Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
c9d8cb4e
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c9d8cb4e
编写于
9月 11, 2017
作者:
H
hedaoyuan
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Convolution op and forward calculation.
上级
544458e0
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
285 addition
and
0 deletion
+285
-0
paddle/operators/conv_op.cc
paddle/operators/conv_op.cc
+96
-0
paddle/operators/conv_op.cu
paddle/operators/conv_op.cu
+22
-0
paddle/operators/gemm_conv_op.h
paddle/operators/gemm_conv_op.h
+103
-0
paddle/pybind/pybind.cc
paddle/pybind/pybind.cc
+1
-0
python/paddle/v2/framework/tests/CMakeLists.txt
python/paddle/v2/framework/tests/CMakeLists.txt
+1
-0
python/paddle/v2/framework/tests/test_conv2d_op.py
python/paddle/v2/framework/tests/test_conv2d_op.py
+62
-0
未找到文件。
paddle/operators/conv_op.cc
0 → 100644
浏览文件 @
c9d8cb4e
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/gemm_conv_op.h"
namespace
paddle
{
namespace
operators
{
int
outputSize
(
int
input_size
,
int
filter_size
,
int
padding
,
int
stride
)
{
int
output_size
=
(
input_size
-
filter_size
+
2
*
padding
)
/
stride
+
1
;
return
output_size
;
}
class
Conv2DOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
auto
*
in
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Input"
);
auto
*
filter
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Filter"
);
auto
*
out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Output"
);
PADDLE_ENFORCE_EQ
(
in
->
dims
().
size
(),
4
,
"Conv2DOp intput should be 4-D."
);
PADDLE_ENFORCE_EQ
(
filter
->
dims
().
size
(),
4
,
"Conv2DOp filter should be 4-D."
);
std
::
vector
<
int
>
strides
=
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
auto
output_height
=
outputSize
(
in
->
dims
()[
2
],
filter
->
dims
()[
2
],
paddings
[
0
],
strides
[
0
]);
auto
output_width
=
outputSize
(
in
->
dims
()[
3
],
filter
->
dims
()[
3
],
paddings
[
1
],
strides
[
1
]);
out
->
Resize
(
{
in
->
dims
()[
0
],
filter
->
dims
()[
0
],
output_height
,
output_width
});
}
};
class
Conv2DOppMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
Conv2DOppMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"Input"
,
"The input tensor of convolution operator. "
"The format of input tensor is NCHW. Where N is batch size, C is the "
"number of channels, H and W is the height and width of image."
);
AddInput
(
"Filter"
,
"The filter tensor of convolution operator."
"The format of the filter tensor is MCHW, where M is the number of "
"output "
"image channels, C is the number of input image channels, H and W is "
" height and width of filter."
);
AddOutput
(
"Output"
,
"The output tensor of convolution operator."
"The format of output tensor is also NCHW."
);
AddComment
(
R"DOC(
The convolution operation calculates the output based on
the input, filter and strides, paddings parameters.
)DOC"
);
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
"strides of convolution operator."
);
AddAttr
<
std
::
vector
<
int
>>
(
"paddings"
,
"paddings of convolution operator."
);
}
};
class
Conv2DOpGrad
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
conv2d
,
ops
::
Conv2DOp
,
ops
::
Conv2DOppMaker
,
conv2d_grad
,
ops
::
Conv2DOpGrad
);
REGISTER_OP_CPU_KERNEL
(
conv2d
,
ops
::
GemmConvKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
conv2d_grad
,
ops
::
GemmConvGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
paddle/operators/conv_op.cu
0 → 100644
浏览文件 @
c9d8cb4e
/* Copyright (c) 2016 PaddlePaddle Authors All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/gemm_conv_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_GPU_KERNEL
(
conv2d
,
ops
::
GemmConvKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
REGISTER_OP_GPU_KERNEL
(
conv2d_grad
,
ops
::
GemmConvGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
paddle/operators/gemm_conv_op.h
0 → 100644
浏览文件 @
c9d8cb4e
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/im2col.h"
#include "paddle/operators/math/math_function.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
Place
,
typename
T
>
class
GemmConvKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
Tensor
*
input
=
context
.
Input
<
Tensor
>
(
"Input"
);
Tensor
*
filter
=
const_cast
<
Tensor
*>
(
context
.
Input
<
Tensor
>
(
"Filter"
));
Tensor
*
output
=
context
.
Output
<
Tensor
>
(
"Output"
);
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
paddle
::
framework
::
Tensor
col
;
paddle
::
framework
::
Tensor
in_slice
;
paddle
::
framework
::
Tensor
out_slice
;
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
int
batch_size
=
input
->
dims
()[
0
];
int
input_channels
=
input
->
dims
()[
1
];
int
filter_height
=
filter
->
dims
()[
filter
->
dims
().
size
()
-
2
];
int
filter_width
=
filter
->
dims
()[
filter
->
dims
().
size
()
-
1
];
int
output_height
=
output
->
dims
()[
2
];
int
output_width
=
output
->
dims
()[
3
];
paddle
::
operators
::
math
::
Im2ColFunctor
<
paddle
::
operators
::
math
::
ColFormat
::
kCFO
,
Place
,
T
>
im2col
;
framework
::
DDim
col_shape
=
{
input_channels
,
filter_height
,
filter_width
,
output_height
,
output_width
};
col
.
mutable_data
<
float
>
(
col_shape
,
context
.
GetPlace
());
auto
*
device_context
=
const_cast
<
platform
::
DeviceContext
*>
(
context
.
device_context_
);
framework
::
DDim
input_shape
=
{
input
->
dims
()[
1
],
input
->
dims
()[
2
],
input
->
dims
()[
3
]};
framework
::
DDim
filter_matrix_shape
=
{
filter
->
dims
()[
0
],
filter
->
dims
()[
1
]
*
filter
->
dims
()[
2
]
*
filter
->
dims
()[
3
]};
framework
::
DDim
col_matrix_shape
=
{
input_channels
*
filter_height
*
filter_width
,
output_height
*
output_width
};
framework
::
DDim
output_matrix_shape
=
{
output
->
dims
()[
1
],
output
->
dims
()[
2
]
*
output
->
dims
()[
3
]};
filter
->
Resize
(
filter_matrix_shape
);
// convolution opperator: im2col + gemm
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
// im2col
in_slice
=
input
->
Slice
<
T
>
(
i
,
i
+
1
);
in_slice
.
Resize
(
input_shape
);
col
.
Resize
(
col_shape
);
im2col
(
in_slice
,
col
,
strides
[
0
],
strides
[
1
],
paddings
[
0
],
paddings
[
1
],
device_context
);
// gemm
out_slice
=
output
->
Slice
<
T
>
(
i
,
i
+
1
);
out_slice
.
Resize
(
output_matrix_shape
);
col
.
Resize
(
col_matrix_shape
);
math
::
matmul
<
Place
,
T
>
(
*
filter
,
false
,
col
,
false
,
T
(
1.0
),
&
out_slice
,
T
(
0.0
),
device_context
);
}
}
};
template
<
typename
Place
,
typename
T
>
class
GemmConvGradKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
#if 0
auto input = context.Input<Tensor>("Input");
auto filter = context.Input<Tensor>("Filter");
auto output = context.Output<Tensor>("Output");
output->mutable_data<T>(context.GetPlace());
#endif
}
};
}
// namespace operators
}
// namespace paddle
paddle/pybind/pybind.cc
浏览文件 @
c9d8cb4e
...
@@ -51,6 +51,7 @@ USE_CPU_ONLY_OP(gather);
...
@@ -51,6 +51,7 @@ USE_CPU_ONLY_OP(gather);
USE_CPU_ONLY_OP
(
scatter
);
USE_CPU_ONLY_OP
(
scatter
);
USE_OP
(
top_k
);
USE_OP
(
top_k
);
USE_OP
(
squared_l2_distance
);
USE_OP
(
squared_l2_distance
);
USE_OP
(
conv2d
);
namespace
paddle
{
namespace
paddle
{
namespace
framework
{
namespace
framework
{
...
...
python/paddle/v2/framework/tests/CMakeLists.txt
浏览文件 @
c9d8cb4e
...
@@ -35,3 +35,4 @@ py_test(test_lookup_table SRCS test_lookup_table.py)
...
@@ -35,3 +35,4 @@ py_test(test_lookup_table SRCS test_lookup_table.py)
py_test
(
test_scale_and_identity_op SRCS test_scale_and_identity_op.py
)
py_test
(
test_scale_and_identity_op SRCS test_scale_and_identity_op.py
)
py_test
(
mnist SRCS mnist.py
)
py_test
(
mnist SRCS mnist.py
)
py_test
(
test_squared_l2_distance_op SRCS test_squared_l2_distance_op.py
)
py_test
(
test_squared_l2_distance_op SRCS test_squared_l2_distance_op.py
)
py_test
(
test_conv2d SRCS test_conv2d_op.py
)
python/paddle/v2/framework/tests/test_conv2d_op.py
0 → 100644
浏览文件 @
c9d8cb4e
import
unittest
import
numpy
as
np
from
gradient_checker
import
GradientChecker
,
create_op
from
op_test_util
import
OpTestMeta
class
TestConv2dOp
(
unittest
.
TestCase
):
__metaclass__
=
OpTestMeta
def
setUp
(
self
):
self
.
type
=
"conv2d"
batch_size
=
2
input_channels
=
3
input_height
=
5
input_width
=
5
output_channels
=
6
filter_height
=
3
filter_width
=
3
stride
=
1
padding
=
0
output_height
=
(
input_height
-
filter_height
+
2
*
padding
)
/
stride
+
1
output_width
=
(
input_width
-
filter_width
+
2
*
padding
)
/
stride
+
1
input
=
np
.
random
.
random
((
batch_size
,
input_channels
,
input_height
,
input_width
)).
astype
(
"float32"
)
filter
=
np
.
random
.
random
(
(
output_channels
,
input_channels
,
filter_height
,
filter_width
)).
astype
(
"float32"
)
output
=
np
.
ndarray
(
(
batch_size
,
output_channels
,
output_height
,
output_width
))
for
batchid
in
xrange
(
batch_size
):
for
channelid
in
xrange
(
output_channels
):
for
rowid
in
xrange
(
output_height
):
for
colid
in
xrange
(
output_width
):
start_h
=
(
rowid
*
stride
)
-
padding
start_w
=
(
colid
*
stride
)
-
padding
output_value
=
0.0
for
inchannelid
in
xrange
(
input_channels
):
for
frowid
in
xrange
(
filter_height
):
for
fcolid
in
xrange
(
filter_width
):
input_value
=
0.0
inrowid
=
start_h
+
frowid
incolid
=
start_w
+
fcolid
if
((
inrowid
>=
0
and
inrowid
<
input_height
)
and
(
incolid
>=
0
and
incolid
<
input_width
)):
input_value
=
input
[
batchid
][
inchannelid
][
inrowid
][
incolid
]
filter_value
=
filter
[
channelid
][
inchannelid
][
frowid
][
fcolid
]
output_value
+=
input_value
*
filter_value
output
[
batchid
][
channelid
][
rowid
][
colid
]
=
output_value
self
.
inputs
=
{
'Input'
:
input
,
'Filter'
:
filter
}
self
.
outputs
=
{
'Output'
:
output
}
self
.
attrs
=
{
'strides'
:
[
1
,
1
],
'paddings'
:
[
0
,
0
]}
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录