Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
ce08645d
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ce08645d
编写于
11月 08, 2017
作者:
T
Tao Luo
提交者:
GitHub
11月 08, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #5422 from tensor-tang/resnet
enable benchmark resnet with MKLDNN
上级
91b72482
2dff98ca
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
234 addition
and
29 deletion
+234
-29
benchmark/paddle/image/resnet.py
benchmark/paddle/image/resnet.py
+213
-0
benchmark/paddle/image/run_mkldnn.sh
benchmark/paddle/image/run_mkldnn.sh
+14
-16
paddle/gserver/layers/MKLDNNFcLayer.cpp
paddle/gserver/layers/MKLDNNFcLayer.cpp
+2
-4
paddle/gserver/layers/MKLDNNLayer.cpp
paddle/gserver/layers/MKLDNNLayer.cpp
+5
-9
未找到文件。
benchmark/paddle/image/resnet.py
0 → 100644
浏览文件 @
ce08645d
#!/usr/bin/env python
from
paddle.trainer_config_helpers
import
*
height
=
224
width
=
224
num_class
=
1000
batch_size
=
get_config_arg
(
'batch_size'
,
int
,
64
)
layer_num
=
get_config_arg
(
"layer_num"
,
int
,
50
)
is_test
=
get_config_arg
(
"is_test"
,
bool
,
False
)
args
=
{
'height'
:
height
,
'width'
:
width
,
'color'
:
True
,
'num_class'
:
num_class
}
define_py_data_sources2
(
"train.list"
,
None
,
module
=
"provider"
,
obj
=
"process"
,
args
=
args
)
settings
(
batch_size
=
batch_size
,
learning_rate
=
0.01
/
batch_size
,
learning_method
=
MomentumOptimizer
(
0.9
),
regularization
=
L2Regularization
(
0.0005
*
batch_size
))
#######################Network Configuration #############
def
conv_bn_layer
(
name
,
input
,
filter_size
,
num_filters
,
stride
,
padding
,
channels
=
None
,
active_type
=
ReluActivation
()):
"""
A wrapper for conv layer with batch normalization layers.
Note:
conv layer has no activation.
"""
tmp
=
img_conv_layer
(
name
=
name
+
"_conv"
,
input
=
input
,
filter_size
=
filter_size
,
num_channels
=
channels
,
num_filters
=
num_filters
,
stride
=
stride
,
padding
=
padding
,
act
=
LinearActivation
(),
bias_attr
=
False
)
return
batch_norm_layer
(
name
=
name
+
"_bn"
,
input
=
tmp
,
act
=
active_type
,
use_global_stats
=
is_test
)
def
bottleneck_block
(
name
,
input
,
num_filters1
,
num_filters2
):
"""
A wrapper for bottlenect building block in ResNet.
Last conv_bn_layer has no activation.
Addto layer has activation of relu.
"""
last_name
=
conv_bn_layer
(
name
=
name
+
'_branch2a'
,
input
=
input
,
filter_size
=
1
,
num_filters
=
num_filters1
,
stride
=
1
,
padding
=
0
)
last_name
=
conv_bn_layer
(
name
=
name
+
'_branch2b'
,
input
=
last_name
,
filter_size
=
3
,
num_filters
=
num_filters1
,
stride
=
1
,
padding
=
1
)
last_name
=
conv_bn_layer
(
name
=
name
+
'_branch2c'
,
input
=
last_name
,
filter_size
=
1
,
num_filters
=
num_filters2
,
stride
=
1
,
padding
=
0
,
active_type
=
LinearActivation
())
return
addto_layer
(
name
=
name
+
"_addto"
,
input
=
[
input
,
last_name
],
act
=
ReluActivation
())
def
mid_projection
(
name
,
input
,
num_filters1
,
num_filters2
,
stride
=
2
):
"""
A wrapper for middile projection in ResNet.
projection shortcuts are used for increasing dimensions,
and other shortcuts are identity
branch1: projection shortcuts are used for increasing
dimensions, has no activation.
branch2x: bottleneck building block, shortcuts are identity.
"""
# stride = 2
branch1
=
conv_bn_layer
(
name
=
name
+
'_branch1'
,
input
=
input
,
filter_size
=
1
,
num_filters
=
num_filters2
,
stride
=
stride
,
padding
=
0
,
active_type
=
LinearActivation
())
last_name
=
conv_bn_layer
(
name
=
name
+
'_branch2a'
,
input
=
input
,
filter_size
=
1
,
num_filters
=
num_filters1
,
stride
=
stride
,
padding
=
0
)
last_name
=
conv_bn_layer
(
name
=
name
+
'_branch2b'
,
input
=
last_name
,
filter_size
=
3
,
num_filters
=
num_filters1
,
stride
=
1
,
padding
=
1
)
last_name
=
conv_bn_layer
(
name
=
name
+
'_branch2c'
,
input
=
last_name
,
filter_size
=
1
,
num_filters
=
num_filters2
,
stride
=
1
,
padding
=
0
,
active_type
=
LinearActivation
())
return
addto_layer
(
name
=
name
+
"_addto"
,
input
=
[
branch1
,
last_name
],
act
=
ReluActivation
())
img
=
data_layer
(
name
=
'image'
,
size
=
height
*
width
*
3
)
def
deep_res_net
(
res2_num
=
3
,
res3_num
=
4
,
res4_num
=
6
,
res5_num
=
3
):
"""
A wrapper for 50,101,152 layers of ResNet.
res2_num: number of blocks stacked in conv2_x
res3_num: number of blocks stacked in conv3_x
res4_num: number of blocks stacked in conv4_x
res5_num: number of blocks stacked in conv5_x
"""
# For ImageNet
# conv1: 112x112
tmp
=
conv_bn_layer
(
"conv1"
,
input
=
img
,
filter_size
=
7
,
channels
=
3
,
num_filters
=
64
,
stride
=
2
,
padding
=
3
)
tmp
=
img_pool_layer
(
name
=
"pool1"
,
input
=
tmp
,
pool_size
=
3
,
stride
=
2
)
# conv2_x: 56x56
tmp
=
mid_projection
(
name
=
"res2_1"
,
input
=
tmp
,
num_filters1
=
64
,
num_filters2
=
256
,
stride
=
1
)
for
i
in
xrange
(
2
,
res2_num
+
1
,
1
):
tmp
=
bottleneck_block
(
name
=
"res2_"
+
str
(
i
),
input
=
tmp
,
num_filters1
=
64
,
num_filters2
=
256
)
# conv3_x: 28x28
tmp
=
mid_projection
(
name
=
"res3_1"
,
input
=
tmp
,
num_filters1
=
128
,
num_filters2
=
512
)
for
i
in
xrange
(
2
,
res3_num
+
1
,
1
):
tmp
=
bottleneck_block
(
name
=
"res3_"
+
str
(
i
),
input
=
tmp
,
num_filters1
=
128
,
num_filters2
=
512
)
# conv4_x: 14x14
tmp
=
mid_projection
(
name
=
"res4_1"
,
input
=
tmp
,
num_filters1
=
256
,
num_filters2
=
1024
)
for
i
in
xrange
(
2
,
res4_num
+
1
,
1
):
tmp
=
bottleneck_block
(
name
=
"res4_"
+
str
(
i
),
input
=
tmp
,
num_filters1
=
256
,
num_filters2
=
1024
)
# conv5_x: 7x7
tmp
=
mid_projection
(
name
=
"res5_1"
,
input
=
tmp
,
num_filters1
=
512
,
num_filters2
=
2048
)
for
i
in
xrange
(
2
,
res5_num
+
1
,
1
):
tmp
=
bottleneck_block
(
name
=
"res5_"
+
str
(
i
),
input
=
tmp
,
num_filters1
=
512
,
num_filters2
=
2048
)
tmp
=
img_pool_layer
(
name
=
'avgpool'
,
input
=
tmp
,
pool_size
=
7
,
stride
=
1
,
pool_type
=
AvgPooling
())
return
fc_layer
(
input
=
tmp
,
size
=
num_class
,
act
=
SoftmaxActivation
())
if
layer_num
==
50
:
resnet
=
deep_res_net
(
3
,
4
,
6
,
3
)
elif
layer_num
==
101
:
resnet
=
deep_res_net
(
3
,
4
,
23
,
3
)
elif
layer_num
==
152
:
resnet
=
deep_res_net
(
3
,
8
,
36
,
3
)
else
:
print
(
"Wrong layer number."
)
lbl
=
data_layer
(
name
=
"label"
,
size
=
num_class
)
loss
=
cross_entropy
(
name
=
'loss'
,
input
=
resnet
,
label
=
lbl
)
inputs
(
img
,
lbl
)
outputs
(
loss
)
benchmark/paddle/image/run_mkldnn.sh
浏览文件 @
ce08645d
...
...
@@ -5,22 +5,23 @@ function train() {
export
OMP_DYNAMIC
=
"FALSE"
export
KMP_AFFINITY
=
"granularity=fine,compact,0,0"
topology
=
$1
bs
=
$2
use_mkldnn
=
$3
if
[
$3
==
"True"
]
;
then
layer_num
=
$2
bs
=
$3
use_mkldnn
=
$4
if
[
$4
==
"True"
]
;
then
thread
=
1
log
=
"logs/
${
topology
}
-mkldnn-
${
bs
}
.log"
elif
[
$
3
==
"False"
]
;
then
log
=
"logs/
${
topology
}
-
${
layer_num
}
-
mkldnn-
${
bs
}
.log"
elif
[
$
4
==
"False"
]
;
then
thread
=
`
nproc
`
# each trainer_count use only 1 core to avoid conflict
export
OMP_NUM_THREADS
=
1
export
MKL_NUM_THREADS
=
1
log
=
"logs/
${
topology
}
-
${
thread
}
mklml-
${
bs
}
.log"
log
=
"logs/
${
topology
}
-
${
layer_num
}
-
${
thread
}
mklml-
${
bs
}
.log"
else
echo
"Wrong input
$3
, use True or False."
exit
0
fi
args
=
"batch_size=
${
bs
}
"
args
=
"batch_size=
${
bs
}
,layer_num=
${
layer_num
}
"
config
=
"
${
topology
}
.py"
paddle train
--job
=
time
\
--config
=
$config
\
...
...
@@ -40,12 +41,9 @@ if [ ! -d "logs" ]; then
mkdir
logs
fi
#========== mkldnn ==========#
train vgg 64 True
train vgg 128 True
train vgg 256 True
#========== mklml ===========#
train vgg 64 False
train vgg 128 False
train vgg 256 False
for
use_mkldnn
in
True False
;
do
for
batchsize
in
64 128 256
;
do
train vgg 19
$batchsize
$use_mkldnn
train resnet 50
$batchsize
$use_mkldnn
done
done
paddle/gserver/layers/MKLDNNFcLayer.cpp
浏览文件 @
ce08645d
...
...
@@ -60,18 +60,16 @@ void MKLDNNFcLayer::convertWeightsFromPaddle() {
}
CHECK
(
wgtVal_
)
<<
"should have been initialized"
;
bool
hasNoSpatial_
=
ih_
==
1
&&
iw_
==
1
;
auto
targetDim
=
wgtVal_
->
getDims
();
auto
srcFmt
=
hasNoSpatial_
?
format
::
io
:
format
::
ihwo
;
auto
srcFmt
=
targetDim
.
size
()
==
2
?
format
::
io
:
format
::
ihwo
;
wgtVal_
->
reorderDataFrom
(
wgtVal_
,
srcFmt
,
targetDim
);
hasInitedWgt_
=
true
;
}
void
MKLDNNFcLayer
::
convertWeightsToPaddle
()
{
CHECK
(
wgtVal_
)
<<
"should have been initialized"
;
bool
hasNoSpatial_
=
ih_
==
1
&&
iw_
==
1
;
auto
targetDim
=
wgtVal_
->
getDims
();
auto
dstFmt
=
hasNoSpatial_
?
format
::
io
:
format
::
ihwo
;
auto
dstFmt
=
targetDim
.
size
()
==
2
?
format
::
io
:
format
::
ihwo
;
wgtVal_
->
reorderDataTo
(
wgtVal_
,
dstFmt
,
targetDim
);
}
...
...
paddle/gserver/layers/MKLDNNLayer.cpp
浏览文件 @
ce08645d
...
...
@@ -181,21 +181,17 @@ void MKLDNNLayer::resetInValue(
auto
extPD
=
MKLDNNMatrix
::
createPrimitiveDesc
(
{
bs_
,
ic_
,
ih_
,
iw_
},
format
::
nchw
,
engine_
);
const
MatrixPtr
&
inMat
=
inputLayers_
[
inputIdx
]
->
getOutputValue
();
in
=
std
::
dynamic_pointer_cast
<
MKLDNNMatrix
>
(
inMat
);
CHECK_EQ
(
inputIsOnlyMKLDNN
(),
in
!=
nullptr
);
if
(
in
==
nullptr
||
in
->
getFormat
()
==
format
::
nc
)
{
in
=
MKLDNNMatrix
::
create
(
extPD
,
inMat
);
}
extInVal_
=
isPaddleFormat
(
in
->
getFormat
())
?
in
:
nullptr
;
if
(
in
->
getFormat
()
==
format
::
nc
)
{
CHECK
(
ih_
==
1
&&
iw_
==
1
);
extInVal_
=
std
::
dynamic_pointer_cast
<
MKLDNNMatrix
>
(
inMat
);
CHECK_EQ
(
inputIsOnlyMKLDNN
(),
extInVal_
!=
nullptr
);
if
(
extInVal_
==
nullptr
||
extInVal_
->
getFormat
()
==
format
::
nc
)
{
extInVal_
=
MKLDNNMatrix
::
create
(
extPD
,
inMat
);
}
in
=
extInVal_
;
if
(
nullptr
==
intPD
||
in
->
getPrimitiveDesc
()
==
*
intPD
)
{
return
;
}
// need create reorder
in
=
MKLDNNMatrix
::
create
(
*
intPD
);
extInVal_
=
extInVal_
?
extInVal_
:
MKLDNNMatrix
::
create
(
extPD
,
inMat
);
cvtInVal_
=
MKLDNNMatrix
::
createReorder
(
extInVal_
,
in
);
CHECK
(
cvtInVal_
)
<<
"should not be emptry"
;
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录