提交 c8965dc1 编写于 作者: M minqiyang

Polish code

test=develop
上级 289aba75
...@@ -168,12 +168,12 @@ class Autograd { ...@@ -168,12 +168,12 @@ class Autograd {
} }
}; };
VarBase* VarBase::NewVarBase(const platform::Place& dst_place, std::unique_ptr<VarBase> VarBase::NewVarBase(const platform::Place& dst_place,
const bool blocking) const { const bool blocking) const {
PADDLE_ENFORCE(var_->IsInitialized(), PADDLE_ENFORCE(var_->IsInitialized(),
"Variable must be initialized when getting numpy tensor"); "Variable must be initialized when getting numpy tensor");
VarBase* new_var = new VarBase(); std::unique_ptr<VarBase> new_var(new VarBase());
framework::LoDTensor* tensor = framework::LoDTensor* tensor =
new_var->var_->GetMutable<framework::LoDTensor>(); new_var->var_->GetMutable<framework::LoDTensor>();
tensor->Resize(var_->Get<framework::LoDTensor>().dims()); tensor->Resize(var_->Get<framework::LoDTensor>().dims());
...@@ -240,9 +240,8 @@ std::map<std::string, std::vector<VarBase*>> OpBase::ApplyGrad() { ...@@ -240,9 +240,8 @@ std::map<std::string, std::vector<VarBase*>> OpBase::ApplyGrad() {
PADDLE_ENFORCE_NOT_NULL(op_kernel, "only support op with kernel"); PADDLE_ENFORCE_NOT_NULL(op_kernel, "only support op with kernel");
framework::Scope scope; framework::Scope scope;
platform::Place place = place_; PreparedOp p = PreparedOp::Prepare(ctx, *op_kernel, place_);
PreparedOp p = PreparedOp::Prepare(ctx, *op_kernel, place); p.op.RuntimeInferShape(scope, place_, ctx);
p.op.RuntimeInferShape(scope, place, ctx);
p.func(framework::ExecutionContext(p.op, scope, *p.dev_ctx, p.ctx)); p.func(framework::ExecutionContext(p.op, scope, *p.dev_ctx, p.ctx));
} }
......
...@@ -21,6 +21,7 @@ ...@@ -21,6 +21,7 @@
#include <map> // NOLINT #include <map> // NOLINT
#include <string> // NOLINT #include <string> // NOLINT
#include <vector> // NOLINT #include <vector> // NOLINT
#include <memory> // NOLINT
#include "paddle/fluid/framework/op_desc.h" #include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/operator.h" #include "paddle/fluid/framework/operator.h"
...@@ -153,7 +154,7 @@ class VarBase { ...@@ -153,7 +154,7 @@ class VarBase {
framework::LoDTensor& GradValue(); framework::LoDTensor& GradValue();
VarBase* NewVarBase(const platform::Place& dst_place, std::unique_ptr<VarBase> NewVarBase(const platform::Place& dst_place,
const bool blocking) const; const bool blocking) const;
inline std::string GradName() const { inline std::string GradName() const {
......
...@@ -137,13 +137,21 @@ PYBIND11_MODULE(core, m) { ...@@ -137,13 +137,21 @@ PYBIND11_MODULE(core, m) {
.def("_grad_ivar", .def("_grad_ivar",
[](const imperative::VarBase &self) { return self.grads_; }, [](const imperative::VarBase &self) { return self.grads_; },
py::return_value_policy::reference) py::return_value_policy::reference)
.def("_to", .def("_copy_to",
[](const imperative::VarBase &self, const platform::CPUPlace &place, [](const imperative::VarBase &self, const platform::CPUPlace &place,
bool blocking) { return self.NewVarBase(place, blocking); }, bool blocking) {
std::unique_ptr<imperative::VarBase> new_var =
self.NewVarBase(place, blocking);
return new_var.release();
},
py::return_value_policy::take_ownership) py::return_value_policy::take_ownership)
.def("_to", .def("_copy_to",
[](const imperative::VarBase &self, const platform::CUDAPlace &place, [](const imperative::VarBase &self, const platform::CUDAPlace &place,
bool blocking) { return self.NewVarBase(place, blocking); }, bool blocking) {
std::unique_ptr<imperative::VarBase> new_var =
self.NewVarBase(place, blocking);
return new_var.release();
},
py::return_value_policy::take_ownership) py::return_value_policy::take_ownership)
.def("value", [](const imperative::VarBase &self) { return self.var_; }, .def("value", [](const imperative::VarBase &self) { return self.var_; },
py::return_value_policy::reference) py::return_value_policy::reference)
......
...@@ -67,7 +67,7 @@ ZERO_VAR_SUFFIX = core.kZeroVarSuffix() ...@@ -67,7 +67,7 @@ ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName() CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()
_imperative_tracer_ = None _imperative_tracer_ = None
_current_expected_place_ = None _imperative_current_expected_place_ = None
def _in_imperative_mode(): def _in_imperative_mode():
...@@ -79,7 +79,7 @@ def _imperative_tracer(): ...@@ -79,7 +79,7 @@ def _imperative_tracer():
def _current_expected_place(): def _current_expected_place():
return _current_expected_place_ return _imperative_current_expected_place_
class NameScope(object): class NameScope(object):
...@@ -385,7 +385,7 @@ class Variable(object): ...@@ -385,7 +385,7 @@ class Variable(object):
self._ivar.stop_gradient = stop_gradient self._ivar.stop_gradient = stop_gradient
def _numpy(self): def _numpy(self):
new_ivar = self._ivar._to(core.CPUPlace(), True) new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
return np.array(new_ivar.value().get_tensor()) return np.array(new_ivar.value().get_tensor())
def _backward(self): def _backward(self):
...@@ -1313,7 +1313,8 @@ class Block(object): ...@@ -1313,7 +1313,8 @@ class Block(object):
def _trace_op(self, op, stop_gradient=False): def _trace_op(self, op, stop_gradient=False):
if _in_imperative_mode(): if _in_imperative_mode():
_imperative_tracer().trace(op.iop, op.inputs, op.outputs, self.desc, _imperative_tracer().trace(op.iop, op.inputs, op.outputs, self.desc,
_current_expected_place_, stop_gradient) _imperative_current_expected_place_,
stop_gradient)
def _insert_op(self, index, *args, **kwargs): def _insert_op(self, index, *args, **kwargs):
""" """
...@@ -2338,10 +2339,10 @@ def _imperative_guard(tracer): ...@@ -2338,10 +2339,10 @@ def _imperative_guard(tracer):
@contextlib.contextmanager @contextlib.contextmanager
def _imperative_place_guard(place): def _imperative_place_guard(place):
global _current_expected_place_ global _imperative_current_expected_place_
tmp_place = _current_expected_place_ tmp_place = _imperative_current_expected_place_
_current_expected_place_ = place _imperative_current_expected_place_ = place
yield yield
_current_expected_place_ = tmp_place _imperative_current_expected_place_ = tmp_place
...@@ -144,7 +144,7 @@ class Conv2D(layers.Layer): ...@@ -144,7 +144,7 @@ class Conv2D(layers.Layer):
attrs={'axis': 1}) attrs={'axis': 1})
# Currently, we don't support inplace in imperative mode # Currently, we don't support inplace in imperative mode
return self._helper.append_activation(pre_act, force_no_inplace=True) return self._helper.append_activation(pre_act)
class Pool2D(layers.Layer): class Pool2D(layers.Layer):
...@@ -286,8 +286,7 @@ class FC(layers.Layer): ...@@ -286,8 +286,7 @@ class FC(layers.Layer):
else: else:
pre_activation = pre_bias pre_activation = pre_bias
# Currently, we don't support inplace in imperative mode # Currently, we don't support inplace in imperative mode
return self._helper.append_activation( return self._helper.append_activation(pre_activation)
pre_activation, force_no_inplace=True)
class BatchNorm(layers.Layer): class BatchNorm(layers.Layer):
...@@ -419,5 +418,4 @@ class BatchNorm(layers.Layer): ...@@ -419,5 +418,4 @@ class BatchNorm(layers.Layer):
}) })
# Currently, we don't support inplace in imperative mode # Currently, we don't support inplace in imperative mode
return self._helper.append_activation( return self._helper.append_activation(batch_norm_out)
batch_norm_out, force_no_inplace=True)
...@@ -419,7 +419,7 @@ class LayerHelper(object): ...@@ -419,7 +419,7 @@ class LayerHelper(object):
attrs={'axis': dim_start}) attrs={'axis': dim_start})
return tmp return tmp
def append_activation(self, input_var, force_no_inplace=False): def append_activation(self, input_var):
act = self.kwargs.get('act', None) act = self.kwargs.get('act', None)
if act is None: if act is None:
return input_var return input_var
...@@ -436,7 +436,7 @@ class LayerHelper(object): ...@@ -436,7 +436,7 @@ class LayerHelper(object):
tmp = input_var tmp = input_var
# NOTE(dzhwinter): some activation support inplace compution. # NOTE(dzhwinter): some activation support inplace compution.
# NOTE(minqiyang): currently, we don't support inplace in imperative mode # NOTE(minqiyang): currently, we don't support inplace in imperative mode
if not force_no_inplace and core.IsInplace(act_type): if not imperative_base.enabled() and core.IsInplace(act_type):
tmp = input_var tmp = input_var
else: else:
tmp = self.create_variable_for_type_inference(dtype=input_var.dtype) tmp = self.create_variable_for_type_inference(dtype=input_var.dtype)
......
...@@ -388,7 +388,6 @@ class Optimizer(object): ...@@ -388,7 +388,6 @@ class Optimizer(object):
params_grads = [] params_grads = []
for param in parameters: for param in parameters:
if param.stop_gradient: if param.stop_gradient:
print("parameter:", param.name, "stop gradient, skip it")
continue continue
# create gradient variable # create gradient variable
grad_var = Variable( grad_var = Variable(
......
...@@ -68,7 +68,7 @@ class MLP(fluid.imperative.Layer): ...@@ -68,7 +68,7 @@ class MLP(fluid.imperative.Layer):
class TestImperative(unittest.TestCase): class TestImperative(unittest.TestCase):
def test_layer(self): def test_layer(self):
with fluid.imperative.guard(device=None): with fluid.imperative.guard():
cl = core.Layer() cl = core.Layer()
cl.forward([]) cl.forward([])
l = fluid.imperative.Layer() l = fluid.imperative.Layer()
...@@ -76,7 +76,7 @@ class TestImperative(unittest.TestCase): ...@@ -76,7 +76,7 @@ class TestImperative(unittest.TestCase):
def test_pylayer_func_id(self): def test_pylayer_func_id(self):
with fluid.imperative.guard(device=None): with fluid.imperative.guard():
class PyLayer1(fluid.imperative.PyLayer): class PyLayer1(fluid.imperative.PyLayer):
def __init__(self): def __init__(self):
...@@ -116,7 +116,7 @@ class TestImperative(unittest.TestCase): ...@@ -116,7 +116,7 @@ class TestImperative(unittest.TestCase):
def test_pylayer(self): def test_pylayer(self):
np_inp = np.ones([2, 2], np.float32) np_inp = np.ones([2, 2], np.float32)
with fluid.imperative.guard(device=None): with fluid.imperative.guard():
my_py_layer = MyPyLayer() my_py_layer = MyPyLayer()
var_inp = fluid.imperative.base.to_variable(np_inp) var_inp = fluid.imperative.base.to_variable(np_inp)
outs = my_py_layer(var_inp) outs = my_py_layer(var_inp)
...@@ -133,7 +133,8 @@ class TestImperative(unittest.TestCase): ...@@ -133,7 +133,8 @@ class TestImperative(unittest.TestCase):
x = fluid.layers.reduce_sum(fluid.layers.tanh(x1)) x = fluid.layers.reduce_sum(fluid.layers.tanh(x1))
param_grads = fluid.backward.append_backward( param_grads = fluid.backward.append_backward(
x, parameter_list=[x1.name])[0] x, parameter_list=[x1.name])[0]
exe = fluid.Executor(fluid.CPUPlace()) exe = fluid.Executor(fluid.CPUPlace(
) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
static_out, static_grad = exe.run( static_out, static_grad = exe.run(
feed={inp.name: np_inp}, feed={inp.name: np_inp},
...@@ -144,7 +145,7 @@ class TestImperative(unittest.TestCase): ...@@ -144,7 +145,7 @@ class TestImperative(unittest.TestCase):
def test_layer_in_out(self): def test_layer_in_out(self):
np_inp = np.array([1.0, 2.0, -1.0], dtype=np.float32) np_inp = np.array([1.0, 2.0, -1.0], dtype=np.float32)
with fluid.imperative.guard(device=None): with fluid.imperative.guard():
var_inp = fluid.imperative.base.to_variable(np_inp) var_inp = fluid.imperative.base.to_variable(np_inp)
l = MyLayer() l = MyLayer()
x = l(var_inp)[0] x = l(var_inp)[0]
...@@ -160,7 +161,8 @@ class TestImperative(unittest.TestCase): ...@@ -160,7 +161,8 @@ class TestImperative(unittest.TestCase):
x = l(inp)[0] x = l(inp)[0]
param_grads = fluid.backward.append_backward( param_grads = fluid.backward.append_backward(
x, parameter_list=[l._x_for_debug.name])[0] x, parameter_list=[l._x_for_debug.name])[0]
exe = fluid.Executor(fluid.CPUPlace()) exe = fluid.Executor(fluid.CPUPlace(
) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
static_out, static_grad = exe.run( static_out, static_grad = exe.run(
feed={inp.name: np_inp}, feed={inp.name: np_inp},
...@@ -171,7 +173,7 @@ class TestImperative(unittest.TestCase): ...@@ -171,7 +173,7 @@ class TestImperative(unittest.TestCase):
def test_mlp(self): def test_mlp(self):
np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32) np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
with fluid.imperative.guard(device=None): with fluid.imperative.guard():
var_inp = fluid.imperative.base.to_variable(np_inp) var_inp = fluid.imperative.base.to_variable(np_inp)
mlp = MLP() mlp = MLP()
out = mlp(var_inp) out = mlp(var_inp)
...@@ -186,7 +188,8 @@ class TestImperative(unittest.TestCase): ...@@ -186,7 +188,8 @@ class TestImperative(unittest.TestCase):
out = mlp(inp) out = mlp(inp)
param_grads = fluid.backward.append_backward( param_grads = fluid.backward.append_backward(
out, parameter_list=[mlp._fc1._w.name])[0] out, parameter_list=[mlp._fc1._w.name])[0]
exe = fluid.Executor(fluid.CPUPlace()) exe = fluid.Executor(fluid.CPUPlace(
) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
exe.run(fluid.default_startup_program()) exe.run(fluid.default_startup_program())
static_out, static_grad = exe.run( static_out, static_grad = exe.run(
......
...@@ -20,6 +20,7 @@ import sys ...@@ -20,6 +20,7 @@ import sys
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.optimizer import SGDOptimizer from paddle.fluid.optimizer import SGDOptimizer
from paddle.fluid.imperative.nn import Conv2D, Pool2D, FC from paddle.fluid.imperative.nn import Conv2D, Pool2D, FC
from test_imperative_base import new_program_scope from test_imperative_base import new_program_scope
...@@ -58,7 +59,7 @@ class Generator(fluid.imperative.Layer): ...@@ -58,7 +59,7 @@ class Generator(fluid.imperative.Layer):
class TestImperativeMnist(unittest.TestCase): class TestImperativeMnist(unittest.TestCase):
def test_mnist_cpu_float32(self): def test_gan_float32(self):
seed = 90 seed = 90
startup = fluid.Program() startup = fluid.Program()
...@@ -115,7 +116,8 @@ class TestImperativeMnist(unittest.TestCase): ...@@ -115,7 +116,8 @@ class TestImperativeMnist(unittest.TestCase):
sgd = SGDOptimizer(learning_rate=1e-3) sgd = SGDOptimizer(learning_rate=1e-3)
sgd.minimize(g_loss) sgd.minimize(g_loss)
exe = fluid.Executor(fluid.CPUPlace()) exe = fluid.Executor(fluid.CPUPlace() if not core.is_compiled_with_cuda(
) else fluid.CUDAPlace(0))
static_params = dict() static_params = dict()
with fluid.scope_guard(scope): with fluid.scope_guard(scope):
img = np.ones([2, 1], np.float32) img = np.ones([2, 1], np.float32)
...@@ -135,7 +137,7 @@ class TestImperativeMnist(unittest.TestCase): ...@@ -135,7 +137,7 @@ class TestImperativeMnist(unittest.TestCase):
scope.find_var(param.name).get_tensor()) scope.find_var(param.name).get_tensor())
dy_params = dict() dy_params = dict()
with fluid.imperative.guard(place=fluid.CPUPlace()): with fluid.imperative.guard():
fluid.default_startup_program().random_seed = seed fluid.default_startup_program().random_seed = seed
fluid.default_main_program().random_seed = seed fluid.default_main_program().random_seed = seed
......
...@@ -101,7 +101,7 @@ class TestImperativeMnist(unittest.TestCase): ...@@ -101,7 +101,7 @@ class TestImperativeMnist(unittest.TestCase):
def test_mnist_cpu_float32(self): def test_mnist_cpu_float32(self):
seed = 90 seed = 90
with fluid.imperative.guard(place=fuild.CPUPlace()): with fluid.imperative.guard():
fluid.default_startup_program().random_seed = seed fluid.default_startup_program().random_seed = seed
fluid.default_main_program().random_seed = seed fluid.default_main_program().random_seed = seed
...@@ -145,7 +145,8 @@ class TestImperativeMnist(unittest.TestCase): ...@@ -145,7 +145,8 @@ class TestImperativeMnist(unittest.TestCase):
fluid.default_startup_program().random_seed = seed fluid.default_startup_program().random_seed = seed
fluid.default_main_program().random_seed = seed fluid.default_main_program().random_seed = seed
exe = fluid.Executor(fluid.CPUPlace()) exe = fluid.Executor(fluid.CPUPlace(
) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
mnist = MNIST() mnist = MNIST()
sgd = SGDOptimizer(learning_rate=1e-3) sgd = SGDOptimizer(learning_rate=1e-3)
......
...@@ -143,7 +143,7 @@ class BottleneckBlock(fluid.imperative.Layer): ...@@ -143,7 +143,7 @@ class BottleneckBlock(fluid.imperative.Layer):
y = fluid.layers.elementwise_add(x=short, y=conv2) y = fluid.layers.elementwise_add(x=short, y=conv2)
layer_helper = LayerHelper('elementwise_add_activation', act='relu') layer_helper = LayerHelper('elementwise_add_activation', act='relu')
return layer_helper.append_activation(y, force_no_inplace=True) return layer_helper.append_activation(y)
class ResNet(fluid.imperative.Layer): class ResNet(fluid.imperative.Layer):
...@@ -204,12 +204,9 @@ class ResNet(fluid.imperative.Layer): ...@@ -204,12 +204,9 @@ class ResNet(fluid.imperative.Layer):
class TestImperativeResnet(unittest.TestCase): class TestImperativeResnet(unittest.TestCase):
def test_resnet_gpu_float32(self): def test_resnet_float32(self):
seed = 90 seed = 90
if not core.is_compiled_with_cuda():
return
batch_size = train_parameters["batch_size"] batch_size = train_parameters["batch_size"]
batch_num = 1 batch_num = 1
with fluid.imperative.guard(): with fluid.imperative.guard():
...@@ -277,168 +274,8 @@ class TestImperativeResnet(unittest.TestCase): ...@@ -277,168 +274,8 @@ class TestImperativeResnet(unittest.TestCase):
fluid.default_startup_program().random_seed = seed fluid.default_startup_program().random_seed = seed
fluid.default_main_program().random_seed = seed fluid.default_main_program().random_seed = seed
exe = fluid.Executor(fluid.CUDAPlace(0)) exe = fluid.Executor(fluid.CPUPlace(
) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
resnet = ResNet()
optimizer = optimizer_setting(train_parameters)
np.random.seed(seed)
import random
random.seed = seed
train_reader = paddle.batch(
paddle.dataset.flowers.train(use_xmap=False),
batch_size=batch_size)
img = fluid.layers.data(
name='pixel', shape=[3, 224, 224], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
out = resnet(img)
loss = fluid.layers.cross_entropy(input=out, label=label)
avg_loss = fluid.layers.mean(x=loss)
optimizer.minimize(avg_loss)
# initialize params and fetch them
static_param_init_value = {}
static_param_name_list = []
static_grad_name_list = []
for param in fluid.default_startup_program().global_block(
).all_parameters():
static_param_name_list.append(param.name)
for param in fluid.default_main_program().global_block(
).all_parameters():
if not param.stop_gradient:
static_grad_name_list.append(param.name +
core.grad_var_suffix())
out = exe.run(fluid.default_startup_program(),
fetch_list=static_param_name_list)
for i in range(len(static_param_name_list)):
static_param_init_value[static_param_name_list[i]] = out[i]
for batch_id, data in enumerate(train_reader()):
if batch_id >= batch_num:
break
static_x_data = np.array(
[x[0].reshape(3, 224, 224) for x in data]).astype('float32')
y_data = np.array([x[1] for x in data]).astype('int64').reshape(
[batch_size, 1])
fetch_list = [avg_loss.name]
fetch_list.extend(static_param_name_list)
fetch_list.extend(static_grad_name_list)
out = exe.run(fluid.default_main_program(),
feed={"pixel": static_x_data,
"label": y_data},
fetch_list=fetch_list)
static_param_value = {}
static_grad_value = {}
static_out = out[0]
param_start_pos = 1
grad_start_pos = len(static_param_name_list) + param_start_pos
for i in range(param_start_pos,
len(static_param_name_list) + param_start_pos):
static_param_value[static_param_name_list[
i - param_start_pos]] = out[i]
for i in range(grad_start_pos,
len(static_grad_name_list) + grad_start_pos):
static_grad_value[static_grad_name_list[
i - grad_start_pos]] = out[i]
self.assertTrue(np.allclose(static_out, dy_out))
self.assertEqual(len(dy_param_init_value), len(static_param_init_value))
for key, value in six.iteritems(static_param_init_value):
self.assertTrue(np.allclose(value, dy_param_init_value[key]))
self.assertTrue(np.isfinite(value.all()))
self.assertFalse(np.isnan(value.any()))
self.assertEqual(len(dy_grad_value), len(static_grad_value))
for key, value in six.iteritems(static_grad_value):
# TODO(minqiyang): find a way to align the gradient
self.assertTrue(np.allclose(value, dy_grad_value[key]))
self.assertTrue(np.isfinite(value.all()))
self.assertFalse(np.isnan(value.any()))
self.assertEqual(len(dy_param_value), len(static_param_value))
for key, value in six.iteritems(static_param_value):
self.assertTrue(np.allclose(value, dy_param_value[key]))
self.assertTrue(np.isfinite(value.all()))
self.assertFalse(np.isnan(value.any()))
def test_resnet_cpu_float32(self):
seed = 90
batch_size = train_parameters["batch_size"]
batch_num = 1
with fluid.imperative.guard(place=fluid.CPUPlace()):
fluid.default_startup_program().random_seed = seed
fluid.default_main_program().random_seed = seed
resnet = ResNet()
optimizer = optimizer_setting(train_parameters)
np.random.seed(seed)
import random
random.seed = seed
train_reader = paddle.batch(
paddle.dataset.flowers.train(use_xmap=False),
batch_size=batch_size)
dy_param_init_value = {}
for param in fluid.default_main_program().global_block(
).all_parameters():
dy_param_init_value[param.name] = param._numpy()
for batch_id, data in enumerate(train_reader()):
if batch_id >= batch_num:
break
dy_x_data = np.array(
[x[0].reshape(3, 224, 224) for x in data]).astype('float32')
y_data = np.array([x[1] for x in data]).astype('int64').reshape(
batch_size, 1)
img = to_variable(dy_x_data)
label = to_variable(y_data)
label._stop_gradient = True
out = resnet(img)
loss = fluid.layers.cross_entropy(input=out, label=label)
avg_loss = fluid.layers.mean(x=loss)
dy_out = avg_loss._numpy()
if batch_id == 0:
for param in fluid.default_main_program().global_block(
).all_parameters():
if param.name not in dy_param_init_value:
dy_param_init_value[param.name] = param._numpy()
avg_loss._backward()
dy_grad_value = {}
for param in fluid.default_main_program().global_block(
).all_parameters():
if not param.stop_gradient:
np_array = np.array(param._ivar._grad_ivar().value()
.get_tensor())
dy_grad_value[param.name + core.grad_var_suffix(
)] = np_array
optimizer.minimize(avg_loss)
dy_param_value = {}
for param in fluid.default_main_program().global_block(
).all_parameters():
dy_param_value[param.name] = param._numpy()
with new_program_scope():
fluid.default_startup_program().random_seed = seed
fluid.default_main_program().random_seed = seed
exe = fluid.Executor(fluid.CPUPlace())
resnet = ResNet() resnet = ResNet()
optimizer = optimizer_setting(train_parameters) optimizer = optimizer_setting(train_parameters)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册