Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
ceb412b0
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ceb412b0
编写于
2月 01, 2019
作者:
J
jerrywgz
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
speed up box coder in CPU, test=develop
上级
0766d404
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
60 addition
and
88 deletion
+60
-88
paddle/fluid/operators/detection/box_coder_op.cc
paddle/fluid/operators/detection/box_coder_op.cc
+6
-14
paddle/fluid/operators/detection/box_coder_op.cu
paddle/fluid/operators/detection/box_coder_op.cu
+2
-8
paddle/fluid/operators/detection/box_coder_op.h
paddle/fluid/operators/detection/box_coder_op.h
+44
-33
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+4
-4
python/paddle/fluid/tests/unittests/test_box_coder_op.py
python/paddle/fluid/tests/unittests/test_box_coder_op.py
+4
-29
未找到文件。
paddle/fluid/operators/detection/box_coder_op.cc
浏览文件 @
ceb412b0
...
@@ -38,20 +38,12 @@ class BoxCoderOp : public framework::OperatorWithKernel {
...
@@ -38,20 +38,12 @@ class BoxCoderOp : public framework::OperatorWithKernel {
"The shape of PriorBox is [N, 4]"
);
"The shape of PriorBox is [N, 4]"
);
if
(
ctx
->
HasInput
(
"PriorBoxVar"
))
{
if
(
ctx
->
HasInput
(
"PriorBoxVar"
))
{
auto
prior_box_var_dims
=
ctx
->
GetInputDim
(
"PriorBoxVar"
);
auto
prior_box_var_dims
=
ctx
->
GetInputDim
(
"PriorBoxVar"
);
PADDLE_ENFORCE
(
PADDLE_ENFORCE
(
prior_box_var_dims
.
size
()
==
2
,
prior_box_var_dims
.
size
()
==
1
||
prior_box_var_dims
.
size
()
==
2
,
"Input(PriorBoxVar) of BoxCoderOp should be 2."
);
"Input(PriorBoxVar) of BoxCoderOp should be 1 or 2."
);
if
(
prior_box_var_dims
.
size
()
==
1
)
{
PADDLE_ENFORCE_EQ
(
prior_box_var_dims
[
0
],
4
,
"The 1st dimension of Input(PriorBoxVar) should be 4"
"when the rank is 1."
);
}
else
{
PADDLE_ENFORCE_EQ
(
PADDLE_ENFORCE_EQ
(
prior_box_dims
,
prior_box_var_dims
,
prior_box_dims
,
prior_box_var_dims
,
"The dimension of Input(PriorBoxVar) should be equal to"
"The dimension of Input(PriorBoxVar) should be equal to"
"the dimension of Input(PriorBox when the rank is 2.)"
);
"the dimension of Input(PriorBox) when the rank is 2."
);
}
}
}
}
}
...
...
paddle/fluid/operators/detection/box_coder_op.cu
浏览文件 @
ceb412b0
...
@@ -56,10 +56,7 @@ __global__ void EncodeCenterSizeKernel(
...
@@ -56,10 +56,7 @@ __global__ void EncodeCenterSizeKernel(
output
[
idx
*
len
+
2
]
=
log
(
fabs
(
target_box_width
/
prior_box_width
));
output
[
idx
*
len
+
2
]
=
log
(
fabs
(
target_box_width
/
prior_box_width
));
output
[
idx
*
len
+
3
]
=
log
(
fabs
(
target_box_height
/
prior_box_height
));
output
[
idx
*
len
+
3
]
=
log
(
fabs
(
target_box_height
/
prior_box_height
));
if
(
prior_box_var_data
)
{
if
(
prior_box_var_data
)
{
int
prior_var_offset
=
0
;
int
prior_var_offset
=
col_idx
*
len
;
if
(
prior_box_var_size
==
2
)
{
prior_var_offset
=
col_idx
*
len
;
}
output
[
idx
*
len
]
/=
prior_box_var_data
[
prior_var_offset
];
output
[
idx
*
len
]
/=
prior_box_var_data
[
prior_var_offset
];
output
[
idx
*
len
+
1
]
/=
prior_box_var_data
[
prior_var_offset
+
1
];
output
[
idx
*
len
+
1
]
/=
prior_box_var_data
[
prior_var_offset
+
1
];
output
[
idx
*
len
+
2
]
/=
prior_box_var_data
[
prior_var_offset
+
2
];
output
[
idx
*
len
+
2
]
/=
prior_box_var_data
[
prior_var_offset
+
2
];
...
@@ -99,10 +96,7 @@ __global__ void DecodeCenterSizeKernel(
...
@@ -99,10 +96,7 @@ __global__ void DecodeCenterSizeKernel(
T
box_var_x
=
T
(
1
),
box_var_y
=
T
(
1
);
T
box_var_x
=
T
(
1
),
box_var_y
=
T
(
1
);
T
box_var_w
=
T
(
1
),
box_var_h
=
T
(
1
);
T
box_var_w
=
T
(
1
),
box_var_h
=
T
(
1
);
if
(
prior_box_var_data
)
{
if
(
prior_box_var_data
)
{
int
prior_var_offset
=
0
;
int
prior_var_offset
=
axis
==
0
?
col_idx
*
len
:
row_idx
*
len
;
if
(
prior_box_var_size
==
2
)
{
prior_var_offset
=
axis
==
0
?
col_idx
*
len
:
row_idx
*
len
;
}
box_var_x
=
prior_box_var_data
[
prior_var_offset
];
box_var_x
=
prior_box_var_data
[
prior_var_offset
];
box_var_y
=
prior_box_var_data
[
prior_var_offset
+
1
];
box_var_y
=
prior_box_var_data
[
prior_var_offset
+
1
];
box_var_w
=
prior_box_var_data
[
prior_var_offset
+
2
];
box_var_w
=
prior_box_var_data
[
prior_var_offset
+
2
];
...
...
paddle/fluid/operators/detection/box_coder_op.h
浏览文件 @
ceb412b0
...
@@ -79,10 +79,7 @@ class BoxCoderKernel : public framework::OpKernel<T> {
...
@@ -79,10 +79,7 @@ class BoxCoderKernel : public framework::OpKernel<T> {
output
[
offset
+
3
]
=
output
[
offset
+
3
]
=
std
::
log
(
std
::
fabs
(
target_box_height
/
prior_box_height
));
std
::
log
(
std
::
fabs
(
target_box_height
/
prior_box_height
));
if
(
prior_box_var
)
{
if
(
prior_box_var
)
{
int
prior_var_offset
=
0
;
int
prior_var_offset
=
j
*
len
;
if
(
prior_box_var
->
dims
().
size
()
==
2
)
{
prior_var_offset
=
j
*
len
;
}
output
[
offset
]
/=
prior_box_var_data
[
prior_var_offset
];
output
[
offset
]
/=
prior_box_var_data
[
prior_var_offset
];
output
[
offset
+
1
]
/=
prior_box_var_data
[
prior_var_offset
+
1
];
output
[
offset
+
1
]
/=
prior_box_var_data
[
prior_var_offset
+
1
];
output
[
offset
+
2
]
/=
prior_box_var_data
[
prior_var_offset
+
2
];
output
[
offset
+
2
]
/=
prior_box_var_data
[
prior_var_offset
+
2
];
...
@@ -95,11 +92,12 @@ class BoxCoderKernel : public framework::OpKernel<T> {
...
@@ -95,11 +92,12 @@ class BoxCoderKernel : public framework::OpKernel<T> {
}
}
}
}
}
}
template
<
int
axis
,
int
var_size
>
void
DecodeCenterSize
(
const
framework
::
Tensor
*
target_box
,
void
DecodeCenterSize
(
const
framework
::
Tensor
*
target_box
,
const
framework
::
Tensor
*
prior_box
,
const
framework
::
Tensor
*
prior_box
,
const
framework
::
Tensor
*
prior_box_var
,
const
framework
::
Tensor
*
prior_box_var
,
const
bool
normalized
,
const
int
axis
,
const
bool
normalized
,
std
::
vector
<
float
>
variance
,
const
std
::
vector
<
float
>
variance
,
T
*
output
)
const
{
T
*
output
)
const
{
int64_t
row
=
target_box
->
dims
()[
0
];
int64_t
row
=
target_box
->
dims
()[
0
];
int64_t
col
=
target_box
->
dims
()[
1
];
int64_t
col
=
target_box
->
dims
()[
1
];
int64_t
len
=
target_box
->
dims
()[
2
];
int64_t
len
=
target_box
->
dims
()[
2
];
...
@@ -107,19 +105,17 @@ class BoxCoderKernel : public framework::OpKernel<T> {
...
@@ -107,19 +105,17 @@ class BoxCoderKernel : public framework::OpKernel<T> {
auto
*
target_box_data
=
target_box
->
data
<
T
>
();
auto
*
target_box_data
=
target_box
->
data
<
T
>
();
auto
*
prior_box_data
=
prior_box
->
data
<
T
>
();
auto
*
prior_box_data
=
prior_box
->
data
<
T
>
();
const
T
*
prior_box_var_data
=
nullptr
;
const
T
*
prior_box_var_data
=
nullptr
;
if
(
prior_box_var
)
prior_box_var_data
=
prior_box_var
->
data
<
T
>
();
if
(
var_size
==
2
)
prior_box_var_data
=
prior_box_var
->
data
<
T
>
();
int
prior_box_offset
=
0
;
int
prior_box_offset
=
0
;
T
var_data
[
4
]
=
{
1.
,
1.
,
1.
,
1.
};
T
*
var_ptr
=
var_data
;
#ifdef PADDLE_WITH_MKLML
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for collapse(2)
#pragma omp parallel for collapse(2)
#endif
#endif
for
(
int64_t
i
=
0
;
i
<
row
;
++
i
)
{
for
(
int64_t
i
=
0
;
i
<
row
;
++
i
)
{
for
(
int64_t
j
=
0
;
j
<
col
;
++
j
)
{
for
(
int64_t
j
=
0
;
j
<
col
;
++
j
)
{
size_t
offset
=
i
*
col
*
len
+
j
*
len
;
size_t
offset
=
i
*
col
*
len
+
j
*
len
;
if
(
axis
==
0
)
{
prior_box_offset
=
axis
==
0
?
j
*
len
:
i
*
len
;
prior_box_offset
=
j
*
len
;
}
else
if
(
axis
==
1
)
{
prior_box_offset
=
i
*
len
;
}
T
prior_box_width
=
prior_box_data
[
prior_box_offset
+
2
]
-
T
prior_box_width
=
prior_box_data
[
prior_box_offset
+
2
]
-
prior_box_data
[
prior_box_offset
]
+
prior_box_data
[
prior_box_offset
]
+
(
normalized
==
false
);
(
normalized
==
false
);
...
@@ -133,26 +129,18 @@ class BoxCoderKernel : public framework::OpKernel<T> {
...
@@ -133,26 +129,18 @@ class BoxCoderKernel : public framework::OpKernel<T> {
T
target_box_center_x
=
0
,
target_box_center_y
=
0
;
T
target_box_center_x
=
0
,
target_box_center_y
=
0
;
T
target_box_width
=
0
,
target_box_height
=
0
;
T
target_box_width
=
0
,
target_box_height
=
0
;
T
box_var_x
=
T
(
1
),
box_var_y
=
T
(
1
);
int
prior_var_offset
=
axis
==
0
?
j
*
len
:
i
*
len
;
T
box_var_w
=
T
(
1
),
box_var_h
=
T
(
1
);
if
(
var_size
==
2
)
{
if
(
prior_box_var
)
{
std
::
memcpy
(
var_ptr
,
prior_box_var_data
+
prior_var_offset
,
int
prior_var_offset
=
0
;
4
*
sizeof
(
T
));
if
(
prior_box_var
->
dims
().
size
()
==
2
)
{
}
else
if
(
var_size
==
1
)
{
if
(
axis
==
0
)
var_ptr
=
reinterpret_cast
<
T
*>
(
variance
.
data
());
prior_var_offset
=
j
*
len
;
}
else
if
(
axis
==
1
)
T
box_var_x
=
*
var_ptr
;
prior_var_offset
=
i
*
len
;
T
box_var_y
=
*
(
var_ptr
+
1
);
}
T
box_var_w
=
*
(
var_ptr
+
2
);
box_var_x
=
prior_box_var_data
[
prior_var_offset
];
T
box_var_h
=
*
(
var_ptr
+
3
);
box_var_y
=
prior_box_var_data
[
prior_var_offset
+
1
];
box_var_w
=
prior_box_var_data
[
prior_var_offset
+
2
];
box_var_h
=
prior_box_var_data
[
prior_var_offset
+
3
];
}
else
if
(
!
(
variance
.
empty
()))
{
box_var_x
=
static_cast
<
T
>
(
variance
[
0
]);
box_var_y
=
static_cast
<
T
>
(
variance
[
1
]);
box_var_w
=
static_cast
<
T
>
(
variance
[
2
]);
box_var_h
=
static_cast
<
T
>
(
variance
[
3
]);
}
target_box_center_x
=
target_box_center_x
=
box_var_x
*
target_box_data
[
offset
]
*
prior_box_width
+
box_var_x
*
target_box_data
[
offset
]
*
prior_box_width
+
prior_box_center_x
;
prior_box_center_x
;
...
@@ -211,8 +199,31 @@ class BoxCoderKernel : public framework::OpKernel<T> {
...
@@ -211,8 +199,31 @@ class BoxCoderKernel : public framework::OpKernel<T> {
EncodeCenterSize
(
target_box
,
prior_box
,
prior_box_var
,
normalized
,
EncodeCenterSize
(
target_box
,
prior_box
,
prior_box_var
,
normalized
,
variance
,
output
);
variance
,
output
);
}
else
if
(
code_type
==
BoxCodeType
::
kDecodeCenterSize
)
{
}
else
if
(
code_type
==
BoxCodeType
::
kDecodeCenterSize
)
{
DecodeCenterSize
(
target_box
,
prior_box
,
prior_box_var
,
normalized
,
axis
,
if
(
prior_box_var
)
{
variance
,
output
);
if
(
axis
==
0
)
{
DecodeCenterSize
<
0
,
2
>
(
target_box
,
prior_box
,
prior_box_var
,
normalized
,
variance
,
output
);
}
else
{
DecodeCenterSize
<
1
,
2
>
(
target_box
,
prior_box
,
prior_box_var
,
normalized
,
variance
,
output
);
}
}
else
if
(
!
(
variance
.
empty
()))
{
if
(
axis
==
0
)
{
DecodeCenterSize
<
0
,
1
>
(
target_box
,
prior_box
,
prior_box_var
,
normalized
,
variance
,
output
);
}
else
{
DecodeCenterSize
<
1
,
1
>
(
target_box
,
prior_box
,
prior_box_var
,
normalized
,
variance
,
output
);
}
}
else
{
if
(
axis
==
0
)
{
DecodeCenterSize
<
0
,
0
>
(
target_box
,
prior_box
,
prior_box_var
,
normalized
,
variance
,
output
);
}
else
{
DecodeCenterSize
<
1
,
0
>
(
target_box
,
prior_box
,
prior_box_var
,
normalized
,
variance
,
output
);
}
}
}
}
}
}
};
};
...
...
python/paddle/fluid/layers/detection.py
浏览文件 @
ceb412b0
...
@@ -397,10 +397,10 @@ def box_coder(prior_box,
...
@@ -397,10 +397,10 @@ def box_coder(prior_box,
input is image feature map, they are close to
input is image feature map, they are close to
the origin of the coordinate system. [xmax, ymax]
the origin of the coordinate system. [xmax, ymax]
is the right bottom coordinate of the anchor box.
is the right bottom coordinate of the anchor box.
prior_box_var(Variable|list
): prior_box_var supports two types of input.
prior_box_var(Variable|list
|None): prior_box_var supports two types
One is variable with shape [M, 4] holds M group.
of input. One is variable with shape [M, 4]
The other one is list consist of 4 elements
holds M group. The other one is list consist of
shared by all boxes.
4 elements
shared by all boxes.
target_box(Variable): This input can be a 2-D LoDTensor with shape
target_box(Variable): This input can be a 2-D LoDTensor with shape
[N, 4] when code_type is 'encode_center_size'.
[N, 4] when code_type is 'encode_center_size'.
This input also can be a 3-D Tensor with shape
This input also can be a 3-D Tensor with shape
...
...
python/paddle/fluid/tests/unittests/test_box_coder_op.py
浏览文件 @
ceb412b0
...
@@ -34,7 +34,9 @@ def box_decoder(t_box, p_box, pb_v, output_box, norm, axis=0):
...
@@ -34,7 +34,9 @@ def box_decoder(t_box, p_box, pb_v, output_box, norm, axis=0):
pb_y
=
pb_y
.
reshape
(
shape
)
pb_y
=
pb_y
.
reshape
(
shape
)
if
pb_v
.
ndim
==
2
:
if
pb_v
.
ndim
==
2
:
pb_v
=
pb_v
.
reshape
(
1
,
pb_v
.
shape
[
0
],
pb_v
.
shape
[
1
])
var_shape
=
(
1
,
pb_v
.
shape
[
0
],
pb_v
.
shape
[
1
])
if
axis
==
0
else
(
pb_v
.
shape
[
0
],
1
,
pb_v
.
shape
[
1
])
pb_v
=
pb_v
.
reshape
(
var_shape
)
if
pb_v
.
ndim
==
1
:
if
pb_v
.
ndim
==
1
:
tb_x
=
pb_v
[
0
]
*
t_box
[:,
:,
0
]
*
pb_w
+
pb_x
tb_x
=
pb_v
[
0
]
*
t_box
[:,
:,
0
]
*
pb_w
+
pb_x
tb_y
=
pb_v
[
1
]
*
t_box
[:,
:,
1
]
*
pb_h
+
pb_y
tb_y
=
pb_v
[
1
]
*
t_box
[:,
:,
1
]
*
pb_h
+
pb_y
...
@@ -125,33 +127,6 @@ class TestBoxCoderOp(OpTest):
...
@@ -125,33 +127,6 @@ class TestBoxCoderOp(OpTest):
self
.
outputs
=
{
'OutputBox'
:
output_box
}
self
.
outputs
=
{
'OutputBox'
:
output_box
}
class
TestBoxCoderOpWithOneRankVar
(
OpTest
):
def
test_check_output
(
self
):
self
.
check_output
()
def
setUp
(
self
):
self
.
op_type
=
"box_coder"
lod
=
[[
1
,
1
,
1
,
1
,
1
]]
prior_box
=
np
.
random
.
random
((
81
,
4
)).
astype
(
'float32'
)
prior_box_var
=
np
.
random
.
random
((
4
)).
astype
(
'float32'
)
target_box
=
np
.
random
.
random
((
20
,
81
,
4
)).
astype
(
'float32'
)
code_type
=
"DecodeCenterSize"
box_normalized
=
False
output_box
=
batch_box_coder
(
prior_box
,
prior_box_var
,
target_box
,
lod
[
0
],
code_type
,
box_normalized
)
self
.
inputs
=
{
'PriorBox'
:
prior_box
,
'PriorBoxVar'
:
prior_box_var
,
'TargetBox'
:
target_box
,
}
self
.
attrs
=
{
'code_type'
:
'decode_center_size'
,
'box_normalized'
:
False
}
self
.
outputs
=
{
'OutputBox'
:
output_box
}
class
TestBoxCoderOpWithoutBoxVar
(
OpTest
):
class
TestBoxCoderOpWithoutBoxVar
(
OpTest
):
def
test_check_output
(
self
):
def
test_check_output
(
self
):
self
.
check_output
()
self
.
check_output
()
...
@@ -210,7 +185,7 @@ class TestBoxCoderOpWithAxis(OpTest):
...
@@ -210,7 +185,7 @@ class TestBoxCoderOpWithAxis(OpTest):
self
.
op_type
=
"box_coder"
self
.
op_type
=
"box_coder"
lod
=
[[
1
,
1
,
1
,
1
,
1
]]
lod
=
[[
1
,
1
,
1
,
1
,
1
]]
prior_box
=
np
.
random
.
random
((
30
,
4
)).
astype
(
'float32'
)
prior_box
=
np
.
random
.
random
((
30
,
4
)).
astype
(
'float32'
)
prior_box_var
=
np
.
random
.
random
((
4
)).
astype
(
'float32'
)
prior_box_var
=
np
.
random
.
random
((
30
,
4
)).
astype
(
'float32'
)
target_box
=
np
.
random
.
random
((
30
,
81
,
4
)).
astype
(
'float32'
)
target_box
=
np
.
random
.
random
((
30
,
81
,
4
)).
astype
(
'float32'
)
code_type
=
"DecodeCenterSize"
code_type
=
"DecodeCenterSize"
box_normalized
=
False
box_normalized
=
False
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录