提交 cae15edf 编写于 作者: Y Yu Yang 提交者: GitHub

Merge pull request #1747 from reyoung/feature/fix_evaluator_in_layer_v2

Feature/fix evaluator in layer v2
...@@ -21,6 +21,7 @@ import data_type ...@@ -21,6 +21,7 @@ import data_type
import topology import topology
import data_feeder import data_feeder
import networks import networks
import evaluator
from . import dataset from . import dataset
from . import reader from . import reader
from . import plot from . import plot
...@@ -35,7 +36,7 @@ import plot ...@@ -35,7 +36,7 @@ import plot
__all__ = [ __all__ = [
'optimizer', 'layer', 'activation', 'parameters', 'init', 'trainer', 'optimizer', 'layer', 'activation', 'parameters', 'init', 'trainer',
'event', 'data_type', 'attr', 'pooling', 'data_feeder', 'dataset', 'reader', 'event', 'data_type', 'attr', 'pooling', 'data_feeder', 'dataset', 'reader',
'topology', 'networks', 'infer', 'plot' 'topology', 'networks', 'infer', 'plot', 'evaluator'
] ]
......
...@@ -65,13 +65,27 @@ class Layer(object): ...@@ -65,13 +65,27 @@ class Layer(object):
def __init__(self, name=None, parent_layers=None): def __init__(self, name=None, parent_layers=None):
assert isinstance(parent_layers, dict) assert isinstance(parent_layers, dict)
self.name = name self.name = name
self.__contex__ = {} self.__context__ = {}
self.__parent_layers__ = parent_layers self.__parent_layers__ = parent_layers
self.__children_layers__ = [] # used for evaluator.
def append_child(self, layer, parent_names):
self.__children_layers__.append((layer, parent_names))
def to_proto(self, context): def to_proto(self, context):
""" """
function to set proto attribute function to set proto attribute
""" """
self.__context__ = context
# short cut if myself is parsed before.
if self.context_name() in context:
if self.use_context_name():
return context[self.context_name()]
else:
return context[self.name]
# parse parent before myself
kwargs = dict() kwargs = dict()
for layer_name in self.__parent_layers__: for layer_name in self.__parent_layers__:
if not isinstance(self.__parent_layers__[layer_name], if not isinstance(self.__parent_layers__[layer_name],
...@@ -83,12 +97,29 @@ class Layer(object): ...@@ -83,12 +97,29 @@ class Layer(object):
self.__parent_layers__[layer_name]) self.__parent_layers__[layer_name])
kwargs[layer_name] = v1_layer kwargs[layer_name] = v1_layer
# parse myself.
ret_val = self.to_proto_impl(**kwargs)
if self.context_name() is not None and \
self.context_name() not in context:
context[self.context_name()] = ret_val
# parse children.
for layer, pnames in self.__children_layers__:
drop = False
# child will only be parsed if all parents are in context.
for pname in pnames:
if pname not in context:
drop = True
break
if drop:
continue
layer.to_proto(context=context)
if self.context_name() is None: if self.context_name() is None:
return self.to_proto_impl(**kwargs) return ret_val
elif self.context_name() not in context: elif self.use_context_name():
context[self.context_name()] = self.to_proto_impl(**kwargs)
self.__contex__ = context
if self.use_context_name():
return context[self.context_name()] return context[self.context_name()]
else: else:
return context[self.name] return context[self.name]
...@@ -113,10 +144,13 @@ class Layer(object): ...@@ -113,10 +144,13 @@ class Layer(object):
this layer is called. this layer is called.
:return: :return:
""" """
return self.__contex__[self.context_name()].size return self.__context__[self.context_name()].size
def __convert_to_v2__(method_name, parent_names, is_default_name=True): def __convert_to_v2__(method_name,
parent_names,
is_default_name=True,
attach_parent=False):
if is_default_name: if is_default_name:
wrapper = wrap_name_default(name_prefix=method_name) wrapper = wrap_name_default(name_prefix=method_name)
else: else:
...@@ -129,9 +163,20 @@ def __convert_to_v2__(method_name, parent_names, is_default_name=True): ...@@ -129,9 +163,20 @@ def __convert_to_v2__(method_name, parent_names, is_default_name=True):
parent_layers = dict() parent_layers = dict()
other_kwargs = dict() other_kwargs = dict()
for pname in parent_names: for pname in parent_names:
if kwargs.has_key(pname): if pname in kwargs:
parent_layers[pname] = kwargs[pname] parent_layers[pname] = kwargs[pname]
if attach_parent:
pnames = [x.context_name() for x in parent_layers.values()]
for pname in parent_layers:
layers = kwargs[pname]
if not isinstance(layers, collections.Sequence):
layers = [layers]
for layer in layers:
layer.append_child(self, pnames)
for key in kwargs.keys(): for key in kwargs.keys():
if key not in parent_names: if key not in parent_names:
other_kwargs[key] = kwargs[key] other_kwargs[key] = kwargs[key]
......
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.trainer_config_helpers.evaluators as evs
import inspect
from config_base import __convert_to_v2__
__all__ = []
def initialize():
def convert_to_new_name(nm):
return nm[:-len("_evaluator")]
for __ev_name__ in filter(lambda x: x.endswith('_evaluator'), evs.__all__):
__ev__ = getattr(evs, __ev_name__)
if hasattr(__ev__, 'argspec'):
argspec = __ev__.argspec
else:
argspec = inspect.getargspec(__ev__)
parent_names = filter(lambda x: x in ['input', 'label', 'weight'],
argspec.args)
v2_ev = __convert_to_v2__(
__ev_name__,
parent_names=parent_names,
is_default_name='name' in argspec.args,
attach_parent=True)
__new_name__ = convert_to_new_name(__ev_name__)
globals()[__new_name__] = v2_ev
globals()[__new_name__].__name__ = __new_name__
__all__.append(__new_name__)
initialize()
...@@ -19,6 +19,7 @@ import paddle.v2.data_type as data_type ...@@ -19,6 +19,7 @@ import paddle.v2.data_type as data_type
import paddle.v2.layer as layer import paddle.v2.layer as layer
import paddle.v2.pooling as pooling import paddle.v2.pooling as pooling
import paddle.v2.networks as networks import paddle.v2.networks as networks
import paddle.v2.evaluator as evaluator
pixel = layer.data(name='pixel', type=data_type.dense_vector(128)) pixel = layer.data(name='pixel', type=data_type.dense_vector(128))
label = layer.data(name='label', type=data_type.integer_value(10)) label = layer.data(name='label', type=data_type.integer_value(10))
...@@ -262,5 +263,20 @@ class NetworkTests(unittest.TestCase): ...@@ -262,5 +263,20 @@ class NetworkTests(unittest.TestCase):
print layer.parse_network(vgg_out) print layer.parse_network(vgg_out)
class EvaluatorTest(unittest.TestCase):
def test_evaluator(self):
img = layer.data(name='pixel', type=data_type.dense_vector(784))
output = layer.fc(input=img,
size=10,
act=activation.Softmax(),
name='fc_here')
lbl = layer.data(name='label', type=data_type.integer_value(10))
cost = layer.cross_entropy_cost(input=output, label=lbl)
evaluator.classification_error(input=output, label=lbl)
print layer.parse_network(cost)
print layer.parse_network(output)
if __name__ == '__main__': if __name__ == '__main__':
unittest.main() unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册