"a"
,
"d"
));
SetOp
(
&
prog
,
"sigmoid"
,
{{
"X"
,
"a"
}},
{
"Out"
,
"b"
});
SetOp
(
&
prog
,
"conv2d"
,
{{
"Input"
,
"b"
},
{
"Filter"
,
"weights"
}},
{
"Output"
,
"c"
});
SetOp
(
&
prog
,
"elementwise_add"
,
{{
"X"
,
"c"
},
{
"Y"
,
"a"
}},
{
"Out"
,
"d"
});
SetOp
(
&
prog
,
"relu"
,
{{
"X"
,
"d"
}},
{
"Out"
,
"e"
});
EXPECT_EQ
(
original_nodes_num
-
nodes_removed
+
nodes_added
,
current_nodes_num
);
AssertOpsCount
(
graph
);
RunPassAndAssert
(
&
prog
,
"a"
,
"relu"
,
1
);
}
TEST
(
ConvElementwiseAddMKLDNNFusePass
,
SigmoidConvolutionAddElementwiseRelu
)
{
TEST
(
ConvElementwiseAddMKLDNNFusePass
,
NoFusion
)
{
auto
prog
=
BuildProgramDesc
({
"a"
,
"b"
,
"c"
,
"d"
,
"e"
,
"f"
},
{
"bias"
,
"weights"
});
BuildProgramDesc
({
"a"
,
"b"
,
"c"
,
"d"
,
"e"
,
"f"
,
"g"
},
{
"weights"
});
SetOp
(
&
prog
,
"sigmoid"
,
{{
"X"
,
"a"
}},
{
"Out"
,
"b"
});
SetOp
(
&
prog
,
"conv2d"
,
{{
"Input"
,
"b"
},
{
"Bias"
,
"bias"
},
{
"Filter"
,
"weights"
}},
SetOp
(
&
prog
,
"conv2d"
,
{{
"Input"
,
"b"
},
{
"Filter"
,
"weights"
}},
{
"Output"
,
"c"
});
SetOp
(
&
prog
,
"elementwise_add"
,
{{
"X"
,
"c"
},
{
"Y"
,
"d"
}},
{
"Out"
,
"e"
});
SetOp
(
&
prog
,
"relu"
,
{{
"X"
,
"e"
}},
{
"Out"
,
"f"
});
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
prog
));
SetOp
(
&
prog
,
"conv2d"
,
{{
"Input"
,
"d"
},
{
"Filter"
,
"weights"
}},
{
"Output"
,
"e"
});
IsReachable
is_reachable
;
SetOp
(
&
prog
,
"elementwise_add"
,
{{
"X"
,
"c"
},
{
"Y"
,
"e"
}},
{
"Out"
,
"f"
});
SetOp
(
&
prog
,
"relu"
,
{{
"X"
,
"f"
}},
{
"Out"
,
"g"
});
EXPECT_TRUE
(
is_reachable
(
graph
)(
"a"
,
"f"
));
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
prog
));
TestIsReachable
is_reachable
;
EXPECT_TRUE
(
is_reachable
(
graph
)(
"a"
,
"g"
));
auto
pass
=
PassRegistry
::
Instance
().
Get
(
"conv_elementwise_add_mkldnn_fuse_pass"
);
...
...
@@ -233,11 +231,10 @@ TEST(ConvElementwiseAddMKLDNNFusePass, SigmoidConvolutionAddElementwiseRelu) {
graph
=
pass
->
Apply
(
std
::
move
(
graph
));
int
current_nodes_num
=
graph
->
Nodes
().
size
();
EXPECT_TRUE
(
is_reachable
(
graph
)(
"a"
,
"f"
));
EXPECT_TRUE
(
is_reachable
(
graph
)(
"a"
,
"g"
));
EXPECT_EQ
(
original_nodes_num
,
current_nodes_num
);
EXPECT_EQ
(
original_nodes_num
-
nodes_removed
+
nodes_added
,
current_nodes_num
);
AssertOpsCount
(
graph
);
AssertOpsCount
(
graph
,
2
,
1
);
}
}
// namespace ir
...
...
paddle/fluid/framework/ir/graph_pattern_detector.cc
浏览文件 @
cf685f36
...
...
@@ -1084,16 +1084,12 @@ PDNode *patterns::Conv::operator()() {
return
output_var
;
}
PDNode
*
patterns
::
ElementwiseAdd
::
operator
()(
PDNode
*
x_var
)
{
PDNode
*
patterns
::
ElementwiseAdd
::
operator
()(
PDNode
*
x_var
,
PDNode
*
y_var
)
{
auto
elementwise_add_op
=
pattern
->
NewNode
(
elementwise_add_op_repr
())
->
assert_is_op
(
"elementwise_add"
);
x_var
->
assert_is_op_input
(
"elementwise_add"
,
"X"
);
auto
y_var
=
pattern
->
NewNode
(
elementwise_add_x_repr
())
->
AsInput
()
->
assert_is_op_input
(
"elementwise_add"
,
"Y"
);
x_var
->
AsInput
()
->
assert_is_op_input
(
"elementwise_add"
,
"X"
);
y_var
->
AsInput
()
->
assert_is_op_input
(
"elementwise_add"
,
"Y"
);
auto
out_var
=
pattern
->
NewNode
(
elementwise_add_out_repr
())
->
AsOutput
()
->
assert_is_op_output
(
"elementwise_add"
,
"Out"
);
...
...
paddle/fluid/framework/ir/graph_pattern_detector.h
浏览文件 @
cf685f36
...
...
@@ -664,7 +664,7 @@ struct ElementwiseAdd : public PatternBase {
ElementwiseAdd
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
"elementwise_add"
)
{}
PDNode
*
operator
()(
PDNode
*
x_var
);
PDNode
*
operator
()(
PDNode
*
x_var
,
PDNode
*
y_var
);
PATTERN_DECL_NODE
(
elementwise_add_op
);
PATTERN_DECL_NODE
(
elementwise_add_x
);
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录