提交 cb7ca1c2 编写于 作者: C chengduoZH

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into Add_conv3d_Python_API

......@@ -61,6 +61,7 @@ option(EIGEN_USE_THREADS "Compile with multi-threaded Eigen" OFF)
option(WITH_ARM_FP16 "Use half precision support on armv8.2-a cpu" OFF)
option(WITH_FAST_BUNDLE_TEST "Bundle tests that can be run in a single process together to reduce launch overhead" OFF)
option(WITH_CONTRIB "Compile the third-party contributation" OFF)
option(WITH_ANAKIN "Compile with Anakin library" OFF)
option(WITH_GRPC "Use grpc as the default rpc framework" ${WITH_DISTRIBUTE})
# CMAKE_BUILD_TYPE
......@@ -193,7 +194,10 @@ set(EXTERNAL_LIBS
if(WITH_GPU)
include(cuda)
include(tensorrt)
endif(WITH_GPU)
include(external/anakin)
else()
set(WITH_ANAKIN OFF CACHE STRING "Anakin is valid only when GPU is set." FORCE)
endif()
if(WITH_AMD_GPU)
find_package(HIP)
......
......@@ -180,7 +180,7 @@ def train(avg_loss, infer_prog, optimizer, train_reader, test_reader, batch_acc,
print_train_time(start_time, time.time(), num_samples)
print("Pass: %d, Loss: %f" % (pass_id, np.mean(train_losses))),
# evaluation
if not args.no_test and batch_acc:
if not args.no_test and batch_acc and not args.use_reader_op:
pass_test_acc = test(exe, infer_prog, test_reader, feeder,
batch_acc)
print(", Test Accuracy: %f" % pass_test_acc)
......@@ -277,11 +277,12 @@ def train_parallel(avg_loss, infer_prog, optimizer, train_reader, test_reader,
batch_id += 1
print_train_time(start_time, time.time(), num_samples)
if not args.no_test and batch_acc:
if not args.no_test and batch_acc and not args.use_reader_op:
# we have not implement record io for test
# skip test when use args.use_reader_op
test_acc = test(startup_exe, infer_prog, test_reader, feeder,
batch_acc)
print("Pass: %d, Test Accuracy: %f\n" % (pass_id, test_acc))
exit(0)
def print_arguments(args):
......
......@@ -199,7 +199,10 @@ def get_model(args):
batched_train_reader = paddle.batch(
paddle.reader.shuffle(
train_reader, buf_size=5120),
batch_size=args.batch_size * args.gpus)
batched_test_reader = paddle.batch(train_reader, batch_size=args.batch_size)
batch_size=args.batch_size * args.gpus,
drop_last=True)
batched_test_reader = paddle.batch(
train_reader, batch_size=args.batch_size, drop_last=True)
return avg_cost, inference_program, optimizer, batched_train_reader, batched_test_reader, batch_acc
return avg_cost, inference_program, optimizer, batched_train_reader,\
batched_test_reader, batch_acc
if (NOT WITH_ANAKIN)
return()
endif()
set(ANAKIN_INSTALL_DIR "${THIRD_PARTY_PATH}/install/anakin" CACHE PATH
"Anakin install path." FORCE)
set(ANAKIN_INCLUDE "${ANAKIN_INSTALL_DIR}" CACHE STRING "root of Anakin header files")
set(ANAKIN_LIBRARY "${ANAKIN_INSTALL_DIR}" CACHE STRING "path of Anakin library")
set(ANAKIN_COMPILE_EXTRA_FLAGS -Wno-error=unused-variable -Wno-error=format-extra-args -Wno-error=comment -Wno-error=format -Wno-error=switch -Wno-error=return-type -Wno-error=non-virtual-dtor -Wno-reorder -Wno-error=cpp)
set(ANAKIN_LIBRARY_URL "https://github.com/pangge/Anakin/releases/download/3.0/anakin_release_simple.tar.gz")
# A helper function used in Anakin, currently, to use it, one need to recursively include
# nearly all the header files.
function(fetch_include_recursively root_dir)
if (IS_DIRECTORY ${root_dir})
include_directories(${root_dir})
endif()
file(GLOB ALL_SUB RELATIVE ${root_dir} ${root_dir}/*)
foreach(sub ${ALL_SUB})
if (IS_DIRECTORY ${root_dir}/${sub})
fetch_include_recursively(${root_dir}/${sub})
endif()
endforeach()
endfunction()
# download library
message(STATUS "Download Anakin library from ${ANAKIN_LIBRARY_URL}")
execute_process(COMMAND bash -c "mkdir -p ${ANAKIN_INSTALL_DIR}")
execute_process(COMMAND bash -c "rm -rf ${ANAKIN_INSTALL_DIR}/*")
execute_process(COMMAND bash -c "cd ${ANAKIN_INSTALL_DIR}; wget -q ${ANAKIN_LIBRARY_URL}")
execute_process(COMMAND bash -c "mkdir -p ${ANAKIN_INSTALL_DIR}")
execute_process(COMMAND bash -c "cd ${ANAKIN_INSTALL_DIR}; tar xzf anakin_release_simple.tar.gz")
if (WITH_ANAKIN)
message(STATUS "Anakin for inference is enabled")
message(STATUS "Anakin is set INCLUDE:${ANAKIN_INCLUDE} LIBRARY:${ANAKIN_LIBRARY}")
fetch_include_recursively(${ANAKIN_INCLUDE})
link_directories(${ANAKIN_LIBRARY})
endif()
#!/bin/bash
python gen_doc.py layers --submodules control_flow device io nn ops tensor > layers.rst
python gen_doc.py layers --submodules control_flow device io nn ops tensor detection learning_rate_scheduler > layers.rst
for module in data_feeder clip metrics executor initializer io nets optimizer param_attr profiler regularizer
do
......
......@@ -59,21 +59,3 @@ get_inference_program
.. autofunction:: paddle.fluid.io.get_inference_program
:noindex:
save_checkpoint
---------------
.. autofunction:: paddle.fluid.io.save_checkpoint
:noindex:
load_checkpoint
---------------
.. autofunction:: paddle.fluid.io.load_checkpoint
:noindex:
clean_checkpoint
----------------
.. autofunction:: paddle.fluid.io.clean_checkpoint
:noindex:
......@@ -181,12 +181,6 @@ Print
.. autofunction:: paddle.fluid.layers.Print
:noindex:
is_empty
--------
.. autofunction:: paddle.fluid.layers.is_empty
:noindex:
device
======
......@@ -261,19 +255,6 @@ double_buffer
.. autofunction:: paddle.fluid.layers.double_buffer
:noindex:
random_data_generator
---------------------
.. autofunction:: paddle.fluid.layers.random_data_generator
:noindex:
Preprocessor
------------
.. autoclass:: paddle.fluid.layers.Preprocessor
:members:
:noindex:
nn
==
......@@ -632,30 +613,6 @@ roi_pool
.. autofunction:: paddle.fluid.layers.roi_pool
:noindex:
dice_loss
---------
.. autofunction:: paddle.fluid.layers.dice_loss
:noindex:
resize_bilinear
---------------
.. autofunction:: paddle.fluid.layers.resize_bilinear
:noindex:
gather
------
.. autofunction:: paddle.fluid.layers.gather
:noindex:
random_crop
-----------
.. autofunction:: paddle.fluid.layers.random_crop
:noindex:
ops
===
......@@ -803,12 +760,6 @@ sum
.. autofunction:: paddle.fluid.layers.sum
:noindex:
shape
-----
.. autofunction:: paddle.fluid.layers.shape
:noindex:
sigmoid
-------
......@@ -1058,3 +1009,93 @@ zeros
.. autofunction:: paddle.fluid.layers.zeros
:noindex:
detection
=========
multi_box_head
--------------
.. autofunction:: paddle.fluid.layers.multi_box_head
:noindex:
bipartite_match
---------------
.. autofunction:: paddle.fluid.layers.bipartite_match
:noindex:
target_assign
-------------
.. autofunction:: paddle.fluid.layers.target_assign
:noindex:
detection_output
----------------
.. autofunction:: paddle.fluid.layers.detection_output
:noindex:
ssd_loss
--------
.. autofunction:: paddle.fluid.layers.ssd_loss
:noindex:
detection_map
-------------
.. autofunction:: paddle.fluid.layers.detection_map
:noindex:
iou_similarity
--------------
.. autofunction:: paddle.fluid.layers.iou_similarity
:noindex:
box_coder
---------
.. autofunction:: paddle.fluid.layers.box_coder
:noindex:
learning_rate_scheduler
=======================
exponential_decay
-----------------
.. autofunction:: paddle.fluid.layers.exponential_decay
:noindex:
natural_exp_decay
-----------------
.. autofunction:: paddle.fluid.layers.natural_exp_decay
:noindex:
inverse_time_decay
------------------
.. autofunction:: paddle.fluid.layers.inverse_time_decay
:noindex:
polynomial_decay
----------------
.. autofunction:: paddle.fluid.layers.polynomial_decay
:noindex:
piecewise_decay
---------------
.. autofunction:: paddle.fluid.layers.piecewise_decay
:noindex:
noam_decay
----------
.. autofunction:: paddle.fluid.layers.noam_decay
:noindex:
......@@ -89,13 +89,6 @@ DecayedAdagradOptimizer
:members:
:noindex:
RMSPropOptimizer
----------------
.. autoclass:: paddle.fluid.optimizer.RMSPropOptimizer
:members:
:noindex:
Adadelta
--------
......
......@@ -23,15 +23,3 @@ profiler
.. autofunction:: paddle.fluid.profiler.profiler
:noindex:
start_profiler
--------------
.. autofunction:: paddle.fluid.profiler.start_profiler
:noindex:
stop_profiler
-------------
.. autofunction:: paddle.fluid.profiler.stop_profiler
:noindex:
......@@ -171,7 +171,7 @@ Pytorch chooses immediate evaluation. It avoids ever materializing a "forward gr
## What can fluid learn from them?
TBD
Please refer to `paddle/contrib/dynamic/`.
# Appendix
......
......@@ -101,7 +101,7 @@ value_printer
:noindex:
Detection
=====
==========
detection_map
-------------
......
......@@ -11,7 +11,7 @@ Data layer
data
----
.. autoclass:: paddle.v2.layer.data
.. autofunction:: paddle.v2.layer.data
:noindex:
Fully Connected Layers
......@@ -21,12 +21,12 @@ Fully Connected Layers
fc
--
.. autoclass:: paddle.v2.layer.fc
.. autofunction:: paddle.v2.layer.fc
:noindex:
selective_fc
------------
.. autoclass:: paddle.v2.layer.selective_fc
.. autofunction:: paddle.v2.layer.selective_fc
:noindex:
Conv Layers
......@@ -34,34 +34,34 @@ Conv Layers
conv_operator
-------------
.. autoclass:: paddle.v2.layer.conv_operator
.. autofunction:: paddle.v2.layer.conv_operator
:noindex:
conv_projection
---------------
.. autoclass:: paddle.v2.layer.conv_projection
.. autofunction:: paddle.v2.layer.conv_projection
:noindex:
conv_shift
----------
.. autoclass:: paddle.v2.layer.conv_shift
.. autofunction:: paddle.v2.layer.conv_shift
:noindex:
img_conv
--------
.. autoclass:: paddle.v2.layer.img_conv
.. autofunction:: paddle.v2.layer.img_conv
:noindex:
.. _api_v2.layer_context_projection:
context_projection
------------------
.. autoclass:: paddle.v2.layer.context_projection
.. autofunction:: paddle.v2.layer.context_projection
:noindex:
row_conv
--------
.. autoclass:: paddle.v2.layer.row_conv
.. autofunction:: paddle.v2.layer.row_conv
:noindex:
Image Pooling Layer
......@@ -69,27 +69,27 @@ Image Pooling Layer
img_pool
--------
.. autoclass:: paddle.v2.layer.img_pool
.. autofunction:: paddle.v2.layer.img_pool
:noindex:
spp
---
.. autoclass:: paddle.v2.layer.spp
.. autofunction:: paddle.v2.layer.spp
:noindex:
maxout
------
.. autoclass:: paddle.v2.layer.maxout
.. autofunction:: paddle.v2.layer.maxout
:noindex:
roi_pool
--------
.. autoclass:: paddle.v2.layer.roi_pool
.. autofunction:: paddle.v2.layer.roi_pool
:noindex:
pad
----
.. autoclass:: paddle.v2.layer.pad
.. autofunction:: paddle.v2.layer.pad
:noindex:
Norm Layer
......@@ -97,27 +97,27 @@ Norm Layer
img_cmrnorm
-----------
.. autoclass:: paddle.v2.layer.img_cmrnorm
.. autofunction:: paddle.v2.layer.img_cmrnorm
:noindex:
batch_norm
----------
.. autoclass:: paddle.v2.layer.batch_norm
.. autofunction:: paddle.v2.layer.batch_norm
:noindex:
sum_to_one_norm
---------------
.. autoclass:: paddle.v2.layer.sum_to_one_norm
.. autofunction:: paddle.v2.layer.sum_to_one_norm
:noindex:
cross_channel_norm
------------------
.. autoclass:: paddle.v2.layer.cross_channel_norm
.. autofunction:: paddle.v2.layer.cross_channel_norm
:noindex:
row_l2_norm
-----------
.. autoclass:: paddle.v2.layer.row_l2_norm
.. autofunction:: paddle.v2.layer.row_l2_norm
:noindex:
Recurrent Layers
......@@ -125,22 +125,22 @@ Recurrent Layers
recurrent
---------
.. autoclass:: paddle.v2.layer.recurrent
.. autofunction:: paddle.v2.layer.recurrent
:noindex:
lstmemory
---------
.. autoclass:: paddle.v2.layer.lstmemory
.. autofunction:: paddle.v2.layer.lstmemory
:noindex:
grumemory
---------
.. autoclass:: paddle.v2.layer.grumemory
.. autofunction:: paddle.v2.layer.grumemory
:noindex:
gated_unit
-----------
.. autoclass:: paddle.v2.layer.gated_unit
.. autofunction:: paddle.v2.layer.gated_unit
:noindex:
Recurrent Layer Group
......@@ -148,32 +148,32 @@ Recurrent Layer Group
memory
------
.. autoclass:: paddle.v2.layer.memory
.. autofunction:: paddle.v2.layer.memory
:noindex:
recurrent_group
---------------
.. autoclass:: paddle.v2.layer.recurrent_group
.. autofunction:: paddle.v2.layer.recurrent_group
:noindex:
lstm_step
---------
.. autoclass:: paddle.v2.layer.lstm_step
.. autofunction:: paddle.v2.layer.lstm_step
:noindex:
gru_step
--------
.. autoclass:: paddle.v2.layer.gru_step
.. autofunction:: paddle.v2.layer.gru_step
:noindex:
beam_search
------------
.. autoclass:: paddle.v2.layer.beam_search
.. autofunction:: paddle.v2.layer.beam_search
:noindex:
get_output
----------
.. autoclass:: paddle.v2.layer.get_output
.. autofunction:: paddle.v2.layer.get_output
:noindex:
Mixed Layer
......@@ -183,54 +183,54 @@ Mixed Layer
mixed
-----
.. autoclass:: paddle.v2.layer.mixed
.. autofunction:: paddle.v2.layer.mixed
:noindex:
.. _api_v2.layer_embedding:
embedding
---------
.. autoclass:: paddle.v2.layer.embedding
.. autofunction:: paddle.v2.layer.embedding
:noindex:
scaling_projection
------------------
.. autoclass:: paddle.v2.layer.scaling_projection
.. autofunction:: paddle.v2.layer.scaling_projection
:noindex:
dotmul_projection
-----------------
.. autoclass:: paddle.v2.layer.dotmul_projection
.. autofunction:: paddle.v2.layer.dotmul_projection
:noindex:
dotmul_operator
---------------
.. autoclass:: paddle.v2.layer.dotmul_operator
.. autofunction:: paddle.v2.layer.dotmul_operator
:noindex:
full_matrix_projection
----------------------
.. autoclass:: paddle.v2.layer.full_matrix_projection
.. autofunction:: paddle.v2.layer.full_matrix_projection
:noindex:
identity_projection
-------------------
.. autoclass:: paddle.v2.layer.identity_projection
.. autofunction:: paddle.v2.layer.identity_projection
:noindex:
slice_projection
-------------------
.. autoclass:: paddle.v2.layer.slice_projection
.. autofunction:: paddle.v2.layer.slice_projection
:noindex:
table_projection
----------------
.. autoclass:: paddle.v2.layer.table_projection
.. autofunction:: paddle.v2.layer.table_projection
:noindex:
trans_full_matrix_projection
----------------------------
.. autoclass:: paddle.v2.layer.trans_full_matrix_projection
.. autofunction:: paddle.v2.layer.trans_full_matrix_projection
:noindex:
Aggregate Layers
......@@ -245,51 +245,46 @@ AggregateLevel
pooling
-------
.. autoclass:: paddle.v2.layer.pooling
.. autofunction:: paddle.v2.layer.pooling
:noindex:
.. _api_v2.layer_last_seq:
last_seq
--------
.. autoclass:: paddle.v2.layer.last_seq
.. autofunction:: paddle.v2.layer.last_seq
:noindex:
.. _api_v2.layer_first_seq:
first_seq
---------
.. autoclass:: paddle.v2.layer.first_seq
.. autofunction:: paddle.v2.layer.first_seq
:noindex:
sub_seq
---------
.. autoclass:: paddle.v2.layer.sub_seq
.. autofunction:: paddle.v2.layer.sub_seq
:noindex:
concat
------
.. autoclass:: paddle.v2.layer.concat
.. autofunction:: paddle.v2.layer.concat
:noindex:
seq_concat
----------
.. autoclass:: paddle.v2.layer.seq_concat
.. autofunction:: paddle.v2.layer.seq_concat
:noindex:
seq_slice
---------
.. autoclass:: paddle.v2.layer.seq_slice
:noindex:
kmax_sequence_score
-------------------
.. autoclass:: paddle.v2.layer.kmax_sequence_score
.. autofunction:: paddle.v2.layer.seq_slice
:noindex:
sub_nested_seq
--------------
.. autoclass:: paddle.v2.layer.sub_nested_seq
.. autofunction:: paddle.v2.layer.sub_nested_seq
:noindex:
Reshaping Layers
......@@ -297,7 +292,7 @@ Reshaping Layers
block_expand
------------
.. autoclass:: paddle.v2.layer.block_expand
.. autofunction:: paddle.v2.layer.block_expand
:noindex:
.. _api_v2.layer_expand:
......@@ -309,22 +304,22 @@ ExpandLevel
expand
------
.. autoclass:: paddle.v2.layer.expand
.. autofunction:: paddle.v2.layer.expand
:noindex:
repeat
------
.. autoclass:: paddle.v2.layer.repeat
.. autofunction:: paddle.v2.layer.repeat
:noindex:
rotate
------
.. autoclass:: paddle.v2.layer.rotate
.. autofunction:: paddle.v2.layer.rotate
:noindex:
seq_reshape
-----------
.. autoclass:: paddle.v2.layer.seq_reshape
.. autofunction:: paddle.v2.layer.seq_reshape
:noindex:
Math Layers
......@@ -332,94 +327,94 @@ Math Layers
addto
-----
.. autoclass:: paddle.v2.layer.addto
.. autofunction:: paddle.v2.layer.addto
:noindex:
linear_comb
-----------
.. autoclass:: paddle.v2.layer.linear_comb
.. autofunction:: paddle.v2.layer.linear_comb
:noindex:
interpolation
-------------
.. autoclass:: paddle.v2.layer.interpolation
.. autofunction:: paddle.v2.layer.interpolation
:noindex:
bilinear_interp
---------------
.. autoclass:: paddle.v2.layer.bilinear_interp
.. autofunction:: paddle.v2.layer.bilinear_interp
:noindex:
dropout
--------
.. autoclass:: paddle.v2.layer.dropout
.. autofunction:: paddle.v2.layer.dropout
:noindex:
dot_prod
---------
.. autoclass:: paddle.v2.layer.dot_prod
.. autofunction:: paddle.v2.layer.dot_prod
:noindex:
out_prod
--------
.. autoclass:: paddle.v2.layer.out_prod
.. autofunction:: paddle.v2.layer.out_prod
:noindex:
power
-----
.. autoclass:: paddle.v2.layer.power
.. autofunction:: paddle.v2.layer.power
:noindex:
scaling
-------
.. autoclass:: paddle.v2.layer.scaling
.. autofunction:: paddle.v2.layer.scaling
:noindex:
clip
----
.. autoclass:: paddle.v2.layer.clip
.. autofunction:: paddle.v2.layer.clip
:noindex:
resize
------
.. autoclass:: paddle.v2.layer.resize
.. autofunction:: paddle.v2.layer.resize
:noindex:
slope_intercept
---------------
.. autoclass:: paddle.v2.layer.slope_intercept
.. autofunction:: paddle.v2.layer.slope_intercept
:noindex:
tensor
------
.. autoclass:: paddle.v2.layer.tensor
.. autofunction:: paddle.v2.layer.tensor
:noindex:
.. _api_v2.layer_cos_sim:
cos_sim
-------
.. autoclass:: paddle.v2.layer.cos_sim
.. autofunction:: paddle.v2.layer.cos_sim
:noindex:
l2_distance
-----------
.. autoclass:: paddle.v2.layer.l2_distance
.. autofunction:: paddle.v2.layer.l2_distance
:noindex:
trans
-----
.. autoclass:: paddle.v2.layer.trans
.. autofunction:: paddle.v2.layer.trans
:noindex:
scale_shift
-----------
.. autoclass:: paddle.v2.layer.scale_shift
.. autofunction:: paddle.v2.layer.scale_shift
:noindex:
factorization_machine
---------------------
.. autoclass:: paddle.v2.layer.factorization_machine
.. autofunction:: paddle.v2.layer.factorization_machine
:noindex:
Sampling Layers
......@@ -427,17 +422,17 @@ Sampling Layers
maxid
-----
.. autoclass:: paddle.v2.layer.max_id
.. autofunction:: paddle.v2.layer.max_id
:noindex:
sampling_id
-----------
.. autoclass:: paddle.v2.layer.sampling_id
.. autofunction:: paddle.v2.layer.sampling_id
:noindex:
multiplex
---------
.. autoclass:: paddle.v2.layer.multiplex
.. autofunction:: paddle.v2.layer.multiplex
:noindex:
.. _api_v2.layer_costs:
......@@ -447,97 +442,97 @@ Cost Layers
cross_entropy_cost
------------------
.. autoclass:: paddle.v2.layer.cross_entropy_cost
.. autofunction:: paddle.v2.layer.cross_entropy_cost
:noindex:
cross_entropy_with_selfnorm_cost
--------------------------------
.. autoclass:: paddle.v2.layer.cross_entropy_with_selfnorm_cost
.. autofunction:: paddle.v2.layer.cross_entropy_with_selfnorm_cost
:noindex:
multi_binary_label_cross_entropy_cost
-------------------------------------
.. autoclass:: paddle.v2.layer.multi_binary_label_cross_entropy_cost
.. autofunction:: paddle.v2.layer.multi_binary_label_cross_entropy_cost
:noindex:
classification_cost
-------------------
.. autoclass:: paddle.v2.layer.classification_cost
.. autofunction:: paddle.v2.layer.classification_cost
:noindex:
huber_regression_cost
-------------------------
.. autoclass:: paddle.v2.layer.huber_regression_cost
.. autofunction:: paddle.v2.layer.huber_regression_cost
:noindex:
huber_classification_cost
-------------------------
.. autoclass:: paddle.v2.layer.huber_classification_cost
.. autofunction:: paddle.v2.layer.huber_classification_cost
:noindex:
lambda_cost
-----------
.. autoclass:: paddle.v2.layer.lambda_cost
.. autofunction:: paddle.v2.layer.lambda_cost
:noindex:
square_error_cost
-----------------
.. autoclass:: paddle.v2.layer.square_error_cost
.. autofunction:: paddle.v2.layer.square_error_cost
:noindex:
rank_cost
---------
.. autoclass:: paddle.v2.layer.rank_cost
.. autofunction:: paddle.v2.layer.rank_cost
:noindex:
sum_cost
---------
.. autoclass:: paddle.v2.layer.sum_cost
.. autofunction:: paddle.v2.layer.sum_cost
:noindex:
crf
---
.. autoclass:: paddle.v2.layer.crf
.. autofunction:: paddle.v2.layer.crf
:noindex:
crf_decoding
------------
.. autoclass:: paddle.v2.layer.crf_decoding
.. autofunction:: paddle.v2.layer.crf_decoding
:noindex:
ctc
---
.. autoclass:: paddle.v2.layer.ctc
.. autofunction:: paddle.v2.layer.ctc
:noindex:
warp_ctc
--------
.. autoclass:: paddle.v2.layer.warp_ctc
.. autofunction:: paddle.v2.layer.warp_ctc
:noindex:
nce
---
.. autoclass:: paddle.v2.layer.nce
.. autofunction:: paddle.v2.layer.nce
:noindex:
hsigmoid
---------
.. autoclass:: paddle.v2.layer.hsigmoid
.. autofunction:: paddle.v2.layer.hsigmoid
:noindex:
smooth_l1_cost
--------------
.. autoclass:: paddle.v2.layer.smooth_l1_cost
.. autofunction:: paddle.v2.layer.smooth_l1_cost
:noindex:
multibox_loss
--------------
.. autoclass:: paddle.v2.layer.multibox_loss
.. autofunction:: paddle.v2.layer.multibox_loss
:noindex:
detection_output
----------------
.. autoclass:: paddle.v2.layer.detection_output
.. autofunction:: paddle.v2.layer.detection_output
:noindex:
Check Layer
......@@ -545,7 +540,7 @@ Check Layer
eos
---
.. autoclass:: paddle.v2.layer.eos
.. autofunction:: paddle.v2.layer.eos
:noindex:
Activation
......@@ -553,5 +548,5 @@ Activation
prelu
--------
.. autoclass:: paddle.v2.layer.prelu
.. autofunction:: paddle.v2.layer.prelu
:noindex:
......@@ -8,4 +8,3 @@ API
model_configs.rst
data.rst
run_logic.rst
fluid/index.rst
......@@ -60,6 +60,7 @@ paddlepaddle-gpu==0.11.0 使用CUDA 7.5和cuDNN 5编译的0.11.0版
"cpu_noavx_openblas", "`paddlepaddle-latest-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuNoavxOpenblas/.lastSuccessful/paddlepaddle-latest-cp27-cp27mu-linux_x86_64.whl>`__", "`paddlepaddle-latest-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuNoavxOpenblas/.lastSuccessful/paddlepaddle-latest-cp27-cp27m-linux_x86_64.whl>`_"
"cuda8.0_cudnn5_avx_mkl", "`paddlepaddle_gpu-latest-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda80cudnn5cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-latest-cp27-cp27mu-linux_x86_64.whl>`__", "`paddlepaddle_gpu-latest-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda80cudnn5cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-latest-cp27-cp27m-linux_x86_64.whl>`__"
"cuda8.0_cudnn7_avx_mkl", "`paddlepaddle_gpu-latest-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda8cudnn7cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-latest-cp27-cp27mu-linux_x86_64.whl>`__", "`paddlepaddle_gpu-latest-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda8cudnn7cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-latest-cp27-cp27m-linux_x86_64.whl>`__"
"cuda9.0_cudnn7_avx_mkl", "`paddlepaddle_gpu-latest-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda90cudnn7avxMkl/.lastSuccessful/paddlepaddle_gpu-latest-cp27-cp27mu-linux_x86_64.whl>`__", "`paddlepaddle_gpu-latest-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda90cudnn7avxMkl/.lastSuccessful/paddlepaddle_gpu-latest-cp27-cp27m-linux_x86_64.whl>`__"
.. _pip_dependency:
......
......@@ -63,6 +63,7 @@ If the links below shows up the login form, just click "Log in as guest" to star
"cpu_noavx_openblas", "`paddlepaddle-latest-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuNoavxOpenblas/.lastSuccessful/paddlepaddle-latest-cp27-cp27mu-linux_x86_64.whl>`__", "`paddlepaddle-latest-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuNoavxOpenblas/.lastSuccessful/paddlepaddle-latest-cp27-cp27m-linux_x86_64.whl>`__"
"cuda8.0_cudnn5_avx_mkl", "`paddlepaddle_gpu-latest-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda80cudnn5cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-latest-cp27-cp27mu-linux_x86_64.whl>`__", "`paddlepaddle_gpu-latest-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda80cudnn5cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-latest-cp27-cp27m-linux_x86_64.whl>`__"
"cuda8.0_cudnn7_avx_mkl", "`paddlepaddle_gpu-latest-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda8cudnn7cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-latest-cp27-cp27mu-linux_x86_64.whl>`__", "`paddlepaddle_gpu-latest-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda8cudnn7cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-latest-cp27-cp27m-linux_x86_64.whl>`__"
"cuda9.0_cudnn7_avx_mkl", "`paddlepaddle_gpu-latest-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda90cudnn7avxMkl/.lastSuccessful/paddlepaddle_gpu-latest-cp27-cp27mu-linux_x86_64.whl>`__", "`paddlepaddle_gpu-latest-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda90cudnn7avxMkl/.lastSuccessful/paddlepaddle_gpu-latest-cp27-cp27m-linux_x86_64.whl>`__"
.. _pip_dependency:
......
......@@ -14,3 +14,4 @@
#
add_subdirectory(inference)
add_subdirectory(tape)
......@@ -17,48 +17,9 @@ if(APPLE)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-error=pessimizing-move")
endif(APPLE)
set(ANAKIN_INCLUDE "" CACHE STRING "root of Anakin header files")
set(ANAKIN_LIBRARY "" CACHE STRING "path of Anakin library")
set(inference_deps paddle_inference_api paddle_fluid_api)
# if anakin is set enable anakin api implementation
if(ANAKIN_INCLUDE AND ANAKIN_LIBRARY)
set(ANAKIN_FOUND ON)
else()
set(ANAKIN_FOUND OFF)
endif()
function(fetch_include_recursively root_dir)
if (IS_DIRECTORY ${root_dir})
include_directories(${root_dir})
endif()
file(GLOB ALL_SUB RELATIVE ${root_dir} ${root_dir}/*)
foreach(sub ${ALL_SUB})
if (IS_DIRECTORY ${root_dir}/${sub})
fetch_include_recursively(${root_dir}/${sub})
endif()
endforeach()
endfunction()
if (ANAKIN_FOUND)
# Anakin's code style doesn't follow google c style.
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-error=unused-variable -Wno-error=format-extra-args -Wno-error=comment -Wno-error=format -Wno-error=switch -Wno-error=return-type -Wno-error=non-virtual-dtor -Wno-reorder -Wno-error=cpp")
message(STATUS "Anakin for inference is enabled")
message(STATUS "Anakin is set INCLUDE:${ANAKIN_INCLUDE} LIBRARY:${ANAKIN_LIBRARY}")
fetch_include_recursively(${ANAKIN_INCLUDE})
link_directories(${ANAKIN_LIBRARY})
nv_library(inference_anakin_api SHARED SRCS paddle_inference_api.cc paddle_inference_api_anakin_engine.cc)
target_link_libraries(inference_anakin_api anakin anakin_saber_common)
list(APPEND inference_deps inference_anakin_api)
endif()
function(inference_api_test TARGET_NAME)
if (WITH_TESTING)
set(options "")
......@@ -89,9 +50,17 @@ cc_test(test_paddle_inference_api
inference_api_test(test_paddle_inference_api_impl
ARGS test_word2vec test_image_classification)
if (ANAKIN_FOUND)
if (WITH_ANAKIN)
# Due to Anakin do not have official library releases and the versions of protobuf and cuda do not match Paddle's,
# so anakin library will not be merged to our official inference library. To use anakin prediction API, one need to
# compile the libinference_anakin_api.a and compile with anakin.so.
nv_library(inference_anakin_api SHARED SRCS paddle_inference_api.cc paddle_inference_api_anakin_engine.cc)
target_compile_options(inference_anakin_api BEFORE PUBLIC ${ANAKIN_COMPILE_EXTRA_FLAGS})
target_link_libraries(inference_anakin_api anakin anakin_saber_common)
cc_test(inference_anakin_test SRCS paddle_inference_api_anakin_engine_tester.cc
DEPS ${inference_deps})
ARGS --model=${ANAKIN_INSTALL_DIR}/mobilenet_v2.anakin.bin
DEPS inference_anakin_api)
target_compile_options(inference_anakin_test BEFORE PUBLIC ${ANAKIN_COMPILE_EXTRA_FLAGS})
endif()
if(WITH_TESTING)
......
......@@ -12,9 +12,8 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include <cuda.h>
#include "paddle/contrib/inference/paddle_inference_api_anakin_engine.h"
#include <cuda.h>
namespace paddle {
......
......@@ -19,10 +19,9 @@ limitations under the License. */
#pragma once
// NOTE This header file do not have namespace.
//#include <test/framework/net/paddle_api.h>
#include "paddle/contrib/inference/paddle_inference_api.h"
// from anakin
#include "framework/core/net/net.h"
#include "saber/saber_types.h"
......
......@@ -12,17 +12,19 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gflags/gflags.h>
#include <glog/logging.h>
#include <gtest/gtest.h>
#include "gflags/gflags.h"
#include "paddle/contrib/inference/paddle_inference_api.h"
DEFINE_string(model, "", "Directory of the inference model.");
namespace paddle {
AnakinConfig GetConfig() {
AnakinConfig config;
config.model_file = "./mobilenet_v2.anakin.bin";
config.model_file = FLAGS_model;
config.device = 0;
config.max_batch_size = 1;
return config;
......
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
if(APPLE)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-error=pessimizing-move")
endif(APPLE)
cc_library(tape_variable SRCS variable.cc DEPS ${FLUID_CORE_MODULES})
cc_library(tape SRCS tape.cc DEPS ${FLUID_CORE_MODULES} ${GLOB_OP_LIB} tape_variable)
cc_test(test_tape
SRCS test_tape.cc
DEPS tape tape_variable)
# Dynamic Graph on Fluid
PaddlePaddle Fluid is targeting the autodiff without tape, which, however, is very
challenging and we are still way from there. DyNet and PyTorch provide a good design
idea, the *tape*, that significantly eases the challenge. Also, DyNet provides
a C++ API that is as convenient as Python but with higher efficiency and could
conveniently integrate with industrial/production systems. This package, `tape`,
combines the good of
1. tape from PyTorch and DyNet
2. C++ API and core from DyNet
3. rich set of operators from PaddlePaddle
## Overview
We can implement Dynet-like Tape(See this [survey](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/survey/dynamic_graph.md))
by wrapping Paddle Fluid's `Operator` and `Variable`.
The user API is straight forward since
1. it is imperative. And it uses host language's control flow logic.
1. it avoids extra concepts such as `Scope` and `Executor`.
All of these benefits come at the cost of just adding one line `reset_global_tape`
at every iteration.
## Code Structure
In short, the `Tape` contains a vector of `OpHandle`s. And an `OpHandle` contains its
`type`, the pointers to the `Variable`s, and necessary attributes.
```c++
class Variable {
public:
VriableHandle Grad(); // returns its gradient variable
private:
framework::VarDesc desc_; // compile time infershape, necessary for lazy execution
framework::Variable var_; // run time variable, holds data memory
};
using VariableHandle = shared_ptr<Variable>;
struct OpHandle {
string type_;
map<string, vector<VariableHandle>> inputs_;
map<string, vector<VariableHandle>> outputs_;
AttributeMap attrs_;
};
class Tape {
public:
void AddOp(OpHandle); // add op
void Forward(); // execute the tape_
void Backward(); // execute the backward of the tape_
private:
vector<OpHandle> tape_;
};
```
We uses `Function` to indicate layers. It takes care of parameter
initialization and `AddOp` to the Tape when it is called.
```c++
class Linear {
public:
Linear(int in_dim, int out_dim, const std::string &act)
: w_(new Variable("LinearWeight")),
b_(new Variable("LinearBias")),
act_(act) {
Tape init_tape;
std::string initializer = "fill_constant";
framework::AttributeMap attrs;
attrs["dtype"] = paddle::framework::proto::VarType::Type::VarType_Type_FP32;
attrs["shape"] = std::vector<int>{in_dim, out_dim};
attrs["value"] = 1.0f;
init_tape.AddOp(initializer, {}, {{"Out", {w_}}}, attrs);
attrs["dtype"] = paddle::framework::proto::VarType::Type::VarType_Type_FP32;
attrs["shape"] = std::vector<int>{out_dim};
attrs["value"] = 1.0f;
init_tape.AddOp(initializer, {}, {{"Out", {b_}}}, attrs);
init_tape.Forward();
}
VariableHandle operator()(VariableHandle input) {
VariableHandle pre_bias(new Variable("linear"));
get_global_tape().AddOp("mul",
{{"X", {input}}, {"Y", {w_}}},
{{"Out", {pre_bias}}},
{{"x_num_col_dims", 1}, {"y_num_col_dims", 1}});
VariableHandle pre_act(new Variable("linear"));
get_global_tape().AddOp("elementwise_add",
{{"X", {pre_bias}}, {"Y", {b_}}},
{{"Out", {pre_act}}},
{{"axis", 1}});
VariableHandle post_act(new Variable("linear"));
get_global_tape().AddOp(act_,
{{"X", {pre_act}}},
{{"Out", {post_act}}},
{});
return post_act;
}
std::vector<VariableHandle> Params() { return {w_, b_}; }
private:
VariableHandle w_;
VariableHandle b_;
std::string act_;
};
```
## User API
```c++
// Model function
paddle::tape::Linear linear1(3, 3, "relu"); // init weight and bias
paddle::tape::Linear linear2(3, 3, "relu"); // init weight and bias
paddle::tape::Mean mean;
// Optimizer
paddle::tape::SGD sgd(0.001);
// Data Feeder
paddle::tape::Fill data_feeder(...);
VariableHandle input(new paddle::tape::Variable("input"));
VariableHandle label(new paddle::tape::Variable("label"));
for (int i = 0; i < 2; ++i) {
reset_global_tape();
data_feeder(input, label);
auto loss = softmax(linear2(linear1(input)), label); // compile time InferShape & InferVarType
LOG(INFO) << loss.value(); // Run forward up to loss
// Run backward, store gradient of w at w->Grad()
get_global_tape.Backward(loss);
// Update w
sgd(linear1.Params());
sgd(linear2.Params());
}
```
<details>
<summary></summary>
digraph G {
subgraph cluster_0 {
node [shape=record,style=filled];
style=filled;
color=lightgrey;
linear1 [label="{type: mul | {input | {<before_mul1>X: before_mul1 |<weight1> Y: weight1}} | {output |<before_bias1> Out: before_bias1}}"];
elementwise_add1 [label="{type: elementwise_add | {input | {<before_bias1>X: before_bias1 |<bias1> Y: bias1}} | {output |<before_act1> Out: before_act1}}"];
relu1 [label="{type: relu | {input | {<before_act1>X: before_act1 }} | {output |<after_act1> Out: after_act1}}"];
linear1 -> elementwise_add1->relu1;
label = "forward tape";
}
linear1:before_mul1->before_mul1
linear1:weight1->weight1
linear1:before_bias1->before_bias1
elementwise_add1:bias1->bias1
elementwise_add1:before_bias1->before_bias1
elementwise_add1:before_act1->before_act1
relu1:before_act1->before_act1
relu1:after_act1->after_act1
subgraph cluster_1 {
node [shape=record,style=filled];
style=filled;
color=lightgrey;
linear1_grad [label="{type: mul_grad | {input | {<before_mul1>X: before_mul1 |<weight1> Y: weight1|<before_bias1_grad> Out_grad: before_bias1_grad}} | {output |{<before_mul1_grad>X_grad: before_mul1_grad |<weight1_grad> Y_grad: weight1_grad}}}"];
elementwise_add1_grad [label="{type: elementwise_add_grad | {input | <before_act1_grad> Out_grad: before_act1_grad} | {output |{<before_bias1_grad>X_grad: before_bias1_grad |<bias1_grad> Y_grad: bias1_grad}}}"];
relu1_grad [label="{type: relu_grad | {input |<after_act1_grad> Out_grad: after_act1_grad} | {ouput | {<before_act1_grad>X_grad: before_act1_grad }}}"];
linear1_grad -> elementwise_add1_grad ->relu1_grad [dir=back];
label = "backward tape";
}
relu1_grad:after_act1_grad->after_act1_grad
relu1_grad:before_act1_grad->before_act1_grad
elementwise_add1_grad:before_act1_grad->before_act1_grad
elementwise_add1_grad:before_bias1_grad->before_bias1_grad
elementwise_add1_grad:bias1_grad->bias1_grad
linear1_grad:before_mul1->before_mul1
linear1_grad:weight1->weight1
linear1_grad:before_bias1_grad->before_bias1_grad
linear1_grad:before_mul1_grad->before_mul1_grad
linear1_grad:weight1_grad->weight1_grad
subgraph cluster_2 {
node [shape=record];
label = "Linear1";
weight1
bias1
}
weight1 -> weight1_grad [ label="Grad()", style="dashed" ];
bias1 -> bias1_grad [ label="Grad()", style="dashed"];
}
</details>
![Image](https://github.com/tonyyang-svail/Paddle/blob/cpp_tap/paddle/contrib/tape/computation_graph.png)
## Code Reuse
We want to stay close to Paddle Fluid as much as possible.
### Reuse All Operators
As all Ops are registered at `OpInfoMap`, the effort of adding a new `Function`
is about 10 lines of code, similar to expose an operator to Python.
### Reuse Compile Time InferShape and InferVarType
Note that all the symbolic information is stored at `tape::Varaible::desc_`, instead
of `ProgramDesc.block.vars`, we create a temporary `BlockDesc` to do `InferShape` and
`InferVarType` every time we `AddOp` to the tape.
### Reuse Operator::Run
We use smart pointer, instead of `Scope`, to manage memory. So we create a temporary
`Scope` for every `Operator::Run()`.
## Possible Feature
### Release Memory on Backward
We can release memory aggressively. During backward, we can delete the OpHandle once
we have finished its backward. Since all the variable is managed by smart pointer, the
memory is automatically released when its `ref_count` goes to 0.
### Kernel Fusion
As a symbolic representation of the Tape is constructed first before the actual
execution, it would be possible to perform graph optimization. One use case is kernel
fusion.
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include "paddle/contrib/tape/tape.h"
#include "paddle/contrib/tape/variable.h"
#include "paddle/fluid/framework/type_defs.h"
namespace paddle {
namespace tape {
class Function {};
class Fill {
public:
Fill(const std::string &initializer, const framework::AttributeMap &attrs)
: initializer_(initializer), attrs_(attrs) {}
void operator()(VariableHandle var) {
get_global_tape().AddOp(initializer_, {}, {{"Out", {var}}}, attrs_);
}
private:
const std::string initializer_;
const framework::AttributeMap attrs_;
};
class Mean {
public:
VariableHandle operator()(VariableHandle var) {
VariableHandle out(new Variable("mean"));
get_global_tape().AddOp("mean", {{"X", {var}}}, {{"Out", {out}}}, {});
return out;
}
};
class Linear {
public:
Linear(int in_dim, int out_dim, const std::string &act)
: w_(new Variable("LinearWeight")),
b_(new Variable("LinearBias")),
act_(act) {
Tape init_tape;
std::string initializer = "fill_constant";
framework::AttributeMap attrs;
attrs["dtype"] = paddle::framework::proto::VarType::Type::VarType_Type_FP32;
attrs["shape"] = std::vector<int>{in_dim, out_dim};
attrs["value"] = 1.0f;
init_tape.AddOp(initializer, {}, {{"Out", {w_}}}, attrs);
attrs["dtype"] = paddle::framework::proto::VarType::Type::VarType_Type_FP32;
attrs["shape"] = std::vector<int>{out_dim};
attrs["value"] = 1.0f;
init_tape.AddOp(initializer, {}, {{"Out", {b_}}}, attrs);
init_tape.Forward();
}
VariableHandle operator()(VariableHandle input) {
VariableHandle pre_bias(new Variable("linear"));
get_global_tape().AddOp("mul",
{{"X", {input}}, {"Y", {w_}}},
{{"Out", {pre_bias}}},
{{"x_num_col_dims", 1}, {"y_num_col_dims", 1}});
VariableHandle pre_act(new Variable("linear"));
get_global_tape().AddOp("elementwise_add",
{{"X", {pre_bias}}, {"Y", {b_}}},
{{"Out", {pre_act}}},
{{"axis", 1}});
VariableHandle post_act(new Variable("linear"));
get_global_tape().AddOp(
act_, {{"X", {pre_act}}}, {{"Out", {post_act}}}, {});
return post_act;
}
std::vector<VariableHandle> Params() { return {w_, b_}; }
private:
VariableHandle w_;
VariableHandle b_;
std::string act_;
};
class SGD {
public:
SGD(float learning_rate) : learning_rate_(new Variable("sgd")) {
Tape init_tape;
std::string initializer = "fill_constant";
framework::AttributeMap attrs;
attrs["dtype"] = paddle::framework::proto::VarType::Type::VarType_Type_FP32;
attrs["shape"] = std::vector<int>{1};
attrs["value"] = learning_rate;
init_tape.AddOp(initializer, {}, {{"Out", {learning_rate_}}}, attrs);
init_tape.Forward();
}
void operator()(VariableHandle input) {
PADDLE_ENFORCE(get_global_tape().HasBeenBackwarded(),
"optimization must happen after the backward");
Tape temp_tape;
temp_tape.AddOp("sgd",
{{"Param", {input}},
{"LearningRate", {learning_rate_}},
{"Grad", {input->Grad()}}},
{{"ParamOut", {input}}},
{});
temp_tape.Forward();
}
private:
VariableHandle learning_rate_;
};
}
}
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/contrib/tape/tape.h"
#include <list>
#include <map>
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/dim.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/pybind/pybind.h"
namespace paddle {
namespace tape {
// borrowed from
// https://stackoverflow.com/questions/874134/find-if-string-ends-with-another-string-in-c
inline bool ends_with(std::string const &value, std::string const &ending) {
if (ending.size() > value.size()) return false;
return std::equal(ending.rbegin(), ending.rend(), value.rbegin());
}
std::ostream &operator<<(std::ostream &os, const framework::VarDesc &var_desc) {
os << var_desc.Name();
os << "[" << var_desc.GetType() << "]";
os << "[" << var_desc.GetDataType() << "]";
os << "{";
for (auto &i : var_desc.GetShape()) {
os << i << ",";
}
os << "}";
return os;
}
std::string to_string(const std::string &type,
const VariableHandleMap &in_vars,
const VariableHandleMap &out_vars,
const framework::AttributeMap &attrs) {
std::stringstream ss;
ss << type << " ";
for (auto &param_name : in_vars) {
for (auto &var : param_name.second) {
ss << param_name.first << ":(" << var->Desc() << ") ";
}
}
for (auto &param_name : out_vars) {
for (auto &var : param_name.second) {
ss << param_name.first << ":(" << var->Desc() << ") ";
}
}
return ss.str();
}
framework::OpDesc CreateOpDesc(const std::string &type,
const VariableHandleMap &in_vars,
const VariableHandleMap &out_vars,
const framework::AttributeMap &attrs) {
framework::VariableNameMap inputs;
for (auto &param_name : in_vars) {
for (auto &var : param_name.second) {
inputs[param_name.first].emplace_back(var->Name());
}
}
framework::VariableNameMap outputs;
for (auto &param_name : out_vars) {
for (auto &var : param_name.second) {
outputs[param_name.first].emplace_back(var->Name());
}
}
return framework::OpDesc(type, inputs, outputs, attrs);
}
void InferShapeAndVarType(const std::string &type,
const VariableHandleMap &in_vars,
VariableHandleMap *out_vars,
const framework::AttributeMap &attrs) {
framework::OpDesc op_desc = CreateOpDesc(type, in_vars, *out_vars, attrs);
// Create a temporary block for compile-time
framework::ProgramDesc program_desc;
framework::BlockDesc *block_desc = program_desc.MutableBlock(0);
PADDLE_ENFORCE(block_desc);
for (auto &param_name : in_vars) {
for (auto &var : param_name.second) {
*block_desc->Var(var->Name())->Proto() = *var->MutableDesc()->Proto();
}
}
for (auto &param_name : *out_vars) {
for (auto &var : param_name.second) {
*block_desc->Var(var->Name())->Proto() = *var->MutableDesc()->Proto();
}
}
LOG(INFO) << "- " << to_string(type, in_vars, *out_vars, attrs);
op_desc.InferShape(*block_desc);
op_desc.InferVarType(block_desc);
for (auto &param_name : *out_vars) {
for (auto &var : param_name.second) {
*var->MutableDesc()->Proto() = *block_desc->Var(var->Name())->Proto();
}
}
LOG(INFO) << "+ " << to_string(type, in_vars, *out_vars, attrs);
}
void Tape::AddOp(const std::string &type,
const VariableHandleMap &in_vars,
VariableHandleMap out_vars,
const framework::AttributeMap &attrs) {
InferShapeAndVarType(type, in_vars, &out_vars, attrs);
tape_.emplace_back(type, in_vars, out_vars, attrs);
}
// Temporary Scope for Operator::Run()
class ScopeWrapper : public framework::Scope {
public:
ScopeWrapper(const VariableHandleMap &in_vars,
const VariableHandleMap &out_vars) {
for (auto &v : in_vars) {
for (auto &vv : v.second) {
if (!vars_.count(vv->Name())) {
vars_[vv->Name()].reset(vv->Var());
}
}
}
for (auto &v : out_vars) {
for (auto &vv : v.second) {
if (!vars_.count(vv->Name())) {
vars_[vv->Name()].reset(vv->Var());
}
}
}
}
~ScopeWrapper() {
for (auto &pair : vars_) {
pair.second.release();
}
}
};
void Tape::Forward() {
LOG(INFO) << "Starting forward -------------------------";
PADDLE_ENFORCE(!has_been_backwarded_);
while (current_position_ < tape_.size()) {
OpHandle &op = tape_[current_position_];
// Create Output Tensor, this is only necessary for OpWithKernel
for (auto &param2var : op.outputs_) {
for (auto &var : param2var.second) {
var->InitializeVariable();
}
}
framework::OpDesc op_desc =
CreateOpDesc(op.type_, op.inputs_, op.outputs_, op.attrs_);
ScopeWrapper scope(op.inputs_, op.outputs_);
framework::OpRegistry::CreateOp(op_desc)->Run(scope, platform::CPUPlace());
current_position_++;
}
LOG(INFO) << "Finishing forward -------------------------";
}
void Tape::Backward(VariableHandle target) {
PADDLE_ENFORCE(!has_been_backwarded_);
Forward();
// TODO(tonyyang-svail): check output of last op is target
backward_tape_.reset(new Tape());
framework::AttributeMap attrs;
// FIXME(tonyyang-svail): Need to infer_data_type
attrs["dtype"] = framework::proto::VarType::Type::VarType_Type_FP32;
attrs["shape"] = std::vector<int>{1};
attrs["value"] = 1.0f;
backward_tape_->AddOp(
"fill_constant", {}, {{"Out", {target->Grad()}}}, attrs);
for (auto it = tape_.rbegin(); it != tape_.rend(); ++it) {
framework::OpDesc op_desc =
CreateOpDesc(it->type_, it->inputs_, it->outputs_, it->attrs_);
std::unordered_map<std::string, std::string> grad_to_var;
std::vector<std::unique_ptr<framework::OpDesc>> grad_op_descs =
framework::OpInfoMap::Instance()
.Get(op_desc.Type())
.GradOpMaker()(op_desc, {}, &grad_to_var, {});
for (auto &op_desc : grad_op_descs) {
std::unordered_map<std::string, VariableHandle> name2var;
for (auto &param2vars : it->inputs_) {
for (auto &a : param2vars.second) {
name2var[a->Name()] = a;
}
}
for (auto &param2vars : it->outputs_) {
for (auto &a : param2vars.second) {
name2var[a->Name()] = a;
}
}
VariableHandleMap in_vars;
VariableHandleMap out_vars;
std::map<const framework::VariableNameMap *, VariableHandleMap *>
loop_over{{&op_desc->Inputs(), &in_vars},
{&op_desc->Outputs(), &out_vars}};
for (auto &each : loop_over) {
auto &vmp = *each.first;
auto &vhm = *each.second;
for (auto &p2a : vmp) {
for (auto &argu : p2a.second) {
if (name2var.count(argu)) {
vhm[p2a.first].push_back(name2var[argu]);
} else {
PADDLE_ENFORCE(ends_with(argu, framework::kGradVarSuffix),
argu.c_str());
std::string name = argu.substr(
0, argu.size() - std::strlen(framework::kGradVarSuffix));
PADDLE_ENFORCE(name2var.count(name), name.c_str());
vhm[p2a.first].push_back(name2var[name]->Grad());
}
}
}
}
backward_tape_->AddOp(
op_desc->Type(), in_vars, out_vars, op_desc->GetAttrMap());
}
// TODO(tonyyang-svail): how to fill empty grad?
// TODO(tonyyang-svail): Sum var grad is necessary
}
backward_tape_->Forward();
has_been_backwarded_ = true;
}
Tape &get_global_tape() {
static Tape T;
return T;
}
void reset_global_tape() { get_global_tape() = Tape(); }
}
}
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <map>
#include <memory>
#include <string>
#include <vector>
#include "paddle/contrib/tape/variable.h"
namespace paddle {
namespace tape {
using VariableHandleMap = std::map<std::string, std::vector<VariableHandle>>;
struct OpHandle {
OpHandle(const std::string &type,
const VariableHandleMap &in_vars,
const VariableHandleMap &out_vars,
const framework::AttributeMap &attrs)
: type_(type), inputs_(in_vars), outputs_(out_vars), attrs_(attrs) {}
std::string type_;
VariableHandleMap inputs_;
VariableHandleMap outputs_;
framework::AttributeMap attrs_;
};
class Tape {
public:
void AddOp(const std::string &type,
const VariableHandleMap &in_vars,
VariableHandleMap out_vars,
const framework::AttributeMap &attrs);
void Forward();
void Backward(VariableHandle target);
bool HasBeenBackwarded() { return has_been_backwarded_; }
private:
bool has_been_backwarded_ = false;
size_t current_position_ = 0;
std::vector<OpHandle> tape_;
std::shared_ptr<Tape> backward_tape_;
};
Tape &get_global_tape();
void reset_global_tape();
}
}
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "gtest/gtest.h"
#include "paddle/contrib/tape/function.h"
using namespace paddle::tape;
TEST(Tape, TestMLP) {
LOG(INFO) << "TestMLP";
Linear linear1(3, 3, "relu");
Linear linear2(3, 3, "relu");
Mean mean;
SGD sgd(0.001);
std::string initializer = "fill_constant";
paddle::framework::AttributeMap attrs;
attrs["dtype"] = paddle::framework::proto::VarType::Type::VarType_Type_FP32;
attrs["shape"] = std::vector<int>{3, 3};
attrs["value"] = 1.0f;
Fill filler(initializer, attrs);
for (int i = 0; i < 2; ++i) {
reset_global_tape();
VariableHandle input(new Variable("input"));
filler(input);
auto loss = mean(linear2(linear1(input)));
get_global_tape().Backward(loss);
for (auto w : linear1.Params()) {
sgd(w);
}
for (auto w : linear2.Params()) {
sgd(w);
}
}
}
int main(int argc, char** argv) {
std::vector<paddle::platform::Place> places;
places.emplace_back(paddle::platform::CPUPlace());
paddle::platform::DeviceContextPool::Init(places);
testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/contrib/tape/variable.h"
namespace paddle {
namespace tape {
void Variable::InitializeVariable() {
LOG(INFO) << "Initialzing " << desc_.Name() << " as " << desc_.GetType();
framework::proto::VarType::Type var_type = desc_.GetType();
if (var_type == framework::proto::VarType::LOD_TENSOR) {
var_.GetMutable<framework::LoDTensor>();
} else if (var_type == framework::proto::VarType::SELECTED_ROWS) {
var_.GetMutable<framework::SelectedRows>();
} else {
PADDLE_THROW("Variable type %d is not in [LOD_TENSOR, SELECTED_ROWS]",
var_type);
}
}
}
}
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <memory>
#include "paddle/fluid/framework/operator.h" // framework::kGradVarSuffix
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/variable.h"
namespace paddle {
namespace tape {
class Variable;
using VariableHandle = std::shared_ptr<Variable>;
/*
* Combination of
* framework::VarDesc desc_;
* framework::Variable var_;
*/
class Variable {
public:
Variable(const std::string pre_fix)
: desc_(pre_fix + std::to_string(count())) {}
Variable(const std::string pre_fix, bool is_grad)
: desc_(pre_fix + (is_grad ? framework::kGradVarSuffix
: std::to_string(count()))) {}
~Variable() { LOG(INFO) << "Deleting " << Name(); }
// Instantiate LoDTensor/SelectedRow
void InitializeVariable();
VariableHandle Grad() {
if (grad_.expired()) {
VariableHandle new_grad(new Variable(desc_.Name(), true));
grad_ = new_grad;
return new_grad;
} else {
return VariableHandle(grad_);
}
}
// Stochastic Gradient Descent with Momentum
// VariableHandle Momentum ();
// void init(const std::string& initializer,
// const framework::AttributeMap& attrs);
// void value() {};
const framework::VarDesc& Desc() const { return desc_; }
framework::VarDesc* MutableDesc() { return &desc_; }
// TODO(tonyyang-svail): No need to expose name
std::string Name() const { return desc_.Name(); }
framework::Variable* Var() { return &var_; }
private:
int count() {
static int counter = 0;
return counter++;
}
framework::VarDesc desc_;
framework::Variable var_;
std::weak_ptr<Variable> grad_;
};
}
}
......@@ -84,7 +84,7 @@ cc_library(lod_rank_table SRCS lod_rank_table.cc DEPS lod_tensor)
cc_library(feed_fetch_method SRCS feed_fetch_method.cc DEPS lod_tensor scope glog)
if(WITH_DISTRIBUTE)
cc_library(executor SRCS executor.cc DEPS op_registry device_context scope framework_proto glog lod_rank_table feed_fetch_method sendrecvop_grpc grpc++_unsecure grpc_unsecure gpr)
cc_library(executor SRCS executor.cc DEPS op_registry device_context scope framework_proto glog lod_rank_table feed_fetch_method sendrecvop_grpc cares grpc++_unsecure grpc_unsecure gpr)
set(DISTRIBUTE_COMPILE_FLAGS "-Wno-non-virtual-dtor -Wno-error=non-virtual-dtor -Wno-error=delete-non-virtual-dtor")
set_source_files_properties(executor.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS})
else()
......
......@@ -330,8 +330,12 @@ void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
}
for (auto& op : ctx->ops_) {
VLOG(3) << place_ << " " << op->DebugStringEx(local_scope);
VLOG(4) << place_ << " " << op->DebugStringEx(local_scope);
op->Run(*local_scope, place_);
// NOTE! Please do not delete this line, it's usefull because the debug
// string before and after op.run are different, after run the output
// will have right shape which is usefull for debug.
VLOG(3) << place_ << " " << op->DebugStringEx(local_scope);
if (FLAGS_benchmark) {
VLOG(2) << "Memory used after operator " + op->Type() + " running: "
......
......@@ -69,6 +69,19 @@ static DDim GetDims(const Scope& scope, const std::string& name,
}
}
static int GetRowSize(const Scope& scope, const std::string& name) {
Variable* var = scope.FindVar(name);
if (var == nullptr) {
return -1;
}
if (var->IsType<SelectedRows>()) {
return var->Get<SelectedRows>().rows().size();
}
return -1;
}
static LoD GetLoD(const Scope& scope, const std::string& name) {
Variable* var = scope.FindVar(name);
auto default_lod = LoD({{}});
......@@ -85,6 +98,7 @@ static LoD GetLoD(const Scope& scope, const std::string& name) {
}
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
VLOG(10) << "- " << DebugStringEx(&scope);
if (platform::is_gpu_place(place)) {
#ifndef PADDLE_WITH_CUDA
PADDLE_THROW("Cannot run operator on place %s", place);
......@@ -94,6 +108,7 @@ void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
#endif
}
RunImpl(scope, place);
VLOG(10) << "+ " << DebugStringEx(&scope);
}
bool OperatorBase::HasInputs(const std::string& name) const {
......@@ -153,6 +168,10 @@ std::string OperatorBase::DebugStringEx(const Scope* scope) const {
for (size_t i = 0; i < input.second.size(); ++i) {
ss << input.second[i];
if (scope) {
int row_size = GetRowSize(*scope, input.second[i]);
if (row_size >= 0) {
ss << "[row_size=" << row_size << "]";
}
ss << "[" << GetDims(*scope, input.second[i], true) << "]";
ss << "(" << GetLoD(*scope, input.second[i]) << ")";
}
......@@ -173,6 +192,10 @@ std::string OperatorBase::DebugStringEx(const Scope* scope) const {
for (size_t i = 0; i < output.second.size(); ++i) {
ss << output.second[i];
if (scope) {
int row_size = GetRowSize(*scope, output.second[i]);
if (row_size >= 0) {
ss << "[row_size=" << row_size << "]";
}
ss << "[" << GetDims(*scope, output.second[i], true) << "]";
ss << "(" << GetLoD(*scope, output.second[i]) << ")";
}
......
......@@ -35,14 +35,15 @@ class ReaderBase {
class DecoratedReader : public ReaderBase {
public:
explicit DecoratedReader(ReaderBase* reader) : ReaderBase(), reader_(reader) {
explicit DecoratedReader(const std::shared_ptr<ReaderBase>& reader)
: ReaderBase(), reader_(reader) {
PADDLE_ENFORCE_NOT_NULL(reader_);
}
void ReInit() override { reader_->ReInit(); }
protected:
ReaderBase* reader_;
std::shared_ptr<ReaderBase> reader_;
};
class FileReader : public ReaderBase {
......@@ -64,7 +65,7 @@ class ReaderHolder {
public:
void Reset(ReaderBase* reader) { reader_.reset(reader); }
ReaderBase* Get() const { return reader_.get(); }
std::shared_ptr<ReaderBase> Get() const { return reader_; }
void ReadNext(std::vector<LoDTensor>* out) {
PADDLE_ENFORCE_NOT_NULL(reader_);
......@@ -76,7 +77,7 @@ class ReaderHolder {
}
private:
std::unique_ptr<ReaderBase> reader_;
std::shared_ptr<ReaderBase> reader_;
};
} // namespace framework
......
......@@ -81,6 +81,9 @@ class Scope {
// Rename variable to a new name and return the new name
std::string Rename(const std::string& origin_name) const;
protected:
mutable std::unordered_map<std::string, std::unique_ptr<Variable>> vars_;
private:
// Call Scope::NewScope for a sub-scope.
explicit Scope(Scope const* parent) : parent_(parent) {}
......@@ -93,8 +96,6 @@ class Scope {
// Caller doesn't own the returned Variable.
Variable* FindVarLocally(const std::string& name) const;
mutable std::unordered_map<std::string, std::unique_ptr<Variable>> vars_;
// Scope in `kids_` are owned by this class.
mutable std::list<Scope*> kids_;
Scope const* parent_{nullptr};
......
......@@ -19,10 +19,17 @@ limitations under the License. */
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using batch_norm_bwd = mkldnn::batch_normalization_backward;
using batch_norm_fwd = mkldnn::batch_normalization_forward;
using framework::DataLayout;
using framework::Tensor;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using paddle::platform::MKLDNNDeviceContext;
using paddle::platform::MKLDNNMemDesc;
using mkldnn::memory;
using platform::to_void_cast;
template <typename T>
using EigenArrayMap =
......@@ -64,21 +71,12 @@ void run_batch_norm_op(Args &&... args) {
mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
}
template <typename T>
inline void *cast_const_to_void(const T *t) {
return static_cast<void *>(const_cast<T *>(t));
}
} // namespace
template <typename T>
class BatchNormMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
auto data_layout_str = ctx.Attr<std::string>("data_layout");
auto data_layout = framework::StringToDataLayout(data_layout_str);
PADDLE_ENFORCE(data_layout == framework::DataLayout::kNCHW,
"MKLDNN batch normalization handles only NCHW data layout");
const float epsilon = ctx.Attr<float>("epsilon");
const float momentum = ctx.Attr<float>("momentum");
const bool is_test = ctx.Attr<bool>("is_test");
......@@ -99,41 +97,53 @@ class BatchNormMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
const auto *scale = ctx.Input<Tensor>("Scale");
const auto *shift = ctx.Input<Tensor>("Bias");
y->mutable_data<T>(ctx.GetPlace());
mean_out->mutable_data<T>(ctx.GetPlace());
variance_out->mutable_data<T>(ctx.GetPlace());
PADDLE_ENFORCE(x->layout() == DataLayout::kMKLDNN &&
x->format() != memory::format::format_undef,
"Wrong layout/format set for Input x tensor");
const T *x_data = x->data<T>();
const T *mean_data = mean->data<T>();
const T *variance_data = variance->data<T>();
T *y_data = y->mutable_data<T>(ctx.GetPlace());
T *mean_out_data = mean_out->mutable_data<T>(ctx.GetPlace());
T *variance_out_data = variance_out->mutable_data<T>(ctx.GetPlace());
T *batch_mean_data = nullptr;
T *batch_variance_data = nullptr;
if (!is_test) {
batch_mean->mutable_data<T>(ctx.GetPlace());
batch_variance->mutable_data<T>(ctx.GetPlace());
batch_mean_data = batch_mean->mutable_data<T>(ctx.GetPlace());
batch_variance_data = batch_variance->mutable_data<T>(ctx.GetPlace());
}
auto propagation = is_test == true ? mkldnn::prop_kind::forward_scoring
: mkldnn::prop_kind::forward_training;
auto dims = paddle::framework::vectorize2int(x->dims());
auto src_md =
MKLDNNMemDesc(dims, memory::data_type::f32, memory::format::nchw);
auto dst_md =
MKLDNNMemDesc(dims, memory::data_type::f32, memory::format::nchw);
auto src_pd = mkldnn::memory::primitive_desc{src_md, mkldnn_engine};
auto dst_pd = mkldnn::memory::primitive_desc{dst_md, mkldnn_engine};
auto src = mkldnn::memory{src_pd, cast_const_to_void(x->data<T>())};
auto dst = mkldnn::memory{dst_pd, y->data<T>()};
auto src_tz = paddle::framework::vectorize2int(x->dims());
auto scale_tz = paddle::framework::vectorize2int(scale->dims());
PADDLE_ENFORCE(scale_tz.size() == 1, "Dims of scale tensor is NOT 1");
const unsigned int ic = scale_tz[0];
unsigned flags = mkldnn::use_scale_shift;
if (is_test) flags |= mkldnn::use_global_stats;
// create mkldnn memory from input x tensor
auto src_memory =
memory({{{src_tz}, memory::data_type::f32, x->format()}, mkldnn_engine},
to_void_cast(x_data));
// create primitive descriptor for batch norm forward
using bn_fwd_types = bn_type_traits<mkldnn::batch_normalization_forward>;
auto batch_norm_fwd_desc =
bn_fwd_types::op_desc{propagation, src_md, epsilon, flags};
auto batch_norm_fwd_pd =
bn_fwd_types::op_prim{batch_norm_fwd_desc, mkldnn_engine};
auto batch_norm_fwd_desc = bn_fwd_types::op_desc{
propagation, src_memory.get_primitive_desc().desc(), epsilon, flags};
std::shared_ptr<batch_norm_fwd::primitive_desc> batch_norm_fwd_pd =
std::shared_ptr<batch_norm_fwd::primitive_desc>(
new batch_norm_fwd::primitive_desc(batch_norm_fwd_desc,
mkldnn_engine));
const unsigned int ic = dims[1];
// Save the pd to be used in backward pass
const std::string key = ctx.op().Output("SavedMean");
const std::string key_batch_norm_fwd_pd = key + "@bn_fwd_pd";
dev_ctx.SetBlob(key_batch_norm_fwd_pd, batch_norm_fwd_pd);
// MKLDNN requires a single piece of memory for scale and shift/bias data
const size_t scaleshift_size = 2 * ic;
......@@ -143,73 +153,58 @@ class BatchNormMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
copy_to_weights(scale->data<T>(), scale->data<T>() + ic, shift->data<T>(),
shift->data<T>() + ic, &scaleshift_data);
auto scaleshift_memory = mkldnn::memory{
batch_norm_fwd_pd.weights_primitive_desc(), scaleshift_data.data()};
// crate mkldnn memory for weights(scale/shift)
auto scaleshift_memory = memory(batch_norm_fwd_pd->weights_primitive_desc(),
scaleshift_data.data());
if (is_test) {
auto mean_memory = mkldnn::memory{batch_norm_fwd_pd.mean_primitive_desc(),
cast_const_to_void(mean->data<T>())};
// create mkldnn memory for output y tensor
auto dst_memory = memory(batch_norm_fwd_pd->dst_primitive_desc(), y_data);
if (is_test) {
// create mkldnn memory for stats (as input)
auto mean_memory = memory(batch_norm_fwd_pd->mean_primitive_desc(),
to_void_cast(mean_data));
auto variance_memory =
mkldnn::memory{batch_norm_fwd_pd.variance_primitive_desc(),
cast_const_to_void(variance->data<T>())};
memory(batch_norm_fwd_pd->variance_primitive_desc(),
to_void_cast(variance_data));
run_batch_norm_op<typename bn_fwd_types::op_type>(
batch_norm_fwd_pd, src, (const mkldnn::primitive::at &)mean_memory,
*batch_norm_fwd_pd, src_memory,
(const mkldnn::primitive::at &)mean_memory,
(const mkldnn::primitive::at &)variance_memory, scaleshift_memory,
dst);
dst_memory);
} else {
// create mkldnn memory for stats (as output)
auto mean_memory =
mkldnn::memory{batch_norm_fwd_pd.mean_primitive_desc(),
cast_const_to_void(batch_mean->data<T>())};
auto variance_memory =
mkldnn::memory{batch_norm_fwd_pd.variance_primitive_desc(),
cast_const_to_void(batch_variance->data<T>())};
memory(batch_norm_fwd_pd->mean_primitive_desc(), batch_mean_data);
auto variance_memory = memory(
batch_norm_fwd_pd->variance_primitive_desc(), batch_variance_data);
run_batch_norm_op<bn_fwd_types::op_type>(batch_norm_fwd_pd, src,
scaleshift_memory, dst,
run_batch_norm_op<bn_fwd_types::op_type>(*batch_norm_fwd_pd, src_memory,
scaleshift_memory, dst_memory,
mean_memory, variance_memory);
}
if (!is_test) {
const unsigned int in = dims[0];
const unsigned int sample_size = x->numel() / in / ic;
// saved_xx is use just in this batch of data
EigenVectorArrayMap<T> saved_mean_e(
batch_mean->mutable_data<T>(ctx.GetPlace()), ic);
EigenVectorArrayMap<T> saved_variance_e(
batch_variance->mutable_data<T>(ctx.GetPlace()), ic);
saved_mean_e.setZero();
saved_variance_e.setZero();
const unsigned int x_arr_size = in * ic;
ConstEigenArrayMap<T> x_arr(x->data<T>(), sample_size, x_arr_size);
for (unsigned int nc = 0; nc < x_arr_size; ++nc) {
saved_mean_e(nc % ic) += x_arr.col(nc).sum();
}
saved_mean_e /= in * sample_size;
for (unsigned int nc = 0; nc < x_arr_size; ++nc) {
saved_variance_e(nc % ic) +=
(x_arr.col(nc) - saved_mean_e(nc % ic)).matrix().squaredNorm();
}
saved_variance_e /= in * sample_size;
ConstEigenVectorArrayMap<T> mean_arr{mean->data<T>(), ic};
ConstEigenVectorArrayMap<T> variance_arr{variance->data<T>(), ic};
// mkldnn only compute stats for current batch
// so we need compute momentum stats via Eigen lib
EigenVectorArrayMap<T> batch_mean_e(batch_mean_data, ic);
EigenVectorArrayMap<T> batch_variance_e(batch_variance_data, ic);
ConstEigenVectorArrayMap<T> mean_e(mean_data, ic);
ConstEigenVectorArrayMap<T> variance_e{variance_data, ic};
EigenVectorArrayMap<T> running_mean_arr(
mean_out->mutable_data<T>(ctx.GetPlace()), ic);
EigenVectorArrayMap<T> running_var_arr(
variance_out->mutable_data<T>(ctx.GetPlace()), ic);
EigenVectorArrayMap<T> running_mean_e(mean_out_data, ic);
EigenVectorArrayMap<T> running_variance_e(variance_out_data, ic);
auto one_minus_momentum = 1. - momentum;
running_mean_arr =
mean_arr * momentum + saved_mean_e * one_minus_momentum;
running_var_arr =
variance_arr * momentum + saved_variance_e * one_minus_momentum;
running_mean_e = mean_e * momentum + batch_mean_e * one_minus_momentum;
running_variance_e =
variance_e * momentum + batch_variance_e * one_minus_momentum;
}
y->set_layout(DataLayout::kMKLDNN);
y->set_format(
(memory::format)dst_memory.get_primitive_desc().desc().data.format);
}
};
......@@ -217,11 +212,6 @@ template <typename T>
class BatchNormMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
public:
void Compute(const paddle::framework::ExecutionContext &ctx) const override {
auto data_layout_str = ctx.Attr<std::string>("data_layout");
auto data_layout = framework::StringToDataLayout(data_layout_str);
PADDLE_ENFORCE(data_layout == framework::DataLayout::kNCHW,
"MKLDNN batch normalization handles only NCHW data layout");
auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
auto mkldnn_engine = dev_ctx.GetEngine();
......@@ -238,88 +228,132 @@ class BatchNormMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
auto *diff_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
auto *diff_shift = ctx.Output<Tensor>(framework::GradVarName("Bias"));
diff_x->mutable_data<T>(ctx.GetPlace());
diff_scale->mutable_data<T>(ctx.GetPlace());
diff_shift->mutable_data<T>(ctx.GetPlace());
PADDLE_ENFORCE(diff_y->layout() == DataLayout::kMKLDNN &&
diff_y->format() != memory::format::format_undef,
"Wrong layout/format set for Input diff_y tensor");
const T *x_data = x->data<T>();
const T *diff_y_data = diff_y->data<T>();
const T *batch_mean_data = batch_mean->data<T>();
const T *batch_variance_data = batch_variance->data<T>();
const T *scale_data = scale->data<T>();
const T *shift_data = shift->data<T>();
T *diff_x_data = diff_x->mutable_data<T>(ctx.GetPlace());
T *diff_scale_data = diff_scale->mutable_data<T>(ctx.GetPlace());
T *diff_shift_data = diff_shift->mutable_data<T>(ctx.GetPlace());
auto src_tz = paddle::framework::vectorize2int(x->dims());
auto diff_src_tz = src_tz;
auto dst_tz = src_tz;
auto diff_dst_tz = dst_tz;
auto scale_tz = paddle::framework::vectorize2int(scale->dims());
PADDLE_ENFORCE(scale_tz.size() == 1, "Dims of scale tensor is NOT 1");
const unsigned int ic = scale_tz[0];
// Retrieve bn_fwd_pd from device context
const std::string key = ctx.op().Input("SavedMean");
const std::string key_batch_norm_fwd_pd = key + "@bn_fwd_pd";
auto batch_norm_fwd_pd =
std::static_pointer_cast<batch_norm_fwd::primitive_desc>(
dev_ctx.GetBlob(key_batch_norm_fwd_pd));
PADDLE_ENFORCE(batch_norm_fwd_pd != nullptr,
"Fail to find batch_norm_fwd_pd in device context");
auto dims = paddle::framework::vectorize2int(x->dims());
unsigned flags = mkldnn::use_scale_shift | !mkldnn::use_global_stats;
using bn_bwd_types = bn_type_traits<mkldnn::batch_normalization_backward>;
auto src_md =
MKLDNNMemDesc(dims, memory::data_type::f32, memory::format::nchw);
auto dst_md =
MKLDNNMemDesc(dims, memory::data_type::f32, memory::format::nchw);
auto diff_src_md =
MKLDNNMemDesc(dims, memory::data_type::f32, memory::format::nchw);
auto diff_dst_md =
MKLDNNMemDesc(dims, memory::data_type::f32, memory::format::nchw);
// create mkldnn memory from input diff_y tensor
auto user_diff_dst_memory =
memory({{{diff_dst_tz}, memory::data_type::f32, diff_y->format()},
mkldnn_engine},
to_void_cast(diff_y_data));
using bn_bwd_types = bn_type_traits<mkldnn::batch_normalization_backward>;
using bn_fwd_types = bn_type_traits<mkldnn::batch_normalization_forward>;
// create mkldnn memory from input x tensor
auto src_memory =
memory({{{src_tz}, memory::data_type::f32, x->format()}, mkldnn_engine},
to_void_cast(x_data));
auto batch_norm_fwd_desc = bn_fwd_types::op_desc{
mkldnn::prop_kind::forward_training, src_md, epsilon, flags};
auto batch_norm_fwd_pd =
bn_fwd_types::op_prim{batch_norm_fwd_desc, mkldnn_engine};
// for diff_dst, try to use same format as dst in forward pass
auto diff_dst_pd = batch_norm_fwd_pd.get()->dst_primitive_desc();
auto diff_dst_md = diff_dst_pd.desc();
// create primitive descriptor for batch norm backward
unsigned flags = mkldnn::use_scale_shift;
auto batch_norm_bwd_desc = bn_bwd_types::op_desc{
mkldnn::prop_kind::backward, diff_dst_md, dst_md, epsilon, flags};
mkldnn::prop_kind::backward, diff_dst_md,
src_memory.get_primitive_desc().desc(), epsilon, flags};
auto batch_norm_bwd_pd = bn_bwd_types::op_prim{
batch_norm_bwd_desc, mkldnn_engine, batch_norm_fwd_pd};
auto src = mkldnn::memory{{src_md, mkldnn_engine},
cast_const_to_void(x->data<T>())};
auto mean = mkldnn::memory{batch_norm_bwd_pd.mean_primitive_desc(),
cast_const_to_void(batch_mean->data<T>())};
auto variance =
mkldnn::memory{batch_norm_bwd_pd.variance_primitive_desc(),
cast_const_to_void(batch_variance->data<T>())};
auto diff_dst = mkldnn::memory{{diff_dst_md, mkldnn_engine},
cast_const_to_void(diff_y->data<T>())};
batch_norm_bwd_desc, mkldnn_engine, *batch_norm_fwd_pd};
// reorder user_diff_dst if it's not in preferred format
auto diff_dst_memory = user_diff_dst_memory;
primitive reorder_diff_dst;
bool is_diff_dst_reordered = false;
if (diff_dst_pd != user_diff_dst_memory.get_primitive_desc()) {
diff_dst_memory = memory(diff_dst_pd);
reorder_diff_dst = reorder(user_diff_dst_memory, diff_dst_memory);
is_diff_dst_reordered = true;
}
const unsigned int ic = dims[1];
// create mkldnn memory for input tensors (src/mean/variance)
auto mean_memory = memory(batch_norm_bwd_pd.mean_primitive_desc(),
to_void_cast(batch_mean_data));
auto variance_memory = memory(batch_norm_bwd_pd.variance_primitive_desc(),
to_void_cast(batch_variance_data));
// MKLDNN requires a single piece of memory for scale and shift/bias data
const size_t scaleshift_size = 2 * ic;
std::vector<T> scaleshift_data;
scaleshift_data.reserve(scaleshift_size);
copy_to_weights(scale->data<T>(), scale->data<T>() + ic, shift->data<T>(),
shift->data<T>() + ic, &scaleshift_data);
copy_to_weights(scale_data, scale_data + ic, shift_data, shift_data + ic,
&scaleshift_data);
auto scaleshift_memory = mkldnn::memory{
batch_norm_bwd_pd.weights_primitive_desc(), scaleshift_data.data()};
// create mkldnn memory for input tensors (scale/shift)
auto scaleshift_memory = memory(batch_norm_bwd_pd.weights_primitive_desc(),
scaleshift_data.data());
// create mkldnn memory for output diff weights (combined scale/shift)
std::vector<T> diff_scaleshift_data;
diff_scaleshift_data.reserve(scaleshift_size);
copy_to_weights(diff_scale->data<T>(), diff_scale->data<T>() + ic,
diff_shift->data<T>(), diff_shift->data<T>() + ic,
&diff_scaleshift_data);
auto diff_scaleshift_memory =
mkldnn::memory{batch_norm_bwd_pd.diff_weights_primitive_desc(),
diff_scaleshift_data.data()};
auto diff_src = mkldnn::memory{{diff_src_md, mkldnn_engine},
static_cast<void *>(diff_x->data<T>())};
run_batch_norm_op<bn_bwd_types::op_type>(
batch_norm_bwd_pd, src, mean, variance, diff_dst, scaleshift_memory,
diff_src, diff_scaleshift_memory);
memory(batch_norm_bwd_pd.diff_weights_primitive_desc(),
diff_scaleshift_data.data());
// here assume diff_src is in the same format of src
auto diff_src_memory = memory(src_memory.get_primitive_desc(), diff_x_data);
// finally create batch_norm backward primitive
auto batch_norm_bwd_prim =
batch_norm_bwd(batch_norm_bwd_pd, src_memory, mean_memory,
variance_memory, diff_dst_memory, scaleshift_memory,
diff_src_memory, diff_scaleshift_memory);
// execute optional reorder and batch_norm backward primitive
std::vector<primitive> pipeline;
if (is_diff_dst_reordered) pipeline.push_back(reorder_diff_dst);
pipeline.push_back(batch_norm_bwd_prim);
stream(stream::kind::eager).submit(pipeline).wait();
// copy back diff sacle/shift to output tensors (diff scale/shift)
diff_scaleshift_data.resize(scaleshift_size);
auto it = std::begin(diff_scaleshift_data);
std::copy(it, std::next(it, ic), diff_scale->data<T>());
std::copy(it, std::next(it, ic), diff_scale_data);
std::copy(std::next(it, ic), std::end(diff_scaleshift_data),
diff_shift->data<T>());
diff_shift_data);
// set layout/format of output tensors
diff_x->set_layout(DataLayout::kMKLDNN);
diff_x->set_format((memory::format)diff_src_memory.get_primitive_desc()
.desc()
.data.format);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_KERNEL(batch_norm, MKLDNN, paddle::platform::CPUPlace,
REGISTER_OP_KERNEL(batch_norm, MKLDNN, ::paddle::platform::CPUPlace,
ops::BatchNormMKLDNNOpKernel<float>);
REGISTER_OP_KERNEL(batch_norm_grad, MKLDNN, paddle::platform::CPUPlace,
REGISTER_OP_KERNEL(batch_norm_grad, MKLDNN, ::paddle::platform::CPUPlace,
ops::BatchNormMKLDNNGradOpKernel<float>);
......@@ -110,19 +110,19 @@ class BatchNormOp : public framework::OperatorWithKernel {
ctx.Input<Tensor>("Variance")->type()),
"Variance input should be of float type");
framework::LibraryType library_{framework::LibraryType::kPlain};
// TODO(pzelazko-intel): enable MKLDNN layout when it's ready
framework::LibraryType library = framework::LibraryType::kPlain;
framework::DataLayout layout = framework::DataLayout::kAnyLayout;
#ifdef PADDLE_WITH_MKLDNN
if (library_ == framework::LibraryType::kPlain &&
if (library == framework::LibraryType::kPlain &&
platform::CanMKLDNNBeUsed(ctx)) {
library_ = framework::LibraryType::kMKLDNN;
library = framework::LibraryType::kMKLDNN;
layout = framework::DataLayout::kMKLDNN;
}
#endif
return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
library_);
library);
}
};
......@@ -370,19 +370,21 @@ class BatchNormGradOp : public framework::OperatorWithKernel {
PADDLE_THROW("can't find Y@GRAD");
}
framework::LibraryType library_{framework::LibraryType::kPlain};
// TODO(pzelazko-intel): enable MKLDNN layout when it's ready
framework::DataLayout layout_ = framework::DataLayout::kAnyLayout;
framework::LibraryType library = framework::LibraryType::kPlain;
framework::DataLayout layout = framework::DataLayout::kAnyLayout;
#ifdef PADDLE_WITH_MKLDNN
if (library_ == framework::LibraryType::kPlain &&
if (library == framework::LibraryType::kPlain &&
platform::CanMKLDNNBeUsed(ctx)) {
library_ = framework::LibraryType::kMKLDNN;
layout_ = framework::DataLayout::kMKLDNN;
library = framework::LibraryType::kMKLDNN;
layout = framework::DataLayout::kMKLDNN;
}
#endif
return framework::OpKernelType(
framework::ToDataType(ctx.Input<Tensor>("X")->type()), ctx.GetPlace(),
layout_, library_);
layout, library);
}
};
......
......@@ -18,6 +18,17 @@
namespace paddle {
namespace operators {
using conv_bwd_data = mkldnn::convolution_backward_data;
using conv_bwd_weights = mkldnn::convolution_backward_weights;
using conv_fwd = mkldnn::convolution_forward;
using framework::DataLayout;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
using platform::GetMKLDNNFormat;
template <typename T>
class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
public:
......@@ -25,6 +36,10 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
"It must use CPUPlace.");
// Get unique name for index
const std::string key = ctx.op().Output("Output");
const std::string key_conv_pd = key + "@conv_pd";
auto& dev_ctx =
ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
const auto& mkldnn_engine = dev_ctx.GetEngine();
......@@ -33,10 +48,12 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
auto* filter = ctx.Input<Tensor>("Filter");
auto* output = ctx.Output<Tensor>("Output");
// Get an unique name from "argument" name of "Output" variable
// This name will be used as key when saving info into device context
const std::string key = ctx.op().Output("Output");
const std::string key_conv_pd = key + "@conv_pd";
PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
input->format() != memory::format::format_undef,
"Wrong layout/format set for Input tensor");
PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
filter->format() != memory::format::format_undef,
"Wrong layout/format set for Filter tensor");
std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
......@@ -63,60 +80,86 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
paddle::framework::vectorize2int(filter->dims());
std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());
// TODO(pzelazko-intel): support more formats
auto src_md = platform::MKLDNNMemDesc(
src_tz, mkldnn::memory::data_type::f32, mkldnn::memory::format::nchw);
auto weights_md =
platform::MKLDNNMemDesc(weights_tz, mkldnn::memory::data_type::f32,
mkldnn::memory::format::oihw);
auto dst_md = platform::MKLDNNMemDesc(
dst_tz, mkldnn::memory::data_type::f32, mkldnn::memory::format::nchw);
auto src_memory =
mkldnn::memory({src_md, mkldnn_engine},
reinterpret_cast<void*>(const_cast<T*>(input_data)));
auto weights_memory =
mkldnn::memory({weights_md, mkldnn_engine},
reinterpret_cast<void*>(const_cast<T*>(filter_data)));
auto dst_memory = mkldnn::memory({dst_md, mkldnn_engine}, output_data);
std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd =
ConvFwdPrimitiveDesc(src_md, weights_md, dst_md, strides, paddings,
mkldnn_engine);
// save conv_pd into global device context to be referred in backward path
dev_ctx.SetBlob(key_conv_pd, conv_pd);
// create mkldnn memory from input tensors (data/weights)
auto user_src_memory = memory(
{{{src_tz}, memory::data_type::f32, input->format()}, mkldnn_engine},
to_void_cast(input_data));
auto user_weights_memory =
memory({{{weights_tz}, memory::data_type::f32, filter->format()},
mkldnn_engine},
to_void_cast(filter_data));
/* create memory descriptor for convolution without specified format
* ('any') which lets a primitive (convolution in this case) choose
* the memory format preferred for best performance
*/
auto src_md = platform::MKLDNNMemDesc(src_tz, memory::data_type::f32,
memory::format::any);
auto weights_md = platform::MKLDNNMemDesc(
weights_tz, memory::data_type::f32, memory::format::any);
auto dst_md = platform::MKLDNNMemDesc(dst_tz, memory::data_type::f32,
memory::format::any);
// create a conv primitive descriptor and save it for usage in backward
std::shared_ptr<conv_fwd::primitive_desc> conv_pd = ConvFwdPrimitiveDesc(
src_md, weights_md, dst_md, strides, paddings, mkldnn_engine);
// create reorder primitive if the input format is not the preferred one
auto src_memory = user_src_memory;
primitive reorder_src;
bool is_src_reordered = false;
if (memory::primitive_desc(conv_pd->src_primitive_desc()) !=
user_src_memory.get_primitive_desc()) {
src_memory = memory(conv_pd->src_primitive_desc());
reorder_src = reorder(user_src_memory, src_memory);
is_src_reordered = true;
}
auto weights_memory = user_weights_memory;
primitive reorder_weights;
bool is_weights_reordered = false;
if (memory::primitive_desc(conv_pd->weights_primitive_desc()) !=
user_weights_memory.get_primitive_desc()) {
weights_memory = memory(conv_pd->weights_primitive_desc());
reorder_weights = reorder(user_weights_memory, weights_memory);
is_weights_reordered = true;
}
// create memory primitive for conv dst
auto dst_memory = memory(conv_pd->dst_primitive_desc(), output_data);
// create convolution op primitive
auto conv_prim = mkldnn::convolution_forward(*conv_pd, src_memory,
weights_memory, dst_memory);
auto conv_prim = conv_fwd(*conv_pd, src_memory, weights_memory, dst_memory);
// push primitive to stream and wait until it's executed
std::vector<mkldnn::primitive> pipeline{conv_prim};
mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
std::vector<primitive> pipeline;
if (is_src_reordered) pipeline.push_back(reorder_src);
if (is_weights_reordered) pipeline.push_back(reorder_weights);
pipeline.push_back(conv_prim);
stream(stream::kind::eager).submit(pipeline).wait();
// Save conv_pd/src_memory/weights_memory for backward pass
dev_ctx.SetBlob(key_conv_pd, conv_pd);
output->set_layout(DataLayout::kMKLDNN);
output->set_format(GetMKLDNNFormat(dst_memory));
}
private:
std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
ConvFwdPrimitiveDesc(const mkldnn::memory::desc& src,
const mkldnn::memory::desc& weights,
const mkldnn::memory::desc& dst,
const std::vector<int>& strides,
const std::vector<int>& paddings,
const mkldnn::engine& engine) const {
mkldnn::memory::dims stride_dims = {strides[0], strides[1]};
mkldnn::memory::dims padding_dims = {paddings[0], paddings[1]};
auto conv_desc = mkldnn::convolution_forward::desc(
mkldnn::prop_kind::forward, mkldnn::convolution_direct, src, weights,
dst, stride_dims, padding_dims, padding_dims,
mkldnn::padding_kind::zero);
auto p_conv_pd =
new mkldnn::convolution_forward::primitive_desc(conv_desc, engine);
return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
p_conv_pd);
std::unique_ptr<conv_fwd::primitive_desc> ConvFwdPrimitiveDesc(
const memory::desc& src, const memory::desc& weights,
const memory::desc& dst, const std::vector<int>& strides,
const std::vector<int>& paddings, const mkldnn::engine& engine) const {
memory::dims stride_dims = {strides[0], strides[1]};
memory::dims padding_dims = {paddings[0], paddings[1]};
auto conv_desc =
conv_fwd::desc(mkldnn::prop_kind::forward, mkldnn::convolution_direct,
src, weights, dst, stride_dims, padding_dims,
padding_dims, mkldnn::padding_kind::zero);
auto p_conv_pd = new conv_fwd::primitive_desc(conv_desc, engine);
return std::unique_ptr<conv_fwd::primitive_desc>(p_conv_pd);
}
};
......@@ -139,6 +182,19 @@ class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));
PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
input->format() != memory::format::format_undef,
"Wrong layout/format set for Input tensor");
PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
filter->format() != memory::format::format_undef,
"Wrong layout/format set for Filter tensor");
PADDLE_ENFORCE(output->layout() == DataLayout::kMKLDNN &&
output->format() != memory::format::format_undef,
"Wrong layout/format set for Output tensor");
PADDLE_ENFORCE(output_grad->layout() == DataLayout::kMKLDNN &&
output_grad->format() != memory::format::format_undef,
"Wrong layout/format set for output_grad tensor");
if (!input_grad && !filter_grad) return;
// Get an unique name from "argument" name of "Output" variable
......@@ -167,108 +223,147 @@ class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
paddle::framework::vectorize2int(filter->dims());
std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());
// TODO(pzelazko-intel): support more formats
auto src_md = platform::MKLDNNMemDesc(
src_tz, mkldnn::memory::data_type::f32, mkldnn::memory::format::nchw);
auto diff_src_md = platform::MKLDNNMemDesc(
src_tz, mkldnn::memory::data_type::f32, mkldnn::memory::format::nchw);
auto weights_md =
platform::MKLDNNMemDesc(weights_tz, mkldnn::memory::data_type::f32,
mkldnn::memory::format::oihw);
auto diff_weights_md =
platform::MKLDNNMemDesc(weights_tz, mkldnn::memory::data_type::f32,
mkldnn::memory::format::oihw);
auto diff_dst_md = platform::MKLDNNMemDesc(
dst_tz, mkldnn::memory::data_type::f32, mkldnn::memory::format::nchw);
// create memory
auto diff_dst_memory = mkldnn::memory(
{diff_weights_md, mkldnn_engine},
reinterpret_cast<void*>(const_cast<T*>(output_grad_data)));
// create mkldnn memory from input tensors (input/weights/output_grad)
auto user_src_memory = memory(
{{{src_tz}, memory::data_type::f32, input->format()}, mkldnn_engine},
to_void_cast(input_data));
auto user_weights_memory =
memory({{{weights_tz}, memory::data_type::f32, filter->format()},
mkldnn_engine},
to_void_cast(filter_data));
auto user_diff_dst_memory =
memory({{{dst_tz}, memory::data_type::f32, output_grad->format()},
mkldnn_engine},
to_void_cast(output_grad_data));
/* create memory descriptor for conv backward without specified format
* ('any') which lets a primitive (conv backward in this case) choose
* the memory format preferred for best performance
*/
auto src_md = platform::MKLDNNMemDesc(src_tz, memory::data_type::f32,
memory::format::any);
auto diff_src_md = platform::MKLDNNMemDesc(src_tz, memory::data_type::f32,
memory::format::any);
auto weights_md = platform::MKLDNNMemDesc(
weights_tz, memory::data_type::f32, memory::format::any);
auto diff_weights_md = platform::MKLDNNMemDesc(
weights_tz, memory::data_type::f32, memory::format::any);
auto diff_dst_md = platform::MKLDNNMemDesc(dst_tz, memory::data_type::f32,
memory::format::any);
// Retrieve conv_pd from device context
auto conv_pd =
std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
auto conv_pd = std::static_pointer_cast<conv_fwd::primitive_desc>(
dev_ctx.GetBlob(key_conv_pd));
PADDLE_ENFORCE(conv_pd != nullptr,
"Fail to find conv_pd in device context");
// create backward conv primitive for weights
if (filter_grad) {
// create primitive descriptor
mkldnn::convolution_backward_weights::primitive_desc conv_bwd_weights_pd =
ConvBwdWeightsPrimitiveDesc(src_md, diff_weights_md, diff_dst_md,
strides, paddings, *conv_pd,
mkldnn_engine);
// create backward convolution primitive descriptor
auto conv_bwd_weights_desc = conv_bwd_weights::desc(
mkldnn::convolution_direct, src_md, diff_weights_md, diff_dst_md,
strides, paddings, paddings, mkldnn::padding_kind::zero);
auto conv_bwd_weights_pd = conv_bwd_weights::primitive_desc(
conv_bwd_weights_desc, mkldnn_engine, *conv_pd);
// create reorder primitive if the input format is not the preferred one
auto src_memory = user_src_memory;
primitive reorder_src;
bool is_src_reordered = false;
if (memory::primitive_desc(conv_bwd_weights_pd.src_primitive_desc()) !=
user_src_memory.get_primitive_desc()) {
src_memory = memory(conv_bwd_weights_pd.src_primitive_desc());
reorder_src = reorder(user_src_memory, src_memory);
is_src_reordered = true;
}
// create memory
auto diff_dst_memory_4filter = user_diff_dst_memory;
primitive reorder_diff_dst_4filter;
bool is_diff_dst_reordered_4filter = false;
if (memory::primitive_desc(
conv_bwd_weights_pd.diff_dst_primitive_desc()) !=
user_diff_dst_memory.get_primitive_desc()) {
diff_dst_memory_4filter =
memory(conv_bwd_weights_pd.diff_dst_primitive_desc());
reorder_diff_dst_4filter =
reorder(user_diff_dst_memory, diff_dst_memory_4filter);
is_diff_dst_reordered_4filter = true;
}
// create mkldnn memory for output (i.e. diff weights)
auto diff_weights_memory =
mkldnn::memory({diff_weights_md, mkldnn_engine},
memory(conv_bwd_weights_pd.diff_weights_primitive_desc(),
reinterpret_cast<void*>(filter_grad_data));
auto src_memory =
mkldnn::memory({src_md, mkldnn_engine},
reinterpret_cast<void*>(const_cast<T*>(input_data)));
// create backward conv primitive for weights
auto conv_bwd_weights_prim = mkldnn::convolution_backward_weights(
conv_bwd_weights_pd, src_memory, diff_dst_memory,
diff_weights_memory);
auto conv_bwd_weights_prim =
conv_bwd_weights(conv_bwd_weights_pd, src_memory,
diff_dst_memory_4filter, diff_weights_memory);
// push primitive and execute it
std::vector<mkldnn::primitive> pipeline{conv_bwd_weights_prim};
mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
std::vector<primitive> pipeline;
if (is_src_reordered) pipeline.push_back(reorder_src);
if (is_diff_dst_reordered_4filter)
pipeline.push_back(reorder_diff_dst_4filter);
pipeline.push_back(conv_bwd_weights_prim);
stream(stream::kind::eager).submit(pipeline).wait();
filter_grad->set_layout(DataLayout::kMKLDNN);
filter_grad->set_format(GetMKLDNNFormat(diff_weights_memory));
}
if (input_grad) {
// create primitive descriptor
mkldnn::convolution_backward_data::primitive_desc conv_bwd_data_pd =
ConvBwdDataPrimitiveDesc(diff_src_md, weights_md, diff_dst_md,
strides, paddings, *conv_pd, mkldnn_engine);
// create memory
auto diff_src_memory = mkldnn::memory(
{diff_src_md, mkldnn_engine},
reinterpret_cast<void*>(const_cast<T*>(input_grad_data)));
auto weights_memory =
mkldnn::memory({weights_md, mkldnn_engine},
reinterpret_cast<void*>(const_cast<T*>(filter_data)));
// create backward conv primitive for data
auto conv_bwd_data_prim = mkldnn::convolution_backward_data(
conv_bwd_data_pd, diff_dst_memory, weights_memory, diff_src_memory);
// push primitive to stream and wait until it's executed
std::vector<mkldnn::primitive> pipeline{conv_bwd_data_prim};
mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
// create backward convolution primitive descriptor
auto conv_bwd_data_desc = conv_bwd_data::desc(
mkldnn::convolution_direct, diff_src_md, weights_md, diff_dst_md,
strides, paddings, paddings, mkldnn::padding_kind::zero);
auto conv_bwd_data_pd = conv_bwd_data::primitive_desc(
conv_bwd_data_desc, mkldnn_engine, *conv_pd);
// create reorder primitive if the input format is not the preferred one
auto weights_memory = user_weights_memory;
primitive reorder_weights;
bool is_weights_reordered = false;
if (memory::primitive_desc(conv_bwd_data_pd.weights_primitive_desc()) !=
user_weights_memory.get_primitive_desc()) {
weights_memory = memory(conv_bwd_data_pd.weights_primitive_desc());
reorder_weights = reorder(user_weights_memory, weights_memory);
is_weights_reordered = true;
}
} // Compute()
private:
mkldnn::convolution_backward_weights::primitive_desc
ConvBwdWeightsPrimitiveDesc(
const mkldnn::memory::desc& src, const mkldnn::memory::desc& diff_weights,
const mkldnn::memory::desc& diff_dst, const std::vector<int>& strides,
const std::vector<int>& paddings,
const mkldnn::convolution_forward::primitive_desc& conv_pd,
const mkldnn::engine& engine) const {
auto conv_bwd_weights_desc = mkldnn::convolution_backward_weights::desc(
mkldnn::convolution_direct, src, diff_weights, diff_dst, strides,
paddings, paddings, mkldnn::padding_kind::zero);
return mkldnn::convolution_backward_weights::primitive_desc(
conv_bwd_weights_desc, engine, conv_pd);
auto diff_dst_memory_4data = user_diff_dst_memory;
primitive reorder_diff_dst_4data;
bool is_diff_dst_reordered_4data = false;
if (memory::primitive_desc(conv_bwd_data_pd.diff_dst_primitive_desc()) !=
user_diff_dst_memory.get_primitive_desc()) {
diff_dst_memory_4data =
memory(conv_bwd_data_pd.diff_dst_primitive_desc());
reorder_diff_dst_4data =
reorder(user_diff_dst_memory, diff_dst_memory_4data);
is_diff_dst_reordered_4data = true;
}
mkldnn::convolution_backward_data::primitive_desc ConvBwdDataPrimitiveDesc(
const mkldnn::memory::desc& diff_src, const mkldnn::memory::desc& weights,
const mkldnn::memory::desc& diff_dst, const std::vector<int>& strides,
const std::vector<int>& paddings,
const mkldnn::convolution_forward::primitive_desc& conv_pd,
const mkldnn::engine& engine) const {
auto conv_bwd_data_desc = mkldnn::convolution_backward_data::desc(
mkldnn::convolution_direct, diff_src, weights, diff_dst, strides,
paddings, paddings, mkldnn::padding_kind::zero);
return mkldnn::convolution_backward_data::primitive_desc(conv_bwd_data_desc,
engine, conv_pd);
// create mkldnn memory for output (i.e. diff src)
auto diff_src_memory = memory(conv_bwd_data_pd.diff_src_primitive_desc(),
reinterpret_cast<void*>(input_grad_data));
// create backward conv primitive for data
auto conv_bwd_data_prim =
conv_bwd_data(conv_bwd_data_pd, diff_dst_memory_4data, weights_memory,
diff_src_memory);
// push primitive and execute it
std::vector<primitive> pipeline;
if (is_weights_reordered) pipeline.push_back(reorder_weights);
if (is_diff_dst_reordered_4data)
pipeline.push_back(reorder_diff_dst_4data);
pipeline.push_back(conv_bwd_data_prim);
stream(stream::kind::eager).submit(pipeline).wait();
input_grad->set_layout(DataLayout::kMKLDNN);
input_grad->set_format(GetMKLDNNFormat(diff_src_memory));
}
} // Compute()
};
} // namespace operators
......
......@@ -75,9 +75,8 @@ void ConvOp::InferShape(framework::InferShapeContext* ctx) const {
framework::OpKernelType ConvOp::GetExpectedKernelType(
const framework::ExecutionContext& ctx) const {
framework::LibraryType library{framework::LibraryType::kPlain};
std::string data_format = ctx.Attr<std::string>("data_format");
// TODO(pzelazko-intel): enable MKLDNN layout when it's ready
std::string data_format = ctx.Attr<std::string>("data_format");
framework::DataLayout layout = framework::StringToDataLayout(data_format);
#ifdef PADDLE_WITH_CUDA
......
......@@ -67,6 +67,10 @@ class GenNCCLIdOp : public framework::OperatorBase {
client->AsyncSendVar(ep, dev_ctx, *scope, NCCL_ID_VARNAME);
}
client->Wait();
for (auto& ep : endpoint_list) {
client->AsyncSendBatchBarrier(ep);
}
client->Wait();
VLOG(3) << "sending completed...";
}
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/mean_iou_op.h"
namespace paddle {
namespace operators {
class MeanIoUOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("Predictions"),
"Input (Predictions) of MeanIoU op should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Labels"),
"Input (labels) of MeanIoU op should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("OutMeanIou"),
"Output (OutMeanIou) of MeanIoU op should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("OutWrong"),
"Output (OutWrong) of MeanIoU op should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("OutCorrect"),
"Output (OutWrong) of MeanIoU op should not be null.");
int64_t num_classes =
static_cast<int64_t>(ctx->Attrs().Get<int>("num_classes"));
ctx->SetOutputDim("OutMeanIou", {1});
ctx->SetOutputDim("OutWrong", {num_classes});
ctx->SetOutputDim("OutCorrect", {num_classes});
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(
framework::ToDataType(ctx.Input<Tensor>("Predictions")->type()),
ctx.GetPlace());
}
};
class MeanIoUOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("Predictions",
"(Tensor), A Tensor of prediction results for semantic labels"
" with type int32 or int64. The rank should be greater than 1.");
AddInput(
"Labels",
"(Tensor), A Tensor of ground truth labels with type int32 or int64."
"Its shape should be the same as Input(Predictions).");
AddInput("InWrongs",
"(vector<Tensor>), A list of Tensor with shape "
"[num_classes]. They are used to collect wrong number among "
"batches. Empty list is also valid here.")
.AsDuplicable()
.AsDispensable();
AddInput(
"InCorrects",
"(vector<Tensor>), A list of Tensor with shape "
"[num_classes]. They are used to collect correct number among batches. "
"Empty list is also valid here.")
.AsDuplicable()
.AsDispensable();
AddInput("InMeanIou",
"(vector<Tensor>), A list of Tensor that Output(mean_iou) should "
"be added to. Empty list is also valid here.")
.AsDuplicable()
.AsDispensable();
AddOutput("OutMeanIou",
"(vector<Tensor>), A Tensor representing the"
" mean intersection-over-union with shape [1].");
AddOutput("OutWrong", "(Tensor), A Tensor with shape [num_classes]. ");
AddOutput("OutCorrect", "(Tensor), A Tensor with shape [num_classes]. ");
AddAttr<int>("num_classes", "(int), The possible number of labels.");
AddComment(R"DOC(
mean-IOU Operator.
Mean Intersection-Over-Union is a common evaluation metric for
semantic image segmentation, which first computes the IOU for each
semantic class and then computes the average over classes.
IOU is defined as follows:
IOU = true_positive / (true_positive + false_positive + false_negative).
It is based on pixel level area while "IOU Similarity Operator"
is based on area of rectangle.
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(mean_iou, ops::MeanIoUOp, ops::MeanIoUOpMaker,
paddle::framework::EmptyGradOpMaker);
REGISTER_OP_CPU_KERNEL(mean_iou, ops::MeanIoUKernel<int>,
ops::MeanIoUKernel<int32_t>,
ops::MeanIoUKernel<int64_t>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/mean_iou_op.h"
#include "paddle/fluid/platform/cuda_primitives.h"
#include "paddle/fluid/platform/gpu_info.h"
namespace paddle {
namespace operators {
using platform::PADDLE_CUDA_NUM_THREADS;
#define CUDA_1D_KERNEL_LOOP(i, n) \
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \
i += blockDim.x * gridDim.x)
template <typename T>
__global__ void CountCUDAKernel(const int num_classes, const int count,
const T* predictions, const T* labels,
int* wrong, int* correct) {
extern __shared__ int blcok_cache[];
int* wrong_c = blcok_cache;
int* correct_c = blcok_cache + num_classes;
// init cache
for (int i = threadIdx.x; i < num_classes * 2; i += blockDim.x) {
blcok_cache[i] = 0;
}
__syncthreads();
T pred;
T label;
CUDA_1D_KERNEL_LOOP(i, count) {
pred = predictions[i];
label = labels[i];
if (pred == label) {
atomicAdd(correct_c + pred, 1);
} else {
atomicAdd(wrong_c + pred, 1);
atomicAdd(wrong_c + label, 1);
}
}
__syncthreads();
for (int i = threadIdx.x; i < num_classes; i += blockDim.x) {
atomicAdd(wrong + i, wrong_c[i]);
atomicAdd(correct + i, correct_c[i]);
}
}
__global__ void ComputeIoUCUDAKernel(const int num_classes, int* wrong,
int* correct, float* ious, float* iou) {
__shared__ int valid_count_c;
if (threadIdx.x == 0) {
valid_count_c = 0;
}
__syncthreads();
CUDA_1D_KERNEL_LOOP(i, num_classes) {
int wrong_n = wrong[i];
int correct_n = correct[i];
int denominator = wrong_n + correct_n;
if (denominator > 0) {
atomicAdd(&valid_count_c, 1);
ious[i] = static_cast<float>(correct_n) / denominator;
} else {
ious[i] = 0;
}
}
__syncthreads();
if (threadIdx.x == 0) {
float iou_sum = 0;
for (int i = 0; i < num_classes; ++i) {
iou_sum += ious[i];
}
iou[0] += iou_sum / valid_count_c;
}
}
template <typename T>
class MeanIoUCUDAOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto& place = *ctx.template device_context<platform::CUDADeviceContext>()
.eigen_device();
// get input and output tensor
auto* predictions = ctx.Input<Tensor>("Predictions");
auto* labels = ctx.Input<Tensor>("Labels");
auto* out_mean_iou = ctx.Output<Tensor>("OutMeanIou");
auto* out_wrong = ctx.Output<Tensor>("OutWrong");
auto* out_correct = ctx.Output<Tensor>("OutCorrect");
int num_classes = static_cast<int>(ctx.Attr<int>("num_classes"));
// Get data ptr
const T* predictions_data = predictions->data<T>();
const T* labels_data = labels->data<T>();
int* out_wrong_data = out_wrong->mutable_data<int>(ctx.GetPlace());
int* out_correct_data = out_correct->mutable_data<int>(ctx.GetPlace());
float* out_mean_iou_data =
out_mean_iou->mutable_data<float>(ctx.GetPlace());
// Get Eigen tensor
auto out_mean_iou_t = EigenTensor<float, 1>::From(*out_mean_iou);
auto out_wrong_t = EigenTensor<int, 1>::From(*out_wrong);
auto out_correct_t = EigenTensor<int, 1>::From(*out_correct);
// Temporary tensor
Tensor ious;
float* ious_data = ious.mutable_data<float>(
{static_cast<int64_t>(num_classes)}, ctx.GetPlace());
auto ious_t = EigenTensor<float, 1>::From(ious);
// Init out_wrong, out_correct and out_mean_iou
out_wrong_t.device(place) = out_wrong_t.constant(0);
out_correct_t.device(place) = out_correct_t.constant(0);
out_mean_iou_t.device(place) = out_mean_iou_t.constant(0.0f);
// collect pre wrong, correct and mean_iou
auto in_mean_ious = ctx.MultiInput<Tensor>("InMeanIou");
for (int i = 0; i < in_mean_ious.size(); ++i) {
out_mean_iou_t.device(place) +=
EigenTensor<float, 1>::From(*in_mean_ious[i]);
}
auto in_wrongs = ctx.MultiInput<Tensor>("InWrongs");
for (int i = 0; i < in_wrongs.size(); ++i) {
out_wrong_t.device(place) += EigenTensor<int, 1>::From(*in_wrongs[i]);
}
auto in_corrects = ctx.MultiInput<Tensor>("InCorrects");
for (int i = 0; i < in_corrects.size(); ++i) {
out_correct_t.device(place) += EigenTensor<int, 1>::From(*in_corrects[i]);
}
// compute
auto stream = ctx.cuda_device_context().stream();
int block = PADDLE_CUDA_NUM_THREADS;
int grid = (predictions->numel() + block - 1) / block;
int cache_size = (num_classes * 2 + 1) * sizeof(int);
CountCUDAKernel<T><<<grid, block, cache_size, stream>>>(
num_classes, predictions->numel(), predictions_data, labels_data,
out_wrong_data, out_correct_data);
ctx.device_context().Wait();
ComputeIoUCUDAKernel<<<1, block, 0, stream>>>(num_classes, out_wrong_data,
out_correct_data, ious_data,
out_mean_iou_data);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(mean_iou, ops::MeanIoUCUDAOpKernel<int>,
ops::MeanIoUCUDAOpKernel<int64_t>,
ops::MeanIoUCUDAOpKernel<int32_t>);
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T, int D, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
template <typename T>
class MeanIoUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto& place = *ctx.template device_context<platform::CPUDeviceContext>()
.eigen_device();
// get input and output tensor
auto* predictions = ctx.Input<Tensor>("Predictions");
auto* labels = ctx.Input<Tensor>("Labels");
auto* out_mean_iou = ctx.Output<Tensor>("OutMeanIou");
auto* out_wrong = ctx.Output<Tensor>("OutWrong");
auto* out_correct = ctx.Output<Tensor>("OutCorrect");
int num_classes = static_cast<int>(ctx.Attr<int>("num_classes"));
// get data ptr
const T* predictions_data = predictions->data<T>();
const T* labels_data = labels->data<T>();
float* out_mean_iou_data =
out_mean_iou->mutable_data<float>(ctx.GetPlace());
int* out_wrong_data = out_wrong->mutable_data<int>(ctx.GetPlace());
int* out_correct_data = out_correct->mutable_data<int>(ctx.GetPlace());
// get eigen tensor
auto out_mean_iou_t = EigenTensor<float, 1>::From(*out_mean_iou);
auto out_wrong_t = EigenTensor<int, 1>::From(*out_wrong);
auto out_correct_t = EigenTensor<int, 1>::From(*out_correct);
// Tmp tensor
Tensor denominator;
Tensor valid_count;
Tensor iou_sum;
// get data ptr of tmp tensor
int* denominator_data = denominator.mutable_data<int>(
{static_cast<int64_t>(num_classes)}, ctx.GetPlace());
int* valid_count_data = valid_count.mutable_data<int>({1}, ctx.GetPlace());
float* iou_sum_data = iou_sum.mutable_data<float>({1}, ctx.GetPlace());
// get eigen tensor of tmp tensor
auto denominator_t = EigenTensor<int, 1>::From(denominator);
auto valid_count_t = EigenTensor<int, 1>::From(valid_count);
auto iou_sum_t = EigenTensor<float, 1>::From(iou_sum);
// init out_wrong, out_correct and out_mean_iou
out_wrong_t = out_wrong_t.constant(0);
out_correct_t = out_correct_t.constant(0);
out_mean_iou_t = out_mean_iou_t.constant(0);
// collect pre wrong, correct and mean_iou
auto in_mean_ious = ctx.MultiInput<Tensor>("InMeanIou");
for (size_t i = 0; i < in_mean_ious.size(); ++i) {
out_mean_iou_t.device(place) +=
EigenTensor<float, 1>::From(*in_mean_ious[i]);
}
auto in_wrongs = ctx.MultiInput<Tensor>("InWrongs");
for (size_t i = 0; i < in_wrongs.size(); ++i) {
out_wrong_t.device(place) += EigenTensor<int, 1>::From(*in_wrongs[i]);
}
auto in_corrects = ctx.MultiInput<Tensor>("InCorrects");
for (size_t i = 0; i < in_corrects.size(); ++i) {
out_correct_t.device(place) += EigenTensor<int, 1>::From(*in_corrects[i]);
}
// compute
for (int64_t i = 0; i < predictions->numel(); ++i) {
if (predictions_data[i] == labels_data[i]) {
out_correct_data[predictions_data[i]] += 1;
} else {
out_wrong_data[labels_data[i]] += 1;
out_wrong_data[predictions_data[i]] += 1;
}
}
denominator_t = out_wrong_t + out_correct_t;
valid_count_t =
(denominator_t > denominator_t.constant(0.0f)).cast<int>().sum();
for (int i = 0; i < num_classes; ++i) {
if (denominator_data[i] == 0) {
denominator_data[i] = 1;
}
}
iou_sum_t =
(out_correct_t.cast<float>() / denominator_t.cast<float>()).sum();
out_mean_iou_data[0] += (iou_sum_data[0] / valid_count_data[0]);
}
};
} // namespace operators
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/merge_ids_op.h"
namespace paddle {
namespace operators {
class MergeIdsOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("Ids", "(LoDTensor) the input ids with shape{batch_num, 1}");
AddInput(
"X",
"(LoDTensors) multi input tensor with shape{batch_num, N}, N is the "
"size of embedding table")
.AsDuplicable();
AddOutput("Out", "(LoDTensor) The merged outputs of the input tensors.");
AddComment(R"DOC(
Merge multi LoDTensor's into one according to Ids's shard num.
split_ids_op -> prefetch_op -> merge_ids_op
merge_ids_op should be used after split_ids_op and prefetch_op, split_ids_op
will split input Ids into multiple tensors according to Id's shard number.
prefetch_op will send them to parameter server to prefetch embedding value
back. During split, the order of ids is disordered. In merge_ids_op we use
the original Ids to restore the order of the fetched embedding value and
also pass the lod information to the merged output.
Example:
Ids = [1,2,3,4,5,6] # 3 shared
split_ids_op ->
Id0 = [3, 6] # id % 3 == 0
Id1 = [1, 4] # id % 3 == 1
Id2 = [2, 5] # id % 3 == 2
prefetch_op ->
X0 = [[0.3 0.3] # 3
[0.6 0.6]] # 6
X1 = [[0.1 0.1] # 1
[0.4 0.4]] # 4
X2 = [[0.2 0.2] # 2
[0.5 0.5]] # 5
merge_ids_op ->
Out = [[0.1 0.1] # 1
[0.2 0.2] # 2
[0.3 0.3] # 3
[0.4 0.4] # 4
[0.5 0.5] # 5
[0.6 0.6]] # 6
)DOC");
}
};
class MergeIdsOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("Ids"), "MergeIdsOp must has input Ids.");
PADDLE_ENFORCE(ctx->HasInputs("X"), "MergeIdsOp must has input X.");
PADDLE_ENFORCE(ctx->HasOutput("Out"), "MergeIdsOp must has output Out.");
auto ids_var_type = ctx->GetInputsVarType("Ids").front();
auto ids_dims = ctx->GetInputDim("Ids");
if (ids_var_type == framework::proto::VarType::LOD_TENSOR) {
PADDLE_ENFORCE_EQ(ids_dims.size(), 2);
PADDLE_ENFORCE_EQ(ids_dims[1], 1);
}
auto x_var_type = ctx->GetInputsVarType("X");
for (auto &var_type : x_var_type) {
PADDLE_ENFORCE_EQ(var_type, framework::proto::VarType::LOD_TENSOR,
"input X only support lod tensors");
}
ctx->ShareLoD("Ids", "Out");
}
private:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(
framework::ToDataType(
ctx.MultiInput<framework::Tensor>("X").front()->type()),
ctx.GetPlace());
}
};
class MergeIdsOpInferVarType : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc &op_desc,
framework::BlockDesc *block) const override {
auto *input_var = block->Var(op_desc.Input("Ids")[0]);
for (auto &out_var : op_desc.Output("Out")) {
block->Var(out_var)->SetType(input_var->GetType());
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(merge_ids, ops::MergeIdsOp, ops::MergeIdsOpMaker,
ops::MergeIdsOpInferVarType);
REGISTER_OP_CPU_KERNEL(
merge_ids, ops::MergeIdsOpKernel<paddle::platform::CPUPlace, float>);
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
namespace paddle {
namespace operators {
template <typename DeviceContext, typename T>
class MergeIdsOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
auto place = ctx.GetPlace();
if (!platform::is_cpu_place(place)) {
PADDLE_THROW("MergeIds do not support GPU kernel");
}
VLOG(3) << "run in MergeIdsOpKernel";
const auto *ids_var = ctx.InputVar("Ids");
PADDLE_ENFORCE(ids_var->IsType<framework::LoDTensor>(),
"only support to merge Ids of LoDTensor");
const auto &ids_tensor = ids_var->Get<framework::LoDTensor>();
const auto &ids_dims = ids_tensor.dims();
const int64_t *ids = ids_tensor.data<int64_t>();
auto x_tensors = ctx.MultiInput<framework::LoDTensor>("X");
auto *out = ctx.Output<framework::LoDTensor>("Out");
int batch_size = 0;
int embedding_size = 0;
for (auto &input : x_tensors) {
if (framework::product(input->dims()) != 0) {
if (embedding_size == 0) {
embedding_size = input->dims()[1];
}
PADDLE_ENFORCE_EQ(embedding_size, input->dims()[1],
"embedding size of all input should be the same");
batch_size += input->dims()[0];
}
}
PADDLE_ENFORCE_EQ(
batch_size, ids_dims[0],
"the batch size of ids and merged embedding value should be the same");
const size_t shard_num = x_tensors.size();
if (shard_num == 1) {
VLOG(3) << "only one shard, we can copy the data directly";
TensorCopy(*x_tensors[0], place, out);
} else {
std::vector<int> in_indexs(shard_num, 0);
auto *out_data = out->mutable_data<T>(
framework::make_ddim({batch_size, embedding_size}), place);
// copy data from ins[shard_num] to out.
for (int i = 0; i < ids_dims[0]; ++i) {
int64_t id = ids[i];
size_t shard_id = static_cast<size_t>(id) % shard_num;
int index = in_indexs[shard_id];
memcpy(out_data + embedding_size * i,
x_tensors[shard_id]->data<T>() + index * embedding_size,
sizeof(T) * embedding_size);
in_indexs[shard_id] += 1;
}
for (size_t i = 0; i < shard_num; ++i) {
PADDLE_ENFORCE_EQ(in_indexs[i], x_tensors[i]->dims()[0],
"after merge, all data in x_tensor should be used");
}
}
}
};
} // namespace operators
} // namespace paddle
......@@ -20,7 +20,7 @@ namespace reader {
class BatchReader : public framework::DecoratedReader {
public:
BatchReader(ReaderBase* reader, int batch_size)
BatchReader(const std::shared_ptr<ReaderBase>& reader, int batch_size)
: DecoratedReader(reader), batch_size_(batch_size) {
buffer_.reserve(batch_size_);
}
......
......@@ -22,7 +22,8 @@ namespace reader {
class CustomReader : public framework::DecoratedReader {
public:
CustomReader(ReaderBase* reader, const framework::BlockDesc& sub_block,
CustomReader(const std::shared_ptr<ReaderBase>& reader,
const framework::BlockDesc& sub_block,
const std::vector<std::string>& source_var_names,
const std::vector<std::string>& sink_var_names)
: DecoratedReader(reader),
......
......@@ -34,7 +34,8 @@ static constexpr size_t kChannelSize = 1; // kCacheSize - 2
class DoubleBufferReader : public framework::DecoratedReader {
public:
explicit DoubleBufferReader(
ReaderBase* reader, platform::Place target_place = platform::CPUPlace())
const std::shared_ptr<ReaderBase>& reader,
platform::Place target_place = platform::CPUPlace())
: DecoratedReader(reader), place_(target_place) {
cpu_tensor_cache_.resize(kCacheSize);
gpu_tensor_cache_.resize(kCacheSize);
......
......@@ -21,7 +21,7 @@ namespace reader {
class MultiPassReader : public framework::DecoratedReader {
public:
MultiPassReader(ReaderBase* reader, int pass_num)
MultiPassReader(const std::shared_ptr<ReaderBase>& reader, int pass_num)
: DecoratedReader(reader), pass_num_(pass_num), pass_count_(0) {}
void ReadNext(std::vector<framework::LoDTensor>* out) override {
......
......@@ -23,7 +23,8 @@ namespace reader {
class ShuffleReader : public framework::DecoratedReader {
public:
ShuffleReader(ReaderBase* reader, size_t buffer_size, size_t seed = 0)
ShuffleReader(const std::shared_ptr<ReaderBase>& reader, size_t buffer_size,
size_t seed = 0)
: DecoratedReader(reader), buffer_size_(buffer_size), seed_(seed) {
VLOG(10) << "Create shuffle reader of " << reader_;
if (seed_ == 0) {
......
......@@ -21,7 +21,8 @@ namespace reader {
class ThreadedReader : public framework::DecoratedReader {
public:
explicit ThreadedReader(ReaderBase* reader) : DecoratedReader(reader) {}
explicit ThreadedReader(const std::shared_ptr<ReaderBase>& reader)
: DecoratedReader(reader) {}
void ReadNext(std::vector<framework::LoDTensor>* out) override {
std::lock_guard<std::mutex> lock(mutex_);
......
......@@ -21,12 +21,17 @@ limitations under the License. */
#include <unistd.h>
#endif
#include <algorithm>
#include "gflags/gflags.h"
DEFINE_double(fraction_of_cpu_memory_to_use, 1,
"Default use 100% of CPU memory for PaddlePaddle,"
"reserve the rest for page tables, etc");
DEFINE_uint64(
initial_cpu_memory_in_mb, 500,
"Default initial 500MB of CPU memory for PaddlePaddle, in MD unit.");
DEFINE_double(
fraction_of_cuda_pinned_memory_to_use, 0.5,
"Default use 50% of CPU memory as the pinned_memory for PaddlePaddle,"
......@@ -54,7 +59,10 @@ inline size_t CpuTotalPhysicalMemory() {
size_t CpuMaxAllocSize() {
// For distributed systems, it requires configuring and limiting
// the fraction of memory to use.
return FLAGS_fraction_of_cpu_memory_to_use * CpuTotalPhysicalMemory();
return std::min(
static_cast<size_t>(FLAGS_fraction_of_cpu_memory_to_use *
CpuTotalPhysicalMemory()),
static_cast<size_t>(FLAGS_initial_cpu_memory_in_mb * 1 << 20));
}
size_t CpuMinChunkSize() {
......
......@@ -322,7 +322,6 @@ class DeviceTracerImpl : public DeviceTracer {
DisableActivity();
dynload::cuptiUnsubscribe(subscriber_);
CUPTI_CALL(dynload::cuptiGetTimestamp(&end_ns_));
PADDLE_ENFORCE(dynload::cuptiFinalize());
enabled_ = false;
}
......
......@@ -72,7 +72,6 @@ extern void *cupti_dso_handle;
__macro(cuptiGetResultString); \
__macro(cuptiActivityGetNumDroppedRecords); \
__macro(cuptiActivityFlushAll); \
__macro(cuptiFinalize); \
__macro(cuptiSubscribe); \
__macro(cuptiUnsubscribe); \
__macro(cuptiEnableCallback); \
......
......@@ -132,7 +132,8 @@ EOF
-DCMAKE_MODULE_PATH=/opt/rocm/hip/cmake \
-DWITH_FLUID_ONLY=${WITH_FLUID_ONLY:-OFF} \
-DCMAKE_EXPORT_COMPILE_COMMANDS=ON \
-DWITH_CONTRIB=${WITH_CONTRIB:-ON}
-DWITH_CONTRIB=${WITH_CONTRIB:-ON} \
-DWITH_ANAKIN=ON
}
function abort(){
......
......@@ -15,7 +15,7 @@
__all__ = ['batch']
def batch(reader, batch_size, drop_last=False):
def batch(reader, batch_size, drop_last=True):
"""
Create a batched reader.
......
......@@ -382,7 +382,7 @@ class Operator(object):
'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
'listen_and_serv', 'parallel_do', 'save_combine', 'load_combine',
'ncclInit', 'channel_create', 'channel_close', 'channel_send',
'channel_recv', 'select'
'channel_recv', 'select', 'gen_nccl_id'
}
def __init__(self,
......
......@@ -90,6 +90,7 @@ __all__ = [
'resize_bilinear',
'gather',
'random_crop',
'mean_iou',
]
......@@ -264,9 +265,10 @@ def embedding(input,
return tmp
# TODO(qijun): expose H0 and C0
def dynamic_lstm(input,
size,
h_0=None,
c_0=None,
param_attr=None,
bias_attr=None,
use_peepholes=True,
......@@ -327,6 +329,13 @@ def dynamic_lstm(input,
(T X 4D), where T is the total time steps in this
mini-batch, D is the hidden size.
size(int): 4 * hidden size.
h_0(Variable): The initial hidden state is an optional input, default is zero.
This is a tensor with shape (N x D), where N is the
batch size and D is the hidden size.
c_0(Variable): The initial cell state is an optional input, default is zero.
This is a tensor with shape (N x D), where N is the
batch size. `h_0` and `c_0` can be NULL but only at the same time.
param_attr(ParamAttr|None): The parameter attribute for the learnable
hidden-hidden weights.
......@@ -390,12 +399,20 @@ def dynamic_lstm(input,
cell = helper.create_tmp_variable(dtype)
batch_gate = helper.create_tmp_variable(dtype)
batch_cell_pre_act = helper.create_tmp_variable(dtype)
inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
batch_size = input.shape[0]
if h_0:
assert h_0.shape == (batch_size, size), \
'The shape of h0 should be (batch_size, %d)' % size
inputs['H0'] = h_0
if c_0:
assert c_0.shape == (batch_size, size), \
'The shape of c0 should be (batch_size, %d)' % size
inputs['C0'] = c_0
helper.append_op(
type='lstm',
inputs={'Input': input,
'Weight': weight,
'Bias': bias},
inputs=inputs,
outputs={
'Hidden': hidden,
'Cell': cell,
......@@ -680,11 +697,13 @@ def dynamic_gru(input,
attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
bias = helper.create_parameter(
attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
batch_size = input.shape[0]
inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
if h_0 != None:
assert h_0.shape == (
size, size), 'The shape of h0 should be(%d, %d)' % (size, size)
inputs['h0'] = h_0
batch_size, size
), 'The shape of h0 should be(batch_size, %d)' % size
inputs['H0'] = h_0
hidden = helper.create_tmp_variable(dtype)
batch_gate = helper.create_tmp_variable(dtype)
......@@ -4618,6 +4637,7 @@ def gather(input, index):
output (Variable): The output is a tensor with the same rank as input.
Examples:
.. code-block:: python
output = fluid.layers.gather(x, index)
......@@ -4682,3 +4702,53 @@ def random_crop(x, shape, seed=None):
"SeedOut": seed_out},
attrs={"shape": shape})
return out
def mean_iou(input, label, num_classes):
"""
Mean Intersection-Over-Union is a common evaluation metric for
semantic image segmentation, which first computes the IOU for each
semantic class and then computes the average over classes.
IOU is defined as follows:
.. math::
IOU = true_positive / (true_positive + false_positive + false_negative).
The predictions are accumulated in a confusion matrix and mean-IOU
is then calculated from it.
Args:
input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
label (Variable): A Tensor of ground truth labels with type int32 or int64.
Its shape should be the same as input.
Returns:
mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
Examples:
.. code-block:: python
iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
"""
helper = LayerHelper('mean_iou', **locals())
dtype = helper.input_dtype()
out_mean_iou = helper.create_tmp_variable(dtype='float32')
out_wrong = helper.create_tmp_variable(dtype='int32')
out_correct = helper.create_tmp_variable(dtype='int32')
helper.append_op(
type="mean_iou",
inputs={"predictions": input,
"labels": label},
outputs={
"out_mean_iou": out_mean_iou,
"out_wrong": out_wrong,
"out_correct": out_correct
},
attrs={"num_classes": num_classes})
return out_mean_iou, out_wrong, out_correct
......@@ -96,10 +96,11 @@ def train(use_cuda, train_program, params_dirname):
train_reader = paddle.batch(
paddle.reader.shuffle(
cifar10_small_test_set.train10(batch_size=10), buf_size=128 * 10),
batch_size=BATCH_SIZE)
batch_size=BATCH_SIZE,
drop_last=False)
test_reader = paddle.batch(
paddle.dataset.cifar.test10(), batch_size=BATCH_SIZE)
paddle.dataset.cifar.test10(), batch_size=BATCH_SIZE, drop_last=False)
def event_handler(event):
if isinstance(event, fluid.EndStepEvent):
......
......@@ -73,10 +73,11 @@ def train(use_cuda, train_program, params_dirname):
train_reader = paddle.batch(
paddle.reader.shuffle(
cifar10_small_test_set.train10(batch_size=10), buf_size=128 * 10),
batch_size=BATCH_SIZE)
batch_size=BATCH_SIZE,
drop_last=False)
test_reader = paddle.batch(
paddle.dataset.cifar.test10(), batch_size=BATCH_SIZE)
paddle.dataset.cifar.test10(), batch_size=BATCH_SIZE, drop_last=False)
def event_handler(event):
if isinstance(event, fluid.EndStepEvent):
......
......@@ -87,7 +87,9 @@ def train(use_cuda, train_program, params_dirname):
def event_handler(event):
if isinstance(event, fluid.EndEpochEvent):
test_reader = paddle.batch(
paddle.dataset.imdb.test(word_dict), batch_size=BATCH_SIZE)
paddle.dataset.imdb.test(word_dict),
batch_size=BATCH_SIZE,
drop_last=False)
avg_cost, acc = trainer.test(
reader=test_reader, feed_order=['words', 'label'])
......@@ -113,7 +115,8 @@ def train(use_cuda, train_program, params_dirname):
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.imdb.train(word_dict), buf_size=25000),
batch_size=BATCH_SIZE)
batch_size=BATCH_SIZE,
drop_last=False)
trainer.train(
num_epochs=1,
......
......@@ -56,7 +56,7 @@ BATCH_SIZE = 200
# fix the order of training data
train_reader = paddle.batch(
paddle.dataset.uci_housing.train(), batch_size=BATCH_SIZE)
paddle.dataset.uci_housing.train(), batch_size=BATCH_SIZE, drop_last=False)
# train_reader = paddle.batch(
# paddle.reader.shuffle(
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import division
import unittest
import numpy as np
from op_test import OpTest
def compute_mean_iou(predictions, labels, num_classes, in_wrongs, in_corrects,
in_mean_ious):
assert predictions.shape == labels.shape
predictions = predictions.flatten()
labels = labels.flatten()
out_wrong = np.zeros([num_classes]).astype("int32")
for _, wrong in in_wrongs:
out_wrong += wrong
out_correct = np.zeros([num_classes]).astype("int32")
for _, correct in in_corrects:
out_correct += correct
for pred, label in zip(predictions, labels):
if pred == label:
out_correct[pred] += 1
else:
out_wrong[pred] += 1
out_wrong[label] += 1
denominator = out_wrong + out_correct
valid_count = (denominator != 0).sum()
denominator = np.where(denominator > 0, denominator,
np.ones(denominator.shape))
mean_iou = (out_correct / denominator).sum() / valid_count
for _, in_mean_iou in in_mean_ious:
mean_iou += in_mean_iou
return mean_iou, out_wrong, out_correct
class TestMeanIOUOp(OpTest):
def setUp(self):
self.config()
self.op_type = "mean_iou"
predictions = np.random.randint(0, self.num_classes,
self.image_size).astype("int32")
labels = np.random.randint(0, self.num_classes,
self.image_size).astype("int32")
in_wrongs = []
for i in range(self.in_wrong_num):
in_wrongs.append(("in_wrong_%d" % i, np.random.randint(
0, 10, [self.num_classes]).astype("int32")))
in_corrects = []
for i in range(self.in_correct_num):
in_corrects.append(("in_correct_%d" % i, np.random.randint(
0, 10, [self.num_classes]).astype("int32")))
in_mean_ious = []
for i in range(self.in_mean_iou_num):
in_mean_ious.append(("in_mean_iou_%d" % i, np.random.uniform(
0, 1, [1]).astype("float32")))
self.inputs = {
'Predictions': predictions,
'Labels': labels,
'InWrongs': in_wrongs,
'InCorrects': in_corrects,
'InMeanIou': in_mean_ious
}
self.attrs = {'num_classes': long(self.num_classes)}
mean_iou, out_wrong, out_correct = compute_mean_iou(
predictions, labels, self.num_classes, in_wrongs, in_corrects,
in_mean_ious)
self.outputs = {
'OutMeanIou': mean_iou,
'OutWrong': out_wrong,
'OutCorrect': out_correct
}
def config(self):
self.num_classes = 10
self.image_size = [128, 128]
self.in_wrong_num = 0
self.in_correct_num = 0
self.in_mean_iou_num = 0
def test_check_output(self):
self.check_output()
class TestCase1(TestMeanIOUOp):
def config(self):
self.num_classes = 5
self.image_size = [100, 128]
self.in_wrong_num = 2
self.in_correct_num = 2
self.in_mean_iou_num = 2
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from op_test import OpTest
class TestMergeIdsOp(OpTest):
def setUp(self):
self.op_type = "merge_ids"
ids = np.array([[0], [2], [2], [3], [5], [5], [6]]).astype('int64')
x0 = np.array([[0.1, 0.2], [0.2, 0.3], [0.3, 0.4]]).astype('float32')
x1 = np.array([]).astype('float32')
x2 = np.array([[0.4, 0.5], [0.4, 0.5], [0.5, 0.6],
[0.5, 0.6]]).astype('float32')
out = np.array([[0.1, 0.2], [0.4, 0.5], [0.4, 0.5], [0.2, 0.3],
[0.5, 0.6], [0.5, 0.6], [0.3, 0.4]]).astype('float32')
self.inputs = {'Ids': ids, "X": [('x0', x0), ('x1', x1), ('x2', x2)]}
self.outputs = {'Out': out}
def test_check_output(self):
self.check_output()
if __name__ == '__main__':
unittest.main()
......@@ -629,7 +629,7 @@ class DistributeTranspiler:
if op.type == LOOKUP_TABLE_TYPE:
continue_search_lookup_table_op = True
op_index = list(all_ops).index(op)
lookup_table_op_index = list(all_ops).index(op)
ids_name = op.input("Ids")
out_name = op.output("Out")
......@@ -649,7 +649,7 @@ class DistributeTranspiler:
# insert split_ids_op
program.global_block().insert_op(
index=op_index,
index=lookup_table_op_index,
type="split_ids",
inputs={
'Ids': [
......@@ -661,7 +661,7 @@ class DistributeTranspiler:
# insert prefetch_op
program.global_block().insert_op(
index=op_index + 1,
index=lookup_table_op_index + 1,
type="prefetch",
inputs={'X': prefetch_input_vars},
outputs={"Out": prefetch_output_vars},
......@@ -672,16 +672,21 @@ class DistributeTranspiler:
# insert concat_op
program.global_block().insert_op(
index=op_index + 2,
type="concat",
inputs={'X': prefetch_output_vars},
index=lookup_table_op_index + 2,
type="merge_ids",
inputs={
'Ids': [
program.global_block().vars[varname]
for varname in ids_name
],
'X': prefetch_output_vars
},
outputs={
"Out": [
program.global_block().vars[varname]
for varname in out_name
]
},
attrs={"axis": 0})
})
# delete lookup_table_op
delete_ops(program.global_block(), [op])
......
......@@ -240,14 +240,15 @@ class ExtraLayerAttribute(object):
:type error_clipping_threshold: float
:param drop_rate: Dropout rate. Dropout will create a mask on layer output.
The dropout rate is the zero rate of this mask. The
details of what dropout is please refer to `here
<https://www.cs.toronto.edu/~hinton/absps/
JMLRdropout.pdf>`_.
details of what dropout is please refer to `JMLRdropout
<https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf
>`_.
:type drop_rate: float
:param device: device ID of layer. device=-1, use CPU. device>=0, use GPU.
The details allocation in parallel_nn please refer to `here
<http://www.paddlepaddle.org/doc/ui/cmd_argument/
use_case.html#case-2-specify-layers-in-different-devices>`_.
The details allocation in parallel_nn please refer to `use_case
<https://github.com/PaddlePaddle/Paddle/blob/develop/doc/v2
/howto/cmd_parameter/use_case_en.md#case-2-specify-layers-in
-different-devices>`_.
:type device: int
"""
......
......@@ -2556,7 +2556,7 @@ def img_conv_layer(input,
the output will be obtained by concatenating the two results.
The details of grouped convolution, please refer to:
`ImageNet Classification with Deep Convolutional Neural Networks
`ImageNet Classification With Deep Convolutional Neural Networks
<http://www.cs.toronto.edu/~kriz/imagenet_classification_with_deep_convolutional.pdf>`_
The example usage is:
......@@ -5678,8 +5678,8 @@ def warp_ctc_layer(input,
<https://github.com/baidu-research/warp-ctc>`_ library, which is used in
`Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin
<https://arxiv.org/pdf/1512.02595v1.pdf>`_, to compute Connectionist Temporal
Classification (CTC) loss. Besides, another `warp-ctc
<https://github.com/gangliao/warp-ctc>`_ repository, which is forked from
Classification (CTC) loss. Besides, another `warp-ctc repository
<https://github.com/gangliao/warp-ctc>`_ , which is forked from
the official one, is maintained to enable more compiling options. During the
building process, PaddlePaddle will clone the source codes, build and
install it to :code:`third_party/install/warpctc` directory.
......
......@@ -15,7 +15,7 @@
__all__ = ['batch']
def batch(reader, batch_size, drop_last=False):
def batch(reader, batch_size, drop_last=True):
"""
Create a batched reader.
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册