提交 cf1254df 编写于 作者: Y Yang Yu

Merge branch 'develop' of github.com:baidu/Paddle into feature/add_demo_for_parallel.do

......@@ -152,12 +152,12 @@ for data in train_reader():
`JobDesc` object describe the distributed job resource specification to run on
Cluster environment.
<img src="src/remote_executor.png"/>
<img src="src/remote_executor.png" width="500" align="center" />
`RemoteExecutor.run` sends the `ProgramDesc` and
[TrainingJob](https://github.com/PaddlePaddle/cloud/blob/develop/doc/autoscale/README.md#training-job-resource)
to a server in the cluster which executes `RemoteExecutor.listen`. This server is responsible
to start the final Kubernetes Jobs to run the different role of `ProgramDesc`.
to start the final Kubernetes Jobs to run the different role of `ProgramDesc` from `ConfigMap`.
### Placement Algorithm
......
......@@ -16,6 +16,12 @@ PaddlePaddle must be installed on all nodes. If you have GPU cards on your nodes
PaddlePaddle build and installation guide can be found [here](http://www.paddlepaddle.org/docs/develop/documentation/en/getstarted/build_and_install/index_en.html).
In addition to above, the `cmake` command should be run with the option `WITH_DISTRIBUTE` set to on. An example bare minimum `cmake` command would look as follows:
``` bash
cmake .. -DWITH_DOC=OFF -DWITH_GPU=OFF -DWITH_DISTRIBUTE=ON -DWITH_SWIG_PY=ON -DWITH_PYTHON=ON
```
### Update the training script
#### Non-cluster training script
......@@ -119,7 +125,14 @@ for pass_id in range(100):
### E2E demo
Please find the complete demo from [here](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/fluid/tests/book_distribute/notest_dist_fit_a_line.py). In parameter server node run the following in the command line:
Please find the complete demo from [here](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/fluid/tests/book_distribute/notest_dist_fit_a_line.py).
First `cd` into the folder that contains the `python` files. In this case:
```bash
cd /paddle/python/paddle/v2/fluid/tests/book_distribute
```
In parameter server node run the following in the command line:
``` bash
PSERVERS=192.168.1.2:6174 SERVER_ENDPOINT=192.168.1.2:6174 TRAINING_ROLE=PSERVER python notest_dist_fit_a_line.py
......
......@@ -19,14 +19,10 @@ limitations under the License. */
#include "paddle/framework/init.h"
#include "paddle/framework/scope.h"
#ifdef PADDLE_USE_PTOOLS
#include "chooseser.h"
#endif
namespace paddle {
void InferenceEngine::LoadInferenceModel(const std::string& dirname) {
std::string model_filename = dirname + "/__model__.dat";
std::string model_filename = dirname + "/__model__";
LOG(INFO) << "loading model from " << model_filename;
std::ifstream inputfs(model_filename, std::ios::in | std::ios::binary);
std::string program_desc_str;
......@@ -52,39 +48,15 @@ void InferenceEngine::LoadInferenceModel(const std::string& dirname) {
}
}
void InferenceEngine::LoadInferenceModel(
const std::string& dirname,
const std::vector<std::string>& feed_var_names,
const std::vector<std::string>& fetch_var_names) {
std::string model_filename = dirname + "/__model__.dat";
LOG(INFO) << "loading model from " << model_filename;
std::ifstream inputfs(model_filename, std::ios::in | std::ios::binary);
std::string program_desc_str;
inputfs.seekg(0, std::ios::end);
program_desc_str.resize(inputfs.tellg());
inputfs.seekg(0, std::ios::beg);
LOG(INFO) << "program_desc_str's size: " << program_desc_str.size();
inputfs.read(&program_desc_str[0], program_desc_str.size());
inputfs.close();
program_ = new framework::ProgramDesc(program_desc_str);
GenerateLoadProgram(dirname);
if (feed_var_names.empty() || fetch_var_names.empty()) {
LOG(FATAL) << "Please specify the feed_var_names and fetch_var_names.";
}
feed_var_names_ = feed_var_names;
fetch_var_names_ = fetch_var_names;
PrependFeedOp();
AppendFetchOp();
}
bool InferenceEngine::IsParameter(const framework::VarDesc* var) {
if (var->Persistable() && var->Name() != "feed" && var->Name() != "fetch") {
if (var->Persistable()) {
// There are many unreachable variables in the program
for (size_t i = 0; i < program_->Size(); ++i) {
const framework::BlockDesc& block = program_->Block(i);
for (auto* op : block.AllOps()) {
if (op->Type() == "feed") {
continue;
}
for (auto input_argument_name : op->InputArgumentNames()) {
if (input_argument_name == var->Name()) {
return true;
......
......@@ -29,9 +29,6 @@ public:
}
void LoadInferenceModel(const std::string& dirname);
void LoadInferenceModel(const std::string& dirname,
const std::vector<std::string>& feed_var_names,
const std::vector<std::string>& fetch_var_names);
void Execute(const std::vector<framework::LoDTensor>& feeds,
std::vector<framework::LoDTensor>& fetchs);
......
......@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "grpc_client.h"
#include "paddle/framework/threadpool.h"
namespace paddle {
namespace operators {
namespace detail {
......@@ -22,25 +23,32 @@ bool RPCClient::AsyncSendVariable(const std::string& ep,
const framework::Scope& scope,
const std::string& var_name,
int64_t time_out) {
const platform::DeviceContext* p_ctx = &ctx;
const std::string ep_val = ep;
const std::string var_name_val = var_name;
const framework::Scope* p_scope = &scope;
const auto ch = GetChannel(ep_val);
framework::Async([var_name_val, p_ctx, ep_val, p_scope, time_out, ch, this] {
auto* var = p_scope->FindVar(var_name_val);
sendrecv::VariableMessage req;
auto* var = scope.FindVar(var_name);
SerializeToMessage(var_name, var, ctx, &req);
SerializeToMessage(var_name_val, var, *p_ctx, &req);
// varhandle
VarHandle var_h;
var_h.ep = ep;
var_h.scope = &scope;
var_h.name = var_name;
var_h.ctx = &ctx;
var_h.ep = ep_val;
var_h.scope = p_scope;
var_h.name = var_name_val;
var_h.ctx = p_ctx;
// stub context
auto ch = GetChannel(ep);
SendProcessor* s = new SendProcessor(ch);
s->Prepare(var_h, time_out);
s->response_call_back_ = NULL;
auto rpc = s->stub_->AsyncSendVariable(s->context_.get(), req, &cq_);
rpc->Finish(&s->reply_, &s->status_, (void*)s);
});
req_count_++;
......@@ -50,8 +58,6 @@ bool RPCClient::AsyncSendVariable(const std::string& ep,
void ProcGetResponse(const VarHandle& var_h,
const sendrecv::VariableMessage& ret_msg) {
auto* outvar = var_h.scope->FindVar(var_h.name);
std::istringstream iss(ret_msg.serialized());
DeserializeFromMessage(ret_msg, *var_h.ctx, outvar);
}
......@@ -60,24 +66,31 @@ bool RPCClient::AsyncGetVariable(const std::string& ep,
const framework::Scope& scope,
const std::string& var_name,
int64_t time_out) {
const platform::DeviceContext* p_ctx = &ctx;
const std::string ep_val = ep;
const std::string var_name_val = var_name;
const framework::Scope* p_scope = &scope;
const auto ch = GetChannel(ep_val);
framework::Async([var_name_val, ep_val, p_scope, p_ctx, time_out, ch, this] {
sendrecv::VariableMessage req;
req.set_varname(var_name);
req.set_varname(var_name_val);
// varhandle
VarHandle var_h;
var_h.ep = ep;
var_h.scope = &scope;
var_h.name = var_name;
var_h.ctx = &ctx;
var_h.ep = ep_val;
var_h.scope = p_scope;
var_h.name = var_name_val;
var_h.ctx = p_ctx;
// stub context
auto ch = GetChannel(ep);
GetProcessor* s = new GetProcessor(ch);
s->Prepare(var_h, time_out);
s->response_call_back_ = ProcGetResponse;
auto rpc = s->stub_->AsyncGetVariable(s->context_.get(), req, &cq_);
rpc->Finish(&s->reply_, &s->status_, (void*)s);
});
req_count_++;
......@@ -85,19 +98,31 @@ bool RPCClient::AsyncGetVariable(const std::string& ep,
}
bool RPCClient::Wait() {
bool ok = true;
while (true) {
if (req_count_ <= 0) {
break;
return true;
}
if (!Proceed()) {
std::vector<bool> a(req_count_);
std::vector<std::future<void>> waits(req_count_);
for (int i = 0; i < req_count_; i++) {
waits[i] = framework::Async([i, &a, this] { a[i] = Proceed(); });
}
for (int i = 0; i < req_count_; i++) {
waits[i].wait();
}
int last_req_count = req_count_;
req_count_ = 0;
for (int i = 0; i < last_req_count; i++) {
if (!a[i]) {
return false;
}
}
return ok;
return true;
}
bool RPCClient::Proceed() {
......@@ -124,7 +149,6 @@ bool RPCClient::Proceed() {
c->Process();
delete c;
req_count_--;
return true;
}
......
......@@ -11,7 +11,7 @@ if(WITH_GPU)
nv_library(sequence_pooling SRCS sequence_pooling.cc sequence_pooling.cu DEPS device_context math_function)
nv_library(vol2col SRCS vol2col.cc vol2col.cu DEPS device_context tensor)
nv_library(context_project SRCS context_project.cc context_project.cu DEPS device_context math_function)
nv_library(sequence2batch SRCS sequence2batch.cc sequence2batch.cu DEPS device_context tensor)
nv_library(sequence2batch SRCS sequence2batch.cc sequence2batch.cu DEPS device_context tensor math_function)
nv_library(sequence_padding SRCS sequence_padding.cc sequence_padding.cu DEPS lod_tensor device_context)
nv_library(sequence_scale SRCS sequence_scale.cc sequence_scale.cu DEPS lod_tensor device_context)
nv_library(lstm_compute SRCS lstm_compute.cc lstm_compute.cu DEPS device_context activation_functions)
......@@ -28,7 +28,7 @@ else()
cc_library(sequence_pooling SRCS sequence_pooling.cc DEPS device_context math_function)
cc_library(vol2col SRCS vol2col.cc DEPS device_context tensor)
cc_library(context_project SRCS context_project.cc DEPS device_context math_function)
cc_library(sequence2batch SRCS sequence2batch.cc DEPS device_context tensor)
cc_library(sequence2batch SRCS sequence2batch.cc DEPS device_context tensor math_function)
cc_library(sequence_padding SRCS sequence_padding.cc DEPS lod_tensor device_context)
cc_library(sequence_scale SRCS sequence_scale.cc DEPS lod_tensor device_context)
cc_library(lstm_compute SRCS lstm_compute.cc DEPS device_context activation_functions)
......
......@@ -178,7 +178,7 @@ def _remove_no_grad_branch_(op_descs, no_grad_set):
if _all_in_set_(
filter(lambda name: name.find(core.grad_var_suffix()) != -1,
op_desc.input_arg_names()), no_grad_set):
no_grad_set.union(out_arg_names)
no_grad_set.update(out_arg_names)
return True
return False
......
......@@ -68,6 +68,84 @@ def as_numpy(tensor):
return ans
def has_feed_operators(block, feed_targets, feed_holder_name):
""" Check whether the block already has feed operators.
Return false if the block does not have any feed operators.
If some feed operators have been prepended to the block, check that
the info contained in these feed operators matches the feed_targets
and feed_holder_name. Raise exception when any mismatch is found.
Return true when the block has feed operators with matching info.
Args:
block: a block instance (typically global block of a program)
feed_targets: a dictionary of {feed_target_name: feed_target_data}
feed_holder_name: the name of the variable that holds the data of
all feed targets. The type of this feed_holder variable is
FEED_MINIBATCH, which is essentially vector<LoDTensor>.
Returns:
A boolean value that indicates whether a block has feed operators
that match the info contained in feed_targets and feed_holder_name.
"""
feed_count = 0
for op in block.ops:
if op.desc.type() == 'feed':
feed_count += 1
assert op.desc.input('X')[0] == feed_holder_name
feed_target_name = op.desc.output('Out')[0]
if feed_target_name not in feed_targets:
raise Exception("'feed_targets' does not have {} variable".
format(feed_target_name))
else:
break
if feed_count > 0 and feed_count != len(feed_targets):
raise Exception(
"Feed operators in program desc do not match 'feed_targets'")
return feed_count > 0
def has_fetch_operators(block, fetch_targets, fetch_holder_name):
""" Check whether the block already has fetch operators.
Return false if the block does not have any fetch operators.
If some fetch operators have been appended to the block, check that
the info contained in these fetch operators matches the fetch_targets
and fetch_holder_name. Raise exception when any mismatch is found.
Return true when the block has fetch operators with matching info.
Args:
block: a block instance (typically global block of a program)
fetch_targets: a dictionary of {fetch_target_name: fetch_target_data}
fetch_holder_name: the name of the variable that holds the data of
all fetch targets. The type of this fetch_holder variable is
FETCH_LIST, which is essentially vector<LoDTensor>.
Return:
A boolean value that indicates whether a block has fetch operators
that match the info contained in fetch_targets and fetch_holder_name.
"""
fetch_count = 0
for op in block.ops:
if op.desc.type() == 'fetch':
fetch_count += 1
assert op.desc.output('Out')[0] == fetch_holder_name
fetch_target_name = op.desc.input('X')[0]
if fetch_target_name not in [
var.desc.name() for var in fetch_targets
]:
raise Exception("'fetch_targets' does not have {} variable".
format(fetch_target_name))
idx = op.desc.attr('col')
assert fetch_target_name == fetch_targets[idx].desc.name()
if fetch_count > 0 and fetch_count != len(fetch_targets):
raise Exception(
"Fetch operators in program desc do not match 'fetch_targets'")
return fetch_count > 0
class Executor(object):
def __init__(self, places):
if not isinstance(places, list) and not isinstance(places, tuple):
......@@ -147,27 +225,44 @@ class Executor(object):
program = program.clone()
global_block = program.global_block()
if feed_var_name in global_block.vars:
feed_var = global_block.var(feed_var_name)
else:
feed_var = global_block.create_var(
name=feed_var_name,
type=core.VarDesc.VarType.FEED_MINIBATCH,
persistable=True)
if fetch_var_name in global_block.vars:
fetch_var = global_block.var(fetch_var_name)
else:
fetch_var = global_block.create_var(
name=fetch_var_name,
type=core.VarDesc.VarType.FETCH_LIST,
persistable=True)
if not has_feed_operators(global_block, feed, feed_var_name):
for i, name in enumerate(feed):
out = global_block.var(name)
global_block.prepend_op(
'feed',
type='feed',
inputs={'X': [feed_var]},
outputs={'Out': [out]},
attrs={'col': i})
cur_feed = feed[name]
for op in global_block.ops:
if op.desc.type() == 'feed':
feed_target_name = op.desc.output('Out')[0]
cur_feed = feed[feed_target_name]
if not isinstance(cur_feed, core.LoDTensor):
cur_feed = self.aslodtensor(cur_feed)
core.set_feed_variable(scope, cur_feed, feed_var.name, i)
idx = op.desc.attr('col')
core.set_feed_variable(scope, cur_feed, feed_var_name, idx)
else:
break
fetch_var = global_block.create_var(
name=fetch_var_name,
type=core.VarDesc.VarType.FETCH_LIST,
persistable=True)
if not has_fetch_operators(global_block, fetch_list, fetch_var_name):
for i, var in enumerate(fetch_list):
global_block.append_op(
type='fetch',
......
......@@ -13,7 +13,6 @@
# limitations under the License.
import os
import cPickle as pickle
from paddle.v2.fluid.evaluator import Evaluator
from paddle.v2.fluid.framework import Program, Parameter, default_main_program, Variable
......@@ -191,8 +190,8 @@ def get_inference_program(target_vars, main_program=None):
vars = []
for var in target_vars:
if isinstance(var, Evaluator):
vars.append(var.states)
vars.append(var.metrics)
vars.extend(var.states)
vars.extend(var.metrics)
else:
vars.append(var)
pruned_program = main_program.prune(targets=vars)
......@@ -200,12 +199,16 @@ def get_inference_program(target_vars, main_program=None):
return inference_program
def prepend_feed_ops(inference_program, feeded_var_names):
def prepend_feed_ops(inference_program,
feed_target_names,
feed_holder_name='feed'):
global_block = inference_program.global_block()
feed_var = global_block.create_var(
name='feed', type=core.VarDesc.VarType.FEED_MINIBATCH, persistable=True)
name=feed_holder_name,
type=core.VarDesc.VarType.FEED_MINIBATCH,
persistable=True)
for i, name in enumerate(feeded_var_names):
for i, name in enumerate(feed_target_names):
out = global_block.var(name)
global_block.prepend_op(
type='feed',
......@@ -214,12 +217,16 @@ def prepend_feed_ops(inference_program, feeded_var_names):
attrs={'col': i})
def append_fetch_ops(inference_program, fetch_var_names):
def append_fetch_ops(inference_program,
fetch_target_names,
fetch_holder_name='fetch'):
global_block = inference_program.global_block()
fetch_var = global_block.create_var(
name='fetch', type=core.VarDesc.VarType.FETCH_LIST, persistable=True)
name=fetch_holder_name,
type=core.VarDesc.VarType.FETCH_LIST,
persistable=True)
for i, name in enumerate(fetch_var_names):
for i, name in enumerate(fetch_target_names):
global_block.append_op(
type='fetch',
inputs={'X': [name]},
......@@ -269,21 +276,12 @@ def save_inference_model(dirname,
inference_program = pruned_program.inference_optimize()
fetch_var_names = [v.name for v in target_vars]
model_file_name = dirname + "/__model__"
with open(model_file_name, "w") as f:
pickle.dump({
"program_desc_str": inference_program.desc.serialize_to_string(),
"feed_var_names": feeded_var_names,
"fetch_var_names": fetch_var_names
}, f, -1)
prepend_feed_ops(inference_program, feeded_var_names)
append_fetch_ops(inference_program, fetch_var_names)
# Save only programDesc of inference_program in binary format
# in another file: __model__.dat
with open(model_file_name + ".dat", "wb") as fp:
fp.write(inference_program.desc.serialize_to_string())
model_file_name = dirname + "/__model__"
with open(model_file_name, "wb") as f:
f.write(inference_program.desc.serialize_to_string())
save_params(executor, dirname, main_program)
......@@ -306,6 +304,24 @@ def load_persistables_if_exist(executor, dirname, main_program=None):
predicate=_is_presistable_and_exist_)
def get_feed_targets_names(program):
feed_targets_names = []
global_block = program.global_block()
for op in global_block.ops:
if op.desc.type() == 'feed':
feed_targets_names.insert(0, op.desc.output('Out')[0])
return feed_targets_names
def get_fetch_targets_names(program):
fetch_targets_names = []
global_block = program.global_block()
for op in global_block.ops:
if op.desc.type() == 'fetch':
fetch_targets_names.append(op.desc.input('X')[0])
return fetch_targets_names
def load_inference_model(dirname, executor):
"""
Load inference model from a directory
......@@ -313,24 +329,28 @@ def load_inference_model(dirname, executor):
:param dirname: directory path
:param executor: executor that load inference model
:return: [program, feed_var_names, fetch_var_names]
:return: [program, feed_target_names, fetch_targets]
program: program especially for inference.
feeded_var_names: Names of variables that need to feed data
fetch_vars: Variables from which we can get inference results.
feed_target_names: Names of variables that need to feed data
fetch_targets: Variables from which we can get inference results.
"""
if not os.path.isdir(dirname):
raise ValueError("There is no directory named '%s'", dirname)
model_file_name = dirname + "/__model__"
model = pickle.load(open(model_file_name, "r"))
program_desc_str = model["program_desc_str"]
feed_var_names = model["feed_var_names"]
fetch_var_names = model["fetch_var_names"]
with open(model_file_name, "rb") as f:
program_desc_str = f.read()
program = Program.parse_from_string(program_desc_str)
load_persistables_if_exist(executor, dirname, program)
fetch_vars = [program.global_block().var(name) for name in fetch_var_names]
return [program, feed_var_names, fetch_vars]
feed_target_names = get_feed_targets_names(program)
fetch_target_names = get_fetch_targets_names(program)
fetch_targets = [
program.global_block().var(name) for name in fetch_target_names
]
return [program, feed_target_names, fetch_targets]
def get_parameter_value(para, executor):
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import os
import paddle.v2 as paddle
import paddle.v2.fluid as fluid
import paddle.v2.fluid.core as core
import paddle.v2.fluid.layers as layers
import paddle.v2.fluid.nets as nets
from paddle.v2.fluid.optimizer import SGDOptimizer
IS_SPARSE = True
BATCH_SIZE = 256
PASS_NUM = 100
def get_usr_combined_features():
USR_DICT_SIZE = paddle.dataset.movielens.max_user_id() + 1
uid = layers.data(name='user_id', shape=[1], dtype='int64')
usr_emb = layers.embedding(
input=uid,
dtype='float32',
size=[USR_DICT_SIZE, 32],
param_attr='user_table',
is_sparse=IS_SPARSE)
usr_fc = layers.fc(input=usr_emb, size=32)
USR_GENDER_DICT_SIZE = 2
usr_gender_id = layers.data(name='gender_id', shape=[1], dtype='int64')
usr_gender_emb = layers.embedding(
input=usr_gender_id,
size=[USR_GENDER_DICT_SIZE, 16],
param_attr='gender_table',
is_sparse=IS_SPARSE)
usr_gender_fc = layers.fc(input=usr_gender_emb, size=16)
USR_AGE_DICT_SIZE = len(paddle.dataset.movielens.age_table)
usr_age_id = layers.data(name='age_id', shape=[1], dtype="int64")
usr_age_emb = layers.embedding(
input=usr_age_id,
size=[USR_AGE_DICT_SIZE, 16],
is_sparse=IS_SPARSE,
param_attr='age_table')
usr_age_fc = layers.fc(input=usr_age_emb, size=16)
USR_JOB_DICT_SIZE = paddle.dataset.movielens.max_job_id() + 1
usr_job_id = layers.data(name='job_id', shape=[1], dtype="int64")
usr_job_emb = layers.embedding(
input=usr_job_id,
size=[USR_JOB_DICT_SIZE, 16],
param_attr='job_table',
is_sparse=IS_SPARSE)
usr_job_fc = layers.fc(input=usr_job_emb, size=16)
concat_embed = layers.concat(
input=[usr_fc, usr_gender_fc, usr_age_fc, usr_job_fc], axis=1)
usr_combined_features = layers.fc(input=concat_embed, size=200, act="tanh")
return usr_combined_features
def get_mov_combined_features():
MOV_DICT_SIZE = paddle.dataset.movielens.max_movie_id() + 1
mov_id = layers.data(name='movie_id', shape=[1], dtype='int64')
mov_emb = layers.embedding(
input=mov_id,
dtype='float32',
size=[MOV_DICT_SIZE, 32],
param_attr='movie_table',
is_sparse=IS_SPARSE)
mov_fc = layers.fc(input=mov_emb, size=32)
CATEGORY_DICT_SIZE = len(paddle.dataset.movielens.movie_categories())
category_id = layers.data(name='category_id', shape=[1], dtype='int64')
mov_categories_emb = layers.embedding(
input=category_id, size=[CATEGORY_DICT_SIZE, 32], is_sparse=IS_SPARSE)
mov_categories_hidden = layers.sequence_pool(
input=mov_categories_emb, pool_type="sum")
MOV_TITLE_DICT_SIZE = len(paddle.dataset.movielens.get_movie_title_dict())
mov_title_id = layers.data(name='movie_title', shape=[1], dtype='int64')
mov_title_emb = layers.embedding(
input=mov_title_id, size=[MOV_TITLE_DICT_SIZE, 32], is_sparse=IS_SPARSE)
mov_title_conv = nets.sequence_conv_pool(
input=mov_title_emb,
num_filters=32,
filter_size=3,
act="tanh",
pool_type="sum")
concat_embed = layers.concat(
input=[mov_fc, mov_categories_hidden, mov_title_conv], axis=1)
mov_combined_features = layers.fc(input=concat_embed, size=200, act="tanh")
return mov_combined_features
def model():
usr_combined_features = get_usr_combined_features()
mov_combined_features = get_mov_combined_features()
# need cos sim
inference = layers.cos_sim(X=usr_combined_features, Y=mov_combined_features)
scale_infer = layers.scale(x=inference, scale=5.0)
label = layers.data(name='score', shape=[1], dtype='float32')
square_cost = layers.square_error_cost(input=scale_infer, label=label)
avg_cost = layers.mean(x=square_cost)
return avg_cost
def func_feed(feeding, data, place):
feed_tensors = {}
for (key, idx) in feeding.iteritems():
tensor = core.LoDTensor()
if key != "category_id" and key != "movie_title":
if key == "score":
numpy_data = np.array(map(lambda x: x[idx], data)).astype(
"float32")
else:
numpy_data = np.array(map(lambda x: x[idx], data)).astype(
"int64")
else:
numpy_data = map(lambda x: np.array(x[idx]).astype("int64"), data)
lod_info = [len(item) for item in numpy_data]
offset = 0
lod = [offset]
for item in lod_info:
offset += item
lod.append(offset)
numpy_data = np.concatenate(numpy_data, axis=0)
tensor.set_lod([lod])
numpy_data = numpy_data.reshape([numpy_data.shape[0], 1])
tensor.set(numpy_data, place)
feed_tensors[key] = tensor
return feed_tensors
def main():
cost = model()
optimizer = SGDOptimizer(learning_rate=0.2)
optimize_ops, params_grads = optimizer.minimize(cost)
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.movielens.train(), buf_size=8192),
batch_size=BATCH_SIZE)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
t = fluid.DistributeTranspiler()
# all parameter server endpoints list for spliting parameters
pserver_endpoints = os.getenv("PSERVERS")
# server endpoint for current node
current_endpoint = os.getenv("SERVER_ENDPOINT")
# run as trainer or parameter server
training_role = os.getenv("TRAINING_ROLE", "TRAINER")
t.transpile(
optimize_ops, params_grads, pservers=pserver_endpoints, trainers=2)
if training_role == "PSERVER":
if not current_endpoint:
print("need env SERVER_ENDPOINT")
exit(1)
pserver_prog = t.get_pserver_program(current_endpoint)
pserver_startup = t.get_startup_program(current_endpoint, pserver_prog)
exe.run(pserver_startup)
exe.run(pserver_prog)
elif training_role == "TRAINER":
exe.run(fluid.default_startup_program())
trainer_prog = t.get_trainer_program()
feeding = {
'user_id': 0,
'gender_id': 1,
'age_id': 2,
'job_id': 3,
'movie_id': 4,
'category_id': 5,
'movie_title': 6,
'score': 7
}
for pass_id in range(PASS_NUM):
for data in train_reader():
outs = exe.run(trainer_prog,
feed=func_feed(feeding, data, place),
fetch_list=[cost])
out = np.array(outs[0])
print("cost=" + str(out[0]))
if out[0] < 6.0:
print("Training complete. Average cost is less than 6.0.")
# if avg cost less than 6.0, we think our code is good.
exit(0)
else:
print("environment var TRAINER_ROLE should be TRAINER os PSERVER")
if __name__ == '__main__':
main()
......@@ -58,7 +58,7 @@ class TestMultiheadAttention(unittest.TestCase):
"""Run the test program.
"""
places = [core.CPUPlace()]
if core.is_compile_gpu():
if core.is_compiled_with_cuda():
places.append(core.CUDAPlace(0))
for place in places:
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册