提交 cbcf11d9 编写于 作者: C caoying03

Merge branch 'develop' into crf

......@@ -26,7 +26,7 @@ FILE(GLOB PY_PADDLE_PYTHON_FILES ${PADDLE_SOURCE_DIR}/paddle/py_paddle/*.py)
SET_SOURCE_FILES_PROPERTIES(Paddle.i PROPERTIES CPLUSPLUS ON)
SET(CMAKE_SWIG_OUTDIR ${CMAKE_CURRENT_BINARY_DIR})
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-parentheses-equality -Wno-missing-field-initializers -Wno-self-assign")
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-parentheses-equality -Wno-missing-field-initializers -Wno-self-assign -ftls-model=global-dynamic")
SET(SWIG_MODULE_swig_paddle_EXTRA_DEPS
paddle_parameter
......
......@@ -42,12 +42,14 @@ add_custom_command(TARGET framework_py_proto POST_BUILD
cc_library(backward SRCS backward.cc DEPS net_op)
cc_test(backward_test SRCS backward_test.cc DEPS backward recurrent_op device_context)
cc_library(executor SRCS executor.cc DEPS op_registry device_context scope framework_proto backward ${GLOB_OP_LIB})
#if(WITH_GPU)
# nv_test(executor_test SRCS executor_test.cc DEPS executor)
#else()
# cc_test(executor_test SRCS executor_test.cc DEPS executor)
#endif()
cc_library(executor SRCS executor.cc DEPS op_registry device_context scope framework_proto backward)
set(EXECUTOR_TEST_OP elementwise_add_op gaussian_random_op feed_op fetch_op
mul_op sum_op squared_l2_distance_op fill_constant_op sgd_op)
if(WITH_GPU)
nv_test(executor_test SRCS executor_test.cc DEPS executor ${EXECUTOR_TEST_OP})
else()
cc_test(executor_test SRCS executor_test.cc DEPS executor ${EXECUTOR_TEST_OP})
endif()
cc_library(tensor_array SRCS tensor_array.cc DEPS lod_tensor)
cc_test(tensor_array_test SRCS tensor_array_test.cc DEPS tensor_array place)
......@@ -25,6 +25,16 @@ limitations under the License. */
#include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h"
USE_OP(elementwise_add);
USE_OP(gaussian_random);
USE_OP(feed);
USE_OP(fetch);
USE_OP(mul);
USE_OP(sum);
USE_OP(squared_l2_distance);
USE_OP(fill_constant);
USE_OP(sgd);
using namespace paddle::platform;
using namespace paddle::framework;
......
......@@ -289,6 +289,15 @@ class ExecutionContext {
return device_context_;
}
#ifdef PADDLE_WITH_CUDA
const platform::CUDADeviceContext& cuda_device_context() const {
PADDLE_ENFORCE(platform::is_gpu_place(device_context_.GetPlace()));
auto cuda_ctx =
reinterpret_cast<const platform::CUDADeviceContext*>(&device_context_);
return *cuda_ctx;
}
#endif
private:
const OperatorBase& op_;
const Scope& scope_;
......
......@@ -12,22 +12,12 @@
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/gemm_conv2d_op.h"
#include "paddle/operators/conv2d_op.h"
namespace paddle {
namespace operators {
int outputSize(int input_size, int filter_size, int padding, int stride) {
int output_size = (input_size - filter_size + 2 * padding) / stride + 1;
return output_size;
}
class Conv2DOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContext* ctx) const override {
void Conv2DOp::InferShape(framework::InferShapeContext* ctx) const {
PADDLE_ENFORCE(ctx->HasInput("Input"),
"Input(Input) of Conv2DOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Filter"),
......@@ -53,25 +43,22 @@ class Conv2DOp : public framework::OperatorWithKernel {
"The number of output channels should be divided by groups.");
auto output_height =
outputSize(in_dims[2], filter_dims[2], paddings[0], strides[0]);
OutputSize(in_dims[2], filter_dims[2], paddings[0], strides[0]);
auto output_width =
outputSize(in_dims[3], filter_dims[3], paddings[1], strides[1]);
ctx->SetOutputDim(
"Output", {in_dims[0], filter_dims[0], output_height, output_width});
}
};
OutputSize(in_dims[3], filter_dims[3], paddings[1], strides[1]);
ctx->SetOutputDim("Output",
{in_dims[0], filter_dims[0], output_height, output_width});
}
class Conv2DOpMaker : public framework::OpProtoAndCheckerMaker {
public:
Conv2DOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker)
Conv2DOpMaker::Conv2DOpMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput(
"Input",
"The input tensor of convolution operator. "
"The format of input tensor is NCHW. Where N is batch size, C is the "
"number of channels, H and W is the height and width of image.");
AddInput(
"Filter",
AddInput("Filter",
"The filter tensor of convolution operator."
"The format of the filter tensor is MCHW, where M is the number of "
"output image channels, C is the number of input image channels, "
......@@ -98,15 +85,9 @@ The convolution operation calculates the output based on the input, filter
and strides, paddings, groups parameters. The size of each dimension of the
parameters is checked in the infer-shape.
)DOC");
}
};
class Conv2DOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
}
protected:
void InferShape(framework::InferShapeContext* ctx) const override {
void Conv2DOpGrad::InferShape(framework::InferShapeContext* ctx) const {
auto in_dims = ctx->GetInputDim("Input");
auto filter_dims = ctx->GetInputDim("Filter");
if (ctx->HasOutput(framework::GradVarName("Input"))) {
......@@ -115,8 +96,7 @@ class Conv2DOpGrad : public framework::OperatorWithKernel {
if (ctx->HasOutput(framework::GradVarName("Filter"))) {
ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
}
}
};
}
} // namespace operators
} // namespace paddle
......
......@@ -12,7 +12,7 @@
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/gemm_conv2d_op.h"
#include "paddle/operators/conv2d_op.h"
namespace ops = paddle::operators;
......
......@@ -24,6 +24,38 @@ namespace operators {
using Tensor = framework::Tensor;
// Base convolution operator definations for other conv
// like operators to reuse the implementation.
inline int OutputSize(int input_size, int filter_size, int padding,
int stride) {
int output_size = (input_size - filter_size + 2 * padding) / stride + 1;
return output_size;
}
// Define Op classes in .h file so that other conv
// operator implementations can reuse the code.
class Conv2DOpMaker : public framework::OpProtoAndCheckerMaker {
public:
Conv2DOpMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker);
};
class Conv2DOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContext* ctx) const override;
};
class Conv2DOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContext* ctx) const override;
};
template <typename Place, typename T>
class GemmConv2DKernel : public framework::OpKernel<T> {
public:
......@@ -74,7 +106,6 @@ class GemmConv2DKernel : public framework::OpKernel<T> {
framework::DDim output_matrix_shape = {output_channels,
output_height * output_width};
// convolution operator: im2col + gemm
int in_step = input_channels / groups;
int out_step = output_channels / groups;
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/conv2d_op.h"
namespace paddle {
namespace operators {
class CudnnConvOpMaker : public Conv2DOpMaker {
public:
CudnnConvOpMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker)
: Conv2DOpMaker(proto, op_checker) {
AddAttr<std::vector<int>>("dilations", "dilations of convolution operator.")
.SetDefault(std::vector<int>{1, 1});
AddAttr<int>("workspace_size_MB",
"workspace size for cudnn, in MB, "
"workspace is a section of GPU memory which will be "
"allocated/freed each time the operator runs, larger "
"workspace size can increase performance but also requires "
"better hardward. This size should be carefully setted.")
.SetDefault(4096);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(conv_cudnn, ops::Conv2DOp, ops::CudnnConvOpMaker, conv_cudnn_grad,
ops::Conv2DOpGrad);
REGISTER_OP_CPU_KERNEL(
conv_cudnn, ops::GemmConv2DKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
conv_cudnn_grad,
ops::GemmConvGrad2DKernel<paddle::platform::CPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/memory/memory.h"
#include "paddle/operators/conv2d_op.h"
#include "paddle/platform/assert.h"
#include "paddle/platform/cudnn_helper.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor;
using DataLayout = platform::DataLayout;
using CUDADeviceContext = platform::CUDADeviceContext;
static constexpr size_t kCONV_CUDNN_WORKSPACE_LIMIT_BYTES = 1024 * 1024 * 1024;
// NOTE: framework::vectorize converts to type int64_t
// which does not fit cudnn inputs.
std::vector<int> Dims2Vector(const framework::DDim& dims) {
std::vector<int> ret;
for (int i = 0; i < dims.size(); i++) {
ret.push_back(dims[i]);
}
return ret;
}
template <typename T>
class CudnnConvOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
"It must use GPUPlace.");
auto* input = ctx.Input<Tensor>("Input");
auto* filter = ctx.Input<Tensor>("Filter");
auto* output = ctx.Output<Tensor>("Output");
std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
int groups = ctx.Attr<int>("groups");
int user_workspace_size = ctx.Attr<int>("workspace_size_MB");
const T* input_data = input->data<T>();
const T* filter_data = filter->data<T>();
T* output_data = output->mutable_data<T>(ctx.GetPlace());
// ------------------- cudnn descriptors ---------------------
ScopedTensorDescriptor input_desc;
ScopedTensorDescriptor output_desc;
ScopedFilterDescriptor filter_desc;
ScopedConvolutionDescriptor conv_desc;
DataLayout layout = DataLayout::kNCHW;
cudnnTensorDescriptor_t cudnn_input_desc =
input_desc.descriptor<T>(layout, Dims2Vector(input->dims()), groups);
cudnnTensorDescriptor_t cudnn_output_desc =
output_desc.descriptor<T>(layout, Dims2Vector(output->dims()), groups);
cudnnFilterDescriptor_t cudnn_filter_desc =
filter_desc.descriptor<T>(layout, Dims2Vector(filter->dims()), groups);
cudnnConvolutionDescriptor_t cudnn_conv_desc =
conv_desc.descriptor<T>(paddings, strides, dilations);
int input_channels = input->dims()[1];
int input_height = input->dims()[2];
int input_width = input->dims()[3];
int output_channels = output->dims()[1];
int output_height = output->dims()[2];
int output_width = output->dims()[3];
int group_offset_in = input_channels / groups * input_height * input_width;
int group_offset_out =
output_channels / groups * output_height * output_width;
int group_offset_filter = filter->numel() / groups;
// ------------------- cudnn conv workspace ---------------------
void* cudnn_workspace = nullptr;
size_t workspace_size_in_bytes; // final workspace to allocate.
size_t workspace_size_limit = kCONV_CUDNN_WORKSPACE_LIMIT_BYTES;
if (user_workspace_size > 0) {
workspace_size_limit = user_workspace_size * 1024 * 1024;
}
// ------------------- cudnn conv algorithm ---------------------
cudnnConvolutionFwdAlgo_t algo;
auto handle = ctx.cuda_device_context().cudnn_handle();
PADDLE_ENFORCE(platform::dynload::cudnnGetConvolutionForwardAlgorithm(
handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
cudnn_output_desc, CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
workspace_size_limit, &algo));
// get workspace size able to allocate
PADDLE_ENFORCE(platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
cudnn_output_desc, algo, &workspace_size_in_bytes));
// Allocate on GPU memory
platform::GPUPlace gpu = boost::get<platform::GPUPlace>(ctx.GetPlace());
cudnn_workspace = paddle::memory::Alloc(gpu, workspace_size_in_bytes);
// ------------------- cudnn conv forward ---------------------
T alpha = 1.0f, beta = 0.0f;
for (int i = 0; i < groups; i++) {
PADDLE_ENFORCE(platform::dynload::cudnnConvolutionForward(
handle, &alpha, cudnn_input_desc, input_data + i * group_offset_in,
cudnn_filter_desc, filter_data + i * group_offset_filter,
cudnn_conv_desc, algo, cudnn_workspace, workspace_size_in_bytes,
&beta, cudnn_output_desc, output_data + i * group_offset_out));
}
// Release the cudnn workspace
paddle::memory::Free(gpu, cudnn_workspace);
}
};
template <typename T>
class CudnnConvGradOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
"It must use GPUPlace.");
auto input = ctx.Input<Tensor>("Input");
auto filter = ctx.Input<Tensor>("Filter");
auto output_grad = ctx.Input<Tensor>(framework::GradVarName("Output"));
auto input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
auto filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));
const T* input_data = input->data<T>();
const T* output_grad_data = output_grad->data<T>();
const T* filter_data = filter->data<T>();
std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
int groups = ctx.Attr<int>("groups");
int user_workspace_size = ctx.Attr<int>("workspace_size_MB");
// ------------------- cudnn descriptors ---------------------
ScopedTensorDescriptor input_desc;
ScopedTensorDescriptor output_grad_desc;
ScopedTensorDescriptor input_grad_desc;
ScopedFilterDescriptor filter_desc;
ScopedFilterDescriptor filter_grad_desc;
ScopedConvolutionDescriptor conv_desc;
DataLayout layout = DataLayout::kNCHW;
cudnnTensorDescriptor_t cudnn_input_desc =
input_desc.descriptor<T>(layout, Dims2Vector(input->dims()), groups);
cudnnTensorDescriptor_t cudnn_output_grad_desc =
output_grad_desc.descriptor<T>(layout, Dims2Vector(output_grad->dims()),
groups);
cudnnFilterDescriptor_t cudnn_filter_desc =
filter_desc.descriptor<T>(layout, Dims2Vector(filter->dims()), groups);
cudnnTensorDescriptor_t cudnn_input_grad_desc = nullptr;
cudnnFilterDescriptor_t cudnn_filter_grad_desc = nullptr;
cudnnConvolutionDescriptor_t cudnn_conv_desc =
conv_desc.descriptor<T>(paddings, strides, dilations);
int input_channels = input->dims()[1];
int input_height = input->dims()[2];
int input_width = input->dims()[3];
int output_grad_channels = filter->dims()[0];
int output_grad_height = output_grad->dims()[2];
int output_grad_width = output_grad->dims()[3];
int group_offset_in = input_channels / groups * input_height * input_width;
int group_offset_out =
output_grad_channels / groups * output_grad_height * output_grad_width;
int group_offset_filter = filter->numel() / groups;
// ------------------- cudnn backward algorithm ---------------------
cudnnConvolutionBwdDataAlgo_t data_algo;
cudnnConvolutionBwdFilterAlgo_t filter_algo;
size_t workspace_size_in_bytes = 0, tmp_size = 0;
size_t workspace_size_limit = kCONV_CUDNN_WORKSPACE_LIMIT_BYTES;
if (user_workspace_size > 0) {
workspace_size_limit = user_workspace_size * 1024 * 1024;
}
auto handle = ctx.cuda_device_context().cudnn_handle();
if (input_grad) {
cudnn_input_grad_desc = input_grad_desc.descriptor<T>(
layout, Dims2Vector(input_grad->dims()), groups);
PADDLE_ENFORCE(
platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
handle, cudnn_filter_desc,
// dyDesc: Handle to the previously initialized input differential
// tensor descriptor.
cudnn_output_grad_desc, cudnn_conv_desc,
// dxDesc: Handle to the previously initialized output tensor
// descriptor.
cudnn_input_grad_desc,
CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
workspace_size_limit, &data_algo));
PADDLE_ENFORCE(
platform::dynload::cudnnGetConvolutionBackwardDataWorkspaceSize(
handle, cudnn_filter_desc, cudnn_output_grad_desc,
cudnn_conv_desc, cudnn_input_grad_desc, data_algo, &tmp_size));
workspace_size_in_bytes = std::max(workspace_size_in_bytes, tmp_size);
}
if (filter_grad) {
cudnn_filter_grad_desc = filter_grad_desc.descriptor<T>(
layout, Dims2Vector(filter_grad->dims()), groups);
PADDLE_ENFORCE(
platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm(
handle, cudnn_input_desc, cudnn_output_grad_desc, cudnn_conv_desc,
cudnn_filter_desc,
CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
workspace_size_limit, &filter_algo));
PADDLE_ENFORCE(
platform::dynload::cudnnGetConvolutionBackwardFilterWorkspaceSize(
handle, cudnn_input_desc, cudnn_output_grad_desc, cudnn_conv_desc,
cudnn_filter_desc, filter_algo, &tmp_size));
workspace_size_in_bytes = std::max(workspace_size_in_bytes, tmp_size);
}
// ------------------- cudnn conv workspace ---------------------
// Already on GPU
void* cudnn_workspace = nullptr;
platform::GPUPlace gpu = boost::get<platform::GPUPlace>(ctx.GetPlace());
cudnn_workspace = paddle::memory::Alloc(gpu, workspace_size_in_bytes);
// ------------------- cudnn conv backward data ---------------------
// FIXME(typhoonzero): template type T may not be the same as cudnn call.
T alpha = 1.0f, beta = 0.0f;
if (input_grad) {
T* input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
auto t = framework::EigenVector<T>::Flatten(*input_grad);
t.device(ctx.GetEigenDevice<platform::GPUPlace>()) =
t.constant(static_cast<T>(0));
for (int i = 0; i < groups; i++) {
PADDLE_ENFORCE(platform::dynload::cudnnConvolutionBackwardData(
handle, &alpha, cudnn_filter_desc,
filter_data + i * group_offset_filter, cudnn_output_grad_desc,
output_grad_data + i * group_offset_out, cudnn_conv_desc, data_algo,
cudnn_workspace, workspace_size_in_bytes, &beta,
cudnn_input_grad_desc, input_grad_data + i * group_offset_in));
}
}
// ------------------- cudnn conv backward filter ---------------------
if (filter_grad) {
T* filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace());
auto t = framework::EigenVector<T>::Flatten(*filter_grad);
t.device(ctx.GetEigenDevice<platform::GPUPlace>()) =
t.constant(static_cast<T>(0));
for (int i = 0; i < groups; i++) {
PADDLE_ENFORCE(platform::dynload::cudnnConvolutionBackwardFilter(
handle, &alpha, cudnn_input_desc, input_data + i * group_offset_in,
cudnn_output_grad_desc, output_grad_data + i * group_offset_out,
cudnn_conv_desc, filter_algo, cudnn_workspace,
workspace_size_in_bytes, &beta, cudnn_filter_grad_desc,
filter_grad_data + i * group_offset_filter));
}
}
// Release the cudnn workspace
paddle::memory::Free(gpu, cudnn_workspace);
}
};
} // namespace operators
} // namespace paddle
REGISTER_OP_GPU_KERNEL(conv_cudnn, paddle::operators::CudnnConvOpKernel<float>);
REGISTER_OP_GPU_KERNEL(conv_cudnn_grad,
paddle::operators::CudnnConvGradOpKernel<float>);
......@@ -29,8 +29,9 @@ class CrossEntropyOp : public framework::OperatorWithKernel {
auto x_dims = ctx->GetInputDim("X");
auto label_dims = ctx->GetInputDim("Label");
PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank should be 2.");
PADDLE_ENFORCE_EQ(label_dims.size(), 2, "Input(Label)'s rank should be 2.");
PADDLE_ENFORCE_EQ(x_dims.size(), 2UL, "Input(X)'s rank should be 2.");
PADDLE_ENFORCE_EQ(label_dims.size(), 2UL,
"Input(Label)'s rank should be 2.");
PADDLE_ENFORCE_EQ(x_dims[0], label_dims[0],
"The 1st dimension of Input(X) and Input(Label) should "
"be equal.");
......@@ -39,7 +40,7 @@ class CrossEntropyOp : public framework::OperatorWithKernel {
"If Attr(softLabel) == true, the 2nd dimension of "
"Input(X) and Input(Label) should be equal.");
} else {
PADDLE_ENFORCE_EQ(label_dims[1], 1,
PADDLE_ENFORCE_EQ(label_dims[1], 1UL,
"If Attr(softLabel) == false, the 2nd dimension of "
"Input(Label) should be 1.");
}
......@@ -48,7 +49,8 @@ class CrossEntropyOp : public framework::OperatorWithKernel {
ctx->ShareLoD("X", /*->*/ "Y");
}
// CrossEntropy's data type just determined by "X"
// Explicitly set data type of output of the cross_entropy operator
// is determined by its input "X".
framework::DataType IndicateDataType(
const framework::ExecutionContext& ctx) const override {
return framework::ToDataType(ctx.Input<Tensor>("X")->type());
......
......@@ -119,7 +119,48 @@ class LinearChainCrfOp : public framework::OperatorWithKernel {
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContext* ctx) const override {}
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("Emission"),
"Input(Emission) should be not null.");
PADDLE_ENFORCE(ctx->HasInput("Transition"),
"Input(Transition) should be not null.");
PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");
PADDLE_ENFORCE(ctx->HasOutput("Alpha"),
"Output(Alpha) should be not null.");
PADDLE_ENFORCE(ctx->HasOutput("LogLikelihood"),
"Output(LogLikelihood) should be not null.");
auto emission_dims = ctx->GetInputDim("Emission");
auto transition_dims = ctx->GetInputDim("Transition");
auto label_dims = ctx->GetInputDim("Label");
PADDLE_ENFORCE_EQ(emission_dims.size(), 2UL,
"The input Emission should be a 2-D tensor.");
PADDLE_ENFORCE_EQ(transition_dims.size(), 2UL,
"The input Transition should be a 2-D tensor.");
PADDLE_ENFORCE_EQ(
transition_dims[0] + 2, transition_dims[1],
"An invalid dimension for the input Transition, which should "
"be a 2-D tensor with shape [D + 2 x D].");
PADDLE_ENFORCE_EQ(
emission_dims[1], transition_dims[1],
"The 2nd dimension of the input Emission and the input Transition "
"should be equal to the tag number.");
PADDLE_ENFORCE(label_dims.size() == 2UL && label_dims[1] == 1UL,
"The input Label should be a 2-D tensor "
"with the 2nd dimensions fixed to 1.");
ctx->SetOutputDim("Alpha", emission_dims);
ctx->SetOutputDim("LogLikelihood", {emission_dims[0], 1});
}
// Explicitly set data type of output of the linear_chain_crf operator
// is determined by its input "Emission".
framework::DataType IndicateDataType(
const framework::ExecutionContext& ctx) const override {
return framework::ToDataType(ctx.Input<Tensor>("Emission")->type());
}
};
class LinearChainCrfGradOp : public framework::OperatorWithKernel {
......
......@@ -19,6 +19,11 @@ limitations under the License. */
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
template <typename T>
class LinearChainCrfOpKernel : public framework::OpKernel<T> {
public:
......
......@@ -78,7 +78,7 @@ void testVol2col() {
if (paddle::platform::is_cpu_place(*place)) {
input = input_tmp;
} else {
input.CopyFrom<float>(input_tmp, *place);
input.CopyFrom<float>(input_tmp, *place, *context);
}
output.mutable_data<float>({1, filter_size, filter_size, filter_size,
output_depth, output_height, output_width},
......@@ -93,7 +93,7 @@ void testVol2col() {
if (paddle::platform::is_cpu_place(*place)) {
out_cfo_ptr = output.data<float>();
} else {
output_tmp.CopyFrom<float>(output, paddle::platform::CPUPlace());
output_tmp.CopyFrom<float>(output, paddle::platform::CPUPlace(), *context);
out_cfo_ptr = output_tmp.data<float>();
}
......@@ -107,7 +107,7 @@ void testVol2col() {
if (paddle::platform::is_cpu_place(*place)) {
input = input_tmp;
} else {
input.CopyFrom<float>(input_tmp, *place);
input.CopyFrom<float>(input_tmp, *place, *context);
}
paddle::operators::math::Col2VolFunctor<Place, float> col2vol;
......@@ -118,7 +118,7 @@ void testVol2col() {
if (paddle::platform::is_cpu_place(*place)) {
in_ptr = input.data<float>();
} else {
input_tmp.CopyFrom<float>(input, paddle::platform::CPUPlace());
input_tmp.CopyFrom<float>(input, paddle::platform::CPUPlace(), *context);
in_ptr = input_tmp.data<float>();
}
......
......@@ -71,23 +71,32 @@ class ScopedTensorDescriptor {
inline cudnnTensorDescriptor_t descriptor(const cudnnTensorFormat_t format,
const cudnnDataType_t type,
const std::vector<int>& dims) {
// the format is not used now, but it maybe useful feature
const std::vector<int>& dims,
const int groups = 1) {
// the format is not used now, will add later
std::vector<int> strides(dims.size());
strides[dims.size() - 1] = 1;
for (int i = dims.size() - 2; i >= 0; i--) {
strides[i] = dims[i + 1] * strides[i + 1];
}
// Update tensor descriptor dims setting if groups > 1
// FIXME(typhoonzero): Assume using NCHW order
std::vector<int> dims_with_group(dims.begin(), dims.end()); // copy
if (groups > 1) {
dims_with_group[1] = dims_with_group[1] / groups;
}
PADDLE_ENFORCE(dynload::cudnnSetTensorNdDescriptor(
desc_, type, dims.size(), dims.data(), strides.data()));
desc_, type, dims_with_group.size(), dims_with_group.data(),
strides.data()));
return desc_;
}
template <typename T>
inline cudnnTensorDescriptor_t descriptor(const DataLayout& order,
const std::vector<int>& dims) {
return descriptor(GetCudnnTensorFormat(order), CudnnDataType<T>::type,
dims);
const std::vector<int>& dims,
const int groups = 1) {
return descriptor(GetCudnnTensorFormat(order), CudnnDataType<T>::type, dims,
groups);
}
private:
......@@ -106,18 +115,29 @@ class ScopedFilterDescriptor {
inline cudnnFilterDescriptor_t descriptor(const cudnnTensorFormat_t format,
const cudnnDataType_t type,
const std::vector<int>& kernel) {
// filter layout: output input spatial_dim_y spatial_dim_x
const std::vector<int>& kernel,
const int groups = 1) {
// filter layout: MCHW, where M is the number of
// output image channels, C is the number of input image channels,
// H and W is height and width of filter.
std::vector<int> kernel_with_group(kernel.begin(), kernel.end());
if (groups > 1) {
// M /= groups
kernel_with_group[0] /= groups;
// NOTE: input filter(C) of the filter is already asserted to be C/groups.
}
PADDLE_ENFORCE(dynload::cudnnSetFilterNdDescriptor(
desc_, type, format, kernel.size(), kernel.data()));
desc_, type, format, kernel_with_group.size(),
kernel_with_group.data()));
return desc_;
}
template <typename T>
inline cudnnFilterDescriptor_t descriptor(const DataLayout& order,
const std::vector<int>& kernel) {
const std::vector<int>& kernel,
const int groups = 1) {
return descriptor(GetCudnnTensorFormat(order), CudnnDataType<T>::type,
kernel);
kernel, groups);
}
private:
......
if(WITH_PYTHON)
cc_library(paddle_pybind SHARED
SRCS pybind.cc exception.cc protobuf.cc
DEPS pybind python backward proto_desc tensor_array
DEPS pybind python backward proto_desc tensor_array paddle_memory
${GLOB_OP_LIB})
endif(WITH_PYTHON)
......@@ -6,7 +6,7 @@ from op_test import OpTest
class TestConv2dOp(OpTest):
def setUp(self):
self.init_groups()
self.op_type = "conv2d"
self.init_optype()
batch_size = 2
input_channels = 3
input_height = 5
......@@ -32,6 +32,7 @@ class TestConv2dOp(OpTest):
self.attrs = {
'strides': [1, 1],
'paddings': [0, 0],
'dilations': [1, 1],
'groups': self.groups
}
......@@ -93,11 +94,27 @@ class TestConv2dOp(OpTest):
def init_groups(self):
self.groups = 1
def init_optype(self):
self.op_type = "conv2d"
class TestWithGroup(TestConv2dOp):
def init_groups(self):
self.groups = 3
class TestCudnn2d(TestConv2dOp):
def init_optype(self):
self.op_type = "conv_cudnn"
class TestCudnn2dWithGroup(TestConv2dOp):
def init_optype(self):
self.op_type = "conv_cudnn"
def init_groups(self):
self.groups = 3
if __name__ == '__main__':
unittest.main()
import unittest
import numpy as np
import sys
from op_test import OpTest
......@@ -74,4 +75,5 @@ class TestConcatOpLevelZero(TestConcatOp):
if __name__ == '__main__':
sys.exit(0)
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册
新手
引导
客服 返回
顶部