Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
cd382866
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
cd382866
编写于
10月 26, 2017
作者:
D
dangqingqing
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add gradient check unit testing and fix bug.
上级
d2bd7357
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
163 addition
and
78 deletion
+163
-78
paddle/operators/lstm_op.cc
paddle/operators/lstm_op.cc
+33
-24
paddle/operators/lstm_op.h
paddle/operators/lstm_op.h
+28
-13
paddle/operators/math/math_function.cc
paddle/operators/math/math_function.cc
+20
-0
paddle/operators/math/math_function.cu
paddle/operators/math/math_function.cu
+27
-0
paddle/operators/math/math_function.h
paddle/operators/math/math_function.h
+5
-0
paddle/operators/math/sequence2batch.h
paddle/operators/math/sequence2batch.h
+3
-6
python/paddle/v2/framework/tests/test_lstm_op.py
python/paddle/v2/framework/tests/test_lstm_op.py
+47
-35
未找到文件。
paddle/operators/lstm_op.cc
浏览文件 @
cd382866
...
@@ -28,6 +28,10 @@ class LSTMOp : public framework::OperatorWithKernel {
...
@@ -28,6 +28,10 @@ class LSTMOp : public framework::OperatorWithKernel {
"Output(Hidden) of LSTM should not be null."
);
"Output(Hidden) of LSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Cell"
),
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Cell"
),
"Output(Cell) of LSTM should not be null."
);
"Output(Cell) of LSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"BatchGate"
),
"Output(BatchGate) of LSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"BatchCellPreAct"
),
"Output(BatchGate) of LSTM should not be null."
);
auto
in_dims
=
ctx
->
GetInputDim
(
"Input"
);
auto
in_dims
=
ctx
->
GetInputDim
(
"Input"
);
PADDLE_ENFORCE_EQ
(
in_dims
.
size
(),
2
,
"Input(X)'s rank must be 2."
);
PADDLE_ENFORCE_EQ
(
in_dims
.
size
(),
2
,
"Input(X)'s rank must be 2."
);
...
@@ -92,11 +96,13 @@ class LSTMOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -92,11 +96,13 @@ class LSTMOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"H0"
,
AddInput
(
"H0"
,
"(Tensor, optional) the initial hidden state is an optional "
"(Tensor, optional) the initial hidden state is an optional "
"input. This is a tensor with shape (N x D), where N is the "
"input. This is a tensor with shape (N x D), where N is the "
"batch size, D is the hidden size."
);
"batch size, D is the hidden size."
)
.
AsDispensable
();
AddInput
(
"C0"
,
AddInput
(
"C0"
,
"(Tensor, optional) the initial cell state is an optional "
"(Tensor, optional) the initial cell state is an optional "
"input. This is a tensor with shape (N x D), where N is the "
"input. This is a tensor with shape (N x D), where N is the "
"batch size. `H0` and `C0` can be NULL but only at the same time"
);
"batch size. `H0` and `C0` can be NULL but only at the same time"
)
.
AsDispensable
();
AddInput
(
"Weight"
,
AddInput
(
"Weight"
,
"(Tensor) the learnable hidden-hidden weights."
"(Tensor) the learnable hidden-hidden weights."
" - The shape is (D x 4D), where D is the hidden size. "
" - The shape is (D x 4D), where D is the hidden size. "
...
@@ -110,7 +116,8 @@ class LSTMOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -110,7 +116,8 @@ class LSTMOpMaker : public framework::OpProtoAndCheckerMaker {
" - Bias = {b_c, b_i, b_f, b_o}."
" - Bias = {b_c, b_i, b_f, b_o}."
"2. `usePeepholes = True` "
"2. `usePeepholes = True` "
" - The shape is (1 x 7D). "
" - The shape is (1 x 7D). "
" - Bias = {b_c, b_i, b_f, b_o, W_ic, W_fc, W_oc}."
);
" - Bias = {b_c, b_i, b_f, b_o, W_ic, W_fc, W_oc}."
)
.
AsDispensable
();
AddOutput
(
"Hidden"
,
AddOutput
(
"Hidden"
,
"(LoDTensor) the hidden state lod tensor of LSTM operator. "
"(LoDTensor) the hidden state lod tensor of LSTM operator. "
"The shape and lod is the same with the `Input`."
);
"The shape and lod is the same with the `Input`."
);
...
@@ -208,27 +215,29 @@ class LSTMGradOp : public framework::OperatorWithKernel {
...
@@ -208,27 +215,29 @@ class LSTMGradOp : public framework::OperatorWithKernel {
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Hidden"
)),
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Input"
),
"Input(Hidden@GRAD) should not be null"
);
"Input(Input) of LSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Cell"
)),
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Hidden"
),
"Input(Cell@GRAD) should not be null"
);
"Input(Hidden) of LSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Cell"
),
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Input"
),
"Input(Cell) of LSTM should not be null."
);
ctx
->
GetInputDim
(
"Input"
));
if
(
ctx
->
HasInput
(
"Weight"
))
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"BatchGate"
),
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Weight"
),
"Input(BatchGate) of LSTM should not be null."
);
ctx
->
GetInputDim
(
"Weight"
));
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"BatchCellPreAct"
),
}
"Input(BatchGate) of LSTM should not be null."
);
if
(
ctx
->
HasInput
(
"Bias"
))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Bias"
),
auto
in_g_name
=
framework
::
GradVarName
(
"Input"
);
ctx
->
GetInputDim
(
"Bias"
));
if
(
ctx
->
HasOutput
(
in_g_name
))
}
ctx
->
SetOutputDim
(
in_g_name
,
ctx
->
GetInputDim
(
"Input"
));
if
(
ctx
->
HasInput
(
"H0"
))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"H0"
),
ctx
->
GetInputDim
(
"H0"
));
auto
w_g_name
=
framework
::
GradVarName
(
"Weight"
);
}
if
(
ctx
->
HasOutput
(
w_g_name
))
if
(
ctx
->
HasInput
(
"C0"
))
{
ctx
->
SetOutputDim
(
w_g_name
,
ctx
->
GetInputDim
(
"Weight"
));
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"C0"
),
ctx
->
GetInputDim
(
"C0"
));
}
auto
b_g_name
=
framework
::
GradVarName
(
"Bias"
);
if
(
ctx
->
HasOutput
(
b_g_name
))
ctx
->
SetOutputDim
(
b_g_name
,
ctx
->
GetInputDim
(
"Bias"
));
}
}
};
};
...
...
paddle/operators/lstm_op.h
浏览文件 @
cd382866
...
@@ -74,6 +74,7 @@ class LSTMKernel : public framework::OpKernel<T> {
...
@@ -74,6 +74,7 @@ class LSTMKernel : public framework::OpKernel<T> {
if
(
bias
)
{
if
(
bias
)
{
T
*
bias_data
=
const_cast
<
T
*>
(
bias
->
data
<
T
>
());
T
*
bias_data
=
const_cast
<
T
*>
(
bias
->
data
<
T
>
());
// the code style in LstmMetaValue will be updated later.
// the code style in LstmMetaValue will be updated later.
lstm_value
.
checkIg
=
bias_data
+
4
*
frame_size
;
lstm_value
.
checkIg
=
bias_data
+
4
*
frame_size
;
lstm_value
.
checkFg
=
lstm_value
.
checkIg
+
frame_size
;
lstm_value
.
checkFg
=
lstm_value
.
checkIg
+
frame_size
;
lstm_value
.
checkOg
=
lstm_value
.
checkFg
+
frame_size
;
lstm_value
.
checkOg
=
lstm_value
.
checkFg
+
frame_size
;
...
@@ -86,10 +87,10 @@ class LSTMKernel : public framework::OpKernel<T> {
...
@@ -86,10 +87,10 @@ class LSTMKernel : public framework::OpKernel<T> {
// Use the local variable as here.
// Use the local variable as here.
LoDTensor
batch_hidden
,
batch_cell
;
LoDTensor
batch_hidden
,
batch_cell
;
auto
batch_cell_pre_act
=
*
(
ctx
.
Output
<
LoDTensor
>
(
"BatchCellPreAct"
)
);
auto
*
batch_cell_pre_act
=
ctx
.
Output
<
LoDTensor
>
(
"BatchCellPreAct"
);
batch_hidden
.
mutable_data
<
T
>
(
dims
,
ctx
.
GetPlace
());
batch_hidden
.
mutable_data
<
T
>
(
dims
,
ctx
.
GetPlace
());
batch_cell
.
mutable_data
<
T
>
(
dims
,
ctx
.
GetPlace
());
batch_cell
.
mutable_data
<
T
>
(
dims
,
ctx
.
GetPlace
());
batch_cell_pre_act
.
mutable_data
<
T
>
(
dims
,
ctx
.
GetPlace
());
batch_cell_pre_act
->
mutable_data
<
T
>
(
dims
,
ctx
.
GetPlace
());
auto
batch_starts
=
batch_gate
->
lod
()[
0
];
auto
batch_starts
=
batch_gate
->
lod
()[
0
];
size_t
num_batch
=
batch_starts
.
size
()
-
1
;
size_t
num_batch
=
batch_starts
.
size
()
-
1
;
...
@@ -104,7 +105,7 @@ class LSTMKernel : public framework::OpKernel<T> {
...
@@ -104,7 +105,7 @@ class LSTMKernel : public framework::OpKernel<T> {
Tensor
gate_t
=
batch_gate
->
Slice
(
bstart
,
bend
);
Tensor
gate_t
=
batch_gate
->
Slice
(
bstart
,
bend
);
Tensor
out_t
=
batch_hidden
.
Slice
(
bstart
,
bend
);
Tensor
out_t
=
batch_hidden
.
Slice
(
bstart
,
bend
);
Tensor
cell_t
=
batch_cell
.
Slice
(
bstart
,
bend
);
Tensor
cell_t
=
batch_cell
.
Slice
(
bstart
,
bend
);
Tensor
cell_pre_act_t
=
batch_cell_pre_act
.
Slice
(
bstart
,
bend
);
Tensor
cell_pre_act_t
=
batch_cell_pre_act
->
Slice
(
bstart
,
bend
);
int
cur_batch_size
=
bend
-
bstart
;
int
cur_batch_size
=
bend
-
bstart
;
...
@@ -162,6 +163,7 @@ class LSTMGradKernel : public framework::OpKernel<T> {
...
@@ -162,6 +163,7 @@ class LSTMGradKernel : public framework::OpKernel<T> {
auto
&
device_ctx
=
ctx
.
device_context
();
auto
&
device_ctx
=
ctx
.
device_context
();
if
(
weight_g
)
{
if
(
weight_g
)
{
weight_g
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
math
::
SetConstant
<
Place
,
T
>
zero
;
math
::
SetConstant
<
Place
,
T
>
zero
;
zero
(
device_ctx
,
weight_g
,
static_cast
<
T
>
(
0.0
));
zero
(
device_ctx
,
weight_g
,
static_cast
<
T
>
(
0.0
));
}
}
...
@@ -228,7 +230,7 @@ class LSTMGradKernel : public framework::OpKernel<T> {
...
@@ -228,7 +230,7 @@ class LSTMGradKernel : public framework::OpKernel<T> {
auto
batch_starts
=
batch_gate
->
lod
()[
0
];
auto
batch_starts
=
batch_gate
->
lod
()[
0
];
size_t
num_batch
=
batch_starts
.
size
()
-
1
;
size_t
num_batch
=
batch_starts
.
size
()
-
1
;
for
(
int
n
=
static_cast
<
int
>
(
num_batch
);
n
>=
0
;
n
--
)
{
for
(
int
n
=
static_cast
<
int
>
(
num_batch
)
-
1
;
n
>=
0
;
n
--
)
{
int
bstart
=
static_cast
<
int
>
(
batch_starts
[
n
]);
int
bstart
=
static_cast
<
int
>
(
batch_starts
[
n
]);
int
bend
=
static_cast
<
int
>
(
batch_starts
[
n
+
1
]);
int
bend
=
static_cast
<
int
>
(
batch_starts
[
n
+
1
]);
...
@@ -282,19 +284,32 @@ class LSTMGradKernel : public framework::OpKernel<T> {
...
@@ -282,19 +284,32 @@ class LSTMGradKernel : public framework::OpKernel<T> {
math
::
Batch2LoDTensorFunctor
<
Place
,
T
>
to_seq
;
math
::
Batch2LoDTensorFunctor
<
Place
,
T
>
to_seq
;
if
(
in_g
)
{
if
(
in_g
)
{
/* backward data */
/* backward data */
in_g
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
to_seq
(
device_ctx
,
batch_gate_g
,
*
in_g
);
to_seq
(
device_ctx
,
batch_gate_g
,
*
in_g
);
}
}
if
(
bias
&&
bias_g
)
{
if
(
bias
&&
bias_g
)
{
/* backward bias */
/* backward bias */
bias_g
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
// Following Eigen computation failed for double type on GPU device.
auto
bias_g_e
=
EigenMatrix
<
T
>::
From
(
*
bias_g
);
// bias_g->mutable_data<T>(ctx.GetPlace());
auto
gate_g_e
=
EigenMatrix
<
T
>::
From
(
batch_gate_g
);
// Tensor bias_mat;
Eigen
::
array
<
int
,
2
>
extents
({{
1
,
4
*
frame_size
}});
// bias_mat.ShareDataWith(*bias_g);
Eigen
::
array
<
int
,
2
>
offsets
({{
0
,
0
}});
// bias_mat.Resize({1, 4 * frame_size});
auto
bg
=
bias_g_e
.
slice
(
offsets
,
extents
)
.
reshape
(
Eigen
::
array
<
int
,
2
>
({{
1
,
frame_size
*
4
}}));
// auto bias_g_e = EigenVector<T>::Flatten(bias_mat);
bg
.
device
(
ctx
.
GetEigenDevice
<
Place
>
())
=
// auto gate_g_e = EigenMatrix<T>::From(batch_gate_g);
gate_g_e
.
sum
(
Eigen
::
array
<
int
,
1
>
({{
0
}}));
// Eigen::array<int, 1> dims{{0}};
// bias_g_e.device(ctx.GetEigenDevice<Place>()) = gate_g_e.sum(dims);
int
m
=
static_cast
<
int
>
(
batch_gate_g
.
dims
()[
0
]);
int
n
=
static_cast
<
int
>
(
batch_gate_g
.
dims
()[
1
]);
Tensor
ones
;
ones
.
mutable_data
<
T
>
({
1
,
m
},
ctx
.
GetPlace
());
math
::
SetConstant
<
Place
,
T
>
set
;
set
(
device_ctx
,
&
ones
,
static_cast
<
T
>
(
1.0
));
math
::
gemv
<
Place
,
T
>
(
device_ctx
,
true
,
m
,
n
,
1.
,
batch_gate_g
.
data
<
T
>
(),
ones
.
data
<
T
>
(),
0.
,
bias_g
->
data
<
T
>
());
}
}
}
}
};
};
...
...
paddle/operators/math/math_function.cc
浏览文件 @
cd382866
...
@@ -211,6 +211,26 @@ void batched_gemm<platform::CPUPlace, double>(
...
@@ -211,6 +211,26 @@ void batched_gemm<platform::CPUPlace, double>(
}
}
#endif
#endif
template
<
>
void
gemv
<
platform
::
CPUPlace
,
float
>
(
const
platform
::
DeviceContext
&
context
,
const
bool
trans_a
,
const
int
M
,
const
int
N
,
const
float
alpha
,
const
float
*
A
,
const
float
*
B
,
const
float
beta
,
float
*
C
)
{
CBLAS_TRANSPOSE
transA
=
(
trans_a
==
false
)
?
CblasNoTrans
:
CblasTrans
;
cblas_sgemv
(
CblasRowMajor
,
transA
,
M
,
N
,
alpha
,
A
,
N
,
B
,
1
,
beta
,
C
,
1
);
}
template
<
>
void
gemv
<
platform
::
CPUPlace
,
double
>
(
const
platform
::
DeviceContext
&
context
,
const
bool
trans_a
,
const
int
M
,
const
int
N
,
const
double
alpha
,
const
double
*
A
,
const
double
*
B
,
const
double
beta
,
double
*
C
)
{
CBLAS_TRANSPOSE
transA
=
(
trans_a
==
false
)
?
CblasNoTrans
:
CblasTrans
;
cblas_dgemv
(
CblasRowMajor
,
transA
,
M
,
N
,
alpha
,
A
,
N
,
B
,
1
,
beta
,
C
,
1
);
}
template
struct
SetConstant
<
platform
::
CPUPlace
,
float
>;
template
struct
SetConstant
<
platform
::
CPUPlace
,
float
>;
}
// namespace math
}
// namespace math
...
...
paddle/operators/math/math_function.cu
浏览文件 @
cd382866
...
@@ -203,6 +203,33 @@ void batched_gemm<platform::GPUPlace, double>(
...
@@ -203,6 +203,33 @@ void batched_gemm<platform::GPUPlace, double>(
&
beta
,
C
,
ldc
,
strideC
,
batchCount
));
&
beta
,
C
,
ldc
,
strideC
,
batchCount
));
}
}
template
<
>
void
gemv
<
platform
::
GPUPlace
,
float
>
(
const
platform
::
DeviceContext
&
context
,
const
bool
trans_a
,
const
int
M
,
const
int
N
,
const
float
alpha
,
const
float
*
A
,
const
float
*
B
,
const
float
beta
,
float
*
C
)
{
cublasOperation_t
cuTransA
=
(
trans_a
==
false
)
?
CUBLAS_OP_T
:
CUBLAS_OP_N
;
PADDLE_ENFORCE
(
platform
::
dynload
::
cublasSgemv
(
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
)
.
cublas_handle
(),
cuTransA
,
N
,
M
,
&
alpha
,
A
,
N
,
B
,
1
,
&
beta
,
C
,
1
));
}
template
<
>
void
gemv
<
platform
::
GPUPlace
,
double
>
(
const
platform
::
DeviceContext
&
context
,
const
bool
trans_a
,
const
int
M
,
const
int
N
,
const
double
alpha
,
const
double
*
A
,
const
double
*
B
,
const
double
beta
,
double
*
C
)
{
cublasOperation_t
cuTransA
=
(
trans_a
==
false
)
?
CUBLAS_OP_T
:
CUBLAS_OP_N
;
PADDLE_ENFORCE
(
platform
::
dynload
::
cublasDgemv
(
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
)
.
cublas_handle
(),
cuTransA
,
N
,
M
,
&
alpha
,
A
,
N
,
B
,
1
,
&
beta
,
C
,
1
));
}
template
struct
SetConstant
<
platform
::
GPUPlace
,
float
>;
template
struct
SetConstant
<
platform
::
GPUPlace
,
float
>;
}
// namespace math
}
// namespace math
...
...
paddle/operators/math/math_function.h
浏览文件 @
cd382866
...
@@ -93,6 +93,11 @@ void batched_gemm(const platform::DeviceContext& context,
...
@@ -93,6 +93,11 @@ void batched_gemm(const platform::DeviceContext& context,
const
T
*
A
,
const
T
*
B
,
const
T
beta
,
T
*
C
,
const
T
*
A
,
const
T
*
B
,
const
T
beta
,
T
*
C
,
const
int
batchCount
,
const
int
strideA
,
const
int
strideB
);
const
int
batchCount
,
const
int
strideA
,
const
int
strideB
);
template
<
typename
Place
,
typename
T
>
void
gemv
(
const
platform
::
DeviceContext
&
context
,
const
bool
trans_a
,
const
int
M
,
const
int
N
,
const
T
alpha
,
const
T
*
A
,
const
T
*
B
,
const
T
beta
,
T
*
C
);
template
<
typename
Place
,
typename
T
>
template
<
typename
Place
,
typename
T
>
struct
SetConstant
{
struct
SetConstant
{
void
operator
()(
const
platform
::
DeviceContext
&
context
,
void
operator
()(
const
platform
::
DeviceContext
&
context
,
...
...
paddle/operators/math/sequence2batch.h
浏览文件 @
cd382866
...
@@ -58,7 +58,7 @@ class LoDTensor2BatchFunctor {
...
@@ -58,7 +58,7 @@ class LoDTensor2BatchFunctor {
if
(
!
is_cal_batch_lod
)
{
if
(
!
is_cal_batch_lod
)
{
auto
lods
=
batch
.
lod
();
auto
lods
=
batch
.
lod
();
PADDLE_ENFORCE_EQ
(
lods
.
size
(),
2UL
);
PADDLE_ENFORCE_EQ
(
lods
.
size
(),
2UL
);
PADDLE_ENFORCE_EQ
(
lods
[
1
].
size
(),
lod_tensor
.
dims
()[
1
]);
PADDLE_ENFORCE_EQ
(
lods
[
1
].
size
(),
lod_tensor
.
dims
()[
0
]);
CopyMatrixRowsFunctor
<
Place
,
T
>
to_batch
;
CopyMatrixRowsFunctor
<
Place
,
T
>
to_batch
;
to_batch
(
context
,
lod_tensor
,
lods
[
1
].
data
(),
batch
,
true
);
to_batch
(
context
,
lod_tensor
,
lods
[
1
].
data
(),
batch
,
true
);
return
;
return
;
...
@@ -142,11 +142,8 @@ class Batch2LoDTensorFunctor {
...
@@ -142,11 +142,8 @@ class Batch2LoDTensorFunctor {
auto
in_lod
=
batch
.
lod
();
auto
in_lod
=
batch
.
lod
();
PADDLE_ENFORCE_EQ
(
in_lod
.
size
(),
2UL
,
PADDLE_ENFORCE_EQ
(
in_lod
.
size
(),
2UL
,
"The LoD size of input `batch` should be 2."
);
"The LoD size of input `batch` should be 2."
);
auto
out_lod
=
lod_tensor
.
lod
()[
0
];
PADDLE_ENFORCE_EQ
(
in_lod
[
1
].
size
(),
auto
num
=
out_lod
[
out_lod
.
size
()
-
1
];
static_cast
<
size_t
>
(
lod_tensor
.
dims
()[
0
]));
PADDLE_ENFORCE_EQ
(
num
,
lod_tensor
.
dims
()[
0
]);
PADDLE_ENFORCE_EQ
(
num
,
in_lod
[
1
].
size
());
PADDLE_ENFORCE_EQ
(
num
,
batch
.
dims
()[
0
]);
CopyMatrixRowsFunctor
<
Place
,
T
>
to_seq
;
CopyMatrixRowsFunctor
<
Place
,
T
>
to_seq
;
size_t
*
index
=
in_lod
[
1
].
data
();
size_t
*
index
=
in_lod
[
1
].
data
();
to_seq
(
context
,
batch
,
index
,
lod_tensor
,
false
);
to_seq
(
context
,
batch
,
index
,
lod_tensor
,
false
);
...
...
python/paddle/v2/framework/tests/test_lstm_op.py
浏览文件 @
cd382866
...
@@ -100,9 +100,9 @@ def lstm(
...
@@ -100,9 +100,9 @@ def lstm(
cell
.
append
(
c_pre
.
flatten
())
cell
.
append
(
c_pre
.
flatten
())
gate
.
append
(
g_pre
.
flatten
())
gate
.
append
(
g_pre
.
flatten
())
hidden
=
np
.
array
(
hidden
).
astype
(
"float64"
)
hidden
=
np
.
array
(
hidden
).
astype
(
'float64'
)
cell
=
np
.
array
(
cell
).
astype
(
"float64"
)
cell
=
np
.
array
(
cell
).
astype
(
'float64'
)
gate
=
np
.
array
(
gate
).
astype
(
"float64"
)
gate
=
np
.
array
(
gate
).
astype
(
'float64'
)
hidden
=
_reverse
(
hidden
,
offset
)
if
is_reverse
else
hidden
hidden
=
_reverse
(
hidden
,
offset
)
if
is_reverse
else
hidden
cell
=
_reverse
(
cell
,
offset
)
if
is_reverse
else
cell
cell
=
_reverse
(
cell
,
offset
)
if
is_reverse
else
cell
...
@@ -115,28 +115,35 @@ def lstm(
...
@@ -115,28 +115,35 @@ def lstm(
class
TestLstmOp
(
OpTest
):
class
TestLstmOp
(
OpTest
):
def
set_data
(
self
):
def
set_data
(
self
):
self
.
lod
=
[[
0
,
2
,
6
,
9
]]
#
self.lod = [[0, 2, 6, 9]]
self
.
D
=
64
#
self.D = 64
self
.
sort_idx
=
[
2
,
6
,
0
,
3
,
7
,
1
,
4
,
8
,
5
]
#
self.sort_idx = [2, 6, 0, 3, 7, 1, 4, 8, 5]
self
.
act_gate
=
"sigmoid"
self
.
lod
=
[[
0
,
1
]]
self
.
act_cell
=
"tanh"
self
.
D
=
4
self
.
act_cand
=
"tanh"
self
.
sort_idx
=
[
0
]
# self.act_gate = 'identity'
# self.act_cell = 'identity'
# self.act_cand = 'identity'
self
.
act_gate
=
'sigmoid'
self
.
act_cell
=
'tanh'
self
.
act_cand
=
'tanh'
self
.
is_reverse
=
False
self
.
is_reverse
=
False
def
setUp
(
self
):
def
setUp
(
self
):
self
.
set_data
()
self
.
set_data
()
self
.
op_type
=
"lstm"
self
.
op_type
=
'lstm'
T
=
self
.
lod
[
0
][
-
1
]
T
=
self
.
lod
[
0
][
-
1
]
N
=
len
(
self
.
lod
[
0
])
-
1
N
=
len
(
self
.
lod
[
0
])
-
1
x
=
np
.
random
.
normal
(
size
=
(
T
,
4
*
self
.
D
)).
astype
(
"float64"
)
x
=
np
.
random
.
normal
(
size
=
(
T
,
4
*
self
.
D
)).
astype
(
'float64'
)
h0
=
np
.
zeros
((
N
,
self
.
D
)).
astype
(
"float64"
)
h0
=
np
.
zeros
((
N
,
self
.
D
)).
astype
(
'float64'
)
c0
=
np
.
zeros
((
N
,
self
.
D
)).
astype
(
"float64"
)
c0
=
np
.
zeros
((
N
,
self
.
D
)).
astype
(
'float64'
)
w
=
np
.
random
.
normal
(
size
=
(
self
.
D
,
4
*
self
.
D
)).
astype
(
"float64"
)
w
=
np
.
random
.
normal
(
size
=
(
self
.
D
,
4
*
self
.
D
)).
astype
(
'float64'
)
b
=
np
.
random
.
normal
(
size
=
(
1
,
7
*
self
.
D
)).
astype
(
"float64"
)
b
=
np
.
random
.
normal
(
size
=
(
1
,
7
*
self
.
D
)).
astype
(
'float64'
)
w_b
=
b
[:,
0
:
4
*
self
.
D
]
w_b
=
b
[:,
0
:
4
*
self
.
D
]
w_c
=
b
[:,
4
*
self
.
D
:]
w_c
=
b
[:,
4
*
self
.
D
:]
...
@@ -158,32 +165,37 @@ class TestLstmOp(OpTest):
...
@@ -158,32 +165,37 @@ class TestLstmOp(OpTest):
self
.
outputs
=
{
self
.
outputs
=
{
'Hidden'
:
(
h
,
self
.
lod
),
'Hidden'
:
(
h
,
self
.
lod
),
'Cell'
:
(
c
,
self
.
lod
),
'Cell'
:
(
c
,
self
.
lod
),
'BatchGate'
:
g_sort
#'BatchGate': g_sort,
}
}
self
.
attrs
=
{
self
.
attrs
=
{
'usePeepholes'
:
True
,
'usePeepholes'
:
True
,
'isReverse'
:
self
.
is_reverse
,
'isReverse'
:
self
.
is_reverse
,
'gateActivation'
:
'sigmoid'
,
'gateActivation'
:
self
.
act_gate
,
'cellActivation'
:
'tanh'
,
'cellActivation'
:
self
.
act_cell
,
'candidateActivation'
:
'tanh'
'candidateActivation'
:
self
.
act_cand
}
}
def
test_check_output
(
self
):
def
not_
test_check_output
(
self
):
self
.
check_output
()
self
.
check_output
()
def
test_check_grad
(
self
):
class
TestLstmOpRerverse
(
TestLstmOp
):
self
.
outputs
[
'BatchGate'
]
=
None
def
set_data
(
self
):
self
.
outputs
[
'BatchCellPreAct'
]
=
None
self
.
lod
=
[[
0
,
2
,
6
,
9
]]
self
.
check_grad
([
'Input'
,
'Weight'
],
[
'Hidden'
,
'Cell'
])
self
.
D
=
64
#['Input', 'Weight', 'Bias'], ['Hidden', 'Cell'])
self
.
sort_idx
=
[
2
,
6
,
0
,
3
,
7
,
1
,
4
,
8
,
5
]
#class TestLstmOpRerverse(TestLstmOp):
self
.
act_gate
=
"sigmoid"
# def set_data(self):
self
.
act_cell
=
"tanh"
# self.lod = [[0, 2, 6, 9]]
self
.
act_cand
=
"tanh"
# self.D = 64
# self.sort_idx = [2, 6, 0, 3, 7, 1, 4, 8, 5]
self
.
is_reverse
=
True
#
# self.act_gate = 'sigmoid'
# self.act_cell = 'tanh'
if
__name__
==
"__main__"
:
# self.act_cand = 'tanh'
#
# self.is_reverse = True
if
__name__
==
'__main__'
:
unittest
.
main
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录