Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
c300b1ba
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c300b1ba
编写于
3月 27, 2019
作者:
W
wopeizl
提交者:
GitHub
3月 27, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Tensor index (#16223)
* extend the slice function for python test=develop
上级
0d9d25d4
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
588 addition
and
1 deletion
+588
-1
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+9
-1
paddle/fluid/pybind/tensor_py.h
paddle/fluid/pybind/tensor_py.h
+253
-0
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+177
-0
python/paddle/fluid/tests/unittests/test_tensor.py
python/paddle/fluid/tests/unittests/test_tensor.py
+53
-0
python/paddle/fluid/tests/unittests/test_variable.py
python/paddle/fluid/tests/unittests/test_variable.py
+96
-0
未找到文件。
paddle/fluid/pybind/pybind.cc
浏览文件 @
c300b1ba
...
...
@@ -347,7 +347,8 @@ PYBIND11_MODULE(core, m) {
.
def
(
"_set_double_element"
,
TensorSetElement
<
double
>
)
.
def
(
"_get_double_element"
,
TensorGetElement
<
double
>
)
.
def
(
"_place"
,
[](
Tensor
&
self
)
{
return
self
.
place
();
})
.
def
(
"_dtype"
,
[](
Tensor
&
self
)
{
return
self
.
type
();
});
.
def
(
"_dtype"
,
[](
Tensor
&
self
)
{
return
self
.
type
();
})
.
def
(
"__getitem__"
,
PySliceTensor
,
py
::
return_value_policy
::
reference
);
py
::
class_
<
LoDTensor
,
Tensor
>
(
m
,
"LoDTensor"
,
R"DOC(
LoDTensor is a Tensor with optional LoD information.
...
...
@@ -499,6 +500,13 @@ PYBIND11_MODULE(core, m) {
Returns:
out (bool): whether the lod is valid.
)DOC"
)
.
def
(
"__getitem__"
,
PySliceTensor
,
py
::
return_value_policy
::
reference
,
R"DOC(
Slice the original Tensor, and remove the LoD information.
Returns:
out (Tensor): new Tensor(NOT LoDTensor).
)DOC"
);
py
::
class_
<
SelectedRows
>
(
m
,
"SelectedRows"
)
...
...
paddle/fluid/pybind/tensor_py.h
浏览文件 @
c300b1ba
...
...
@@ -14,16 +14,22 @@ limitations under the License. */
#pragma once
#include <Python.h>
#include <algorithm>
#include <memory>
#include <string>
#include <tuple>
#include <vector>
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/operators/math/concat_and_split.h"
#include "paddle/fluid/operators/strided_memcpy.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/float16.h"
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
namespace
py
=
pybind11
;
namespace
paddle
{
namespace
pybind
{
namespace
details
{
...
...
@@ -191,6 +197,253 @@ inline void PyCPUTensorSetFromArray(
std
::
memcpy
(
dst
,
array
.
data
(),
sizeof
(
uint16_t
)
*
array
.
size
());
}
template
<
typename
T
,
size_t
D
>
void
_sliceCompute
(
const
framework
::
Tensor
*
in
,
framework
::
Tensor
*
out
,
const
platform
::
CPUDeviceContext
&
ctx
,
const
std
::
vector
<
int
>
&
axes
,
const
std
::
vector
<
int
>
&
starts
)
{
auto
&
eigen_place
=
*
ctx
.
eigen_device
();
auto
place
=
in
->
place
();
auto
out_dims
=
out
->
dims
();
auto
in_dims
=
in
->
dims
();
auto
offsets
=
Eigen
::
array
<
int
,
D
>
();
auto
extents
=
Eigen
::
array
<
int
,
D
>
();
for
(
size_t
i
=
0
;
i
<
D
;
++
i
)
{
offsets
[
i
]
=
0
;
extents
[
i
]
=
out_dims
[
i
];
}
int
start
;
for
(
size_t
i
=
0
;
i
<
axes
.
size
();
++
i
)
{
start
=
starts
[
i
];
if
(
start
<
0
)
{
start
=
(
start
+
in_dims
[
axes
[
i
]]);
}
start
=
std
::
max
(
start
,
0
);
offsets
[
axes
[
i
]]
=
start
;
}
auto
in_t
=
framework
::
EigenTensor
<
T
,
D
,
Eigen
::
RowMajor
,
Eigen
::
DenseIndex
>::
From
(
*
in
);
auto
out_t
=
framework
::
EigenTensor
<
T
,
D
,
Eigen
::
RowMajor
,
Eigen
::
DenseIndex
>::
From
(
*
out
);
out_t
.
device
(
eigen_place
)
=
in_t
.
slice
(
offsets
,
extents
);
}
template
<
typename
T
>
void
_concatCompute
(
const
std
::
vector
<
paddle
::
framework
::
Tensor
>
&
ins
,
paddle
::
framework
::
Tensor
*
out
,
const
platform
::
CPUDeviceContext
&
ctx
,
int64_t
axis
)
{
if
(
axis
==
0
&&
ins
.
size
()
<
10
)
{
size_t
output_offset
=
0
;
for
(
auto
&
in
:
ins
)
{
auto
in_stride
=
framework
::
stride_numel
(
in
.
dims
());
auto
out_stride
=
framework
::
stride_numel
(
out
->
dims
());
paddle
::
operators
::
StridedNumelCopyWithAxis
<
T
>
(
ctx
,
axis
,
out
->
data
<
T
>
()
+
output_offset
,
out_stride
,
in
.
data
<
T
>
(),
in_stride
,
in_stride
[
axis
]);
output_offset
+=
in_stride
[
axis
];
}
}
else
{
paddle
::
operators
::
math
::
ConcatFunctor
<
platform
::
CPUDeviceContext
,
T
>
concat_functor
;
concat_functor
(
ctx
,
ins
,
static_cast
<
int
>
(
axis
),
out
);
}
}
void
_getSliceinfo
(
const
framework
::
Tensor
&
self
,
py
::
object
obj
,
const
int64_t
dim
,
int64_t
*
pstart
,
int64_t
*
pstop
,
int64_t
*
pstep
,
int64_t
*
pslicelength
)
{
auto
&
start
=
*
pstart
;
auto
&
stop
=
*
pstop
;
auto
&
step
=
*
pstep
;
auto
&
slicelength
=
*
pslicelength
;
const
framework
::
DDim
&
srcDDim
=
self
.
dims
();
if
(
dim
<
0
||
dim
>=
srcDDim
.
size
())
{
throw
py
::
index_error
();
}
if
(
py
::
isinstance
<
py
::
slice
>
(
obj
))
{
size_t
lstart
,
lstop
,
lstep
,
lslicelength
;
py
::
slice
s
=
static_cast
<
py
::
slice
>
(
obj
);
if
(
!
s
.
compute
(
srcDDim
[
dim
],
&
lstart
,
&
lstop
,
&
lstep
,
&
lslicelength
))
{
throw
py
::
index_error
();
}
start
=
static_cast
<
int64_t
>
(
lstart
);
stop
=
static_cast
<
int64_t
>
(
lstop
);
step
=
static_cast
<
int64_t
>
(
lstep
);
slicelength
=
static_cast
<
int64_t
>
(
lslicelength
);
}
else
if
(
py
::
isinstance
<
py
::
int_
>
(
obj
))
{
start
=
static_cast
<
int64_t
>
(
static_cast
<
py
::
int_
>
(
obj
));
if
(
std
::
abs
(
start
)
>=
srcDDim
[
dim
])
{
throw
py
::
index_error
();
}
start
=
(
start
>=
0
)
?
start
:
srcDDim
[
dim
]
-
start
;
stop
=
start
+
1
;
step
=
1
;
slicelength
=
1
;
}
else
{
throw
py
::
index_error
();
}
}
inline
framework
::
Tensor
*
_getTensor
(
const
framework
::
Tensor
&
self
,
const
framework
::
DDim
&
ddim
)
{
framework
::
Tensor
*
output
=
new
framework
::
Tensor
();
output
->
Resize
(
ddim
);
auto
place
=
self
.
place
();
if
(
platform
::
is_cpu_place
(
place
))
{
output
->
mutable_data
(
boost
::
get
<
platform
::
CPUPlace
>
(
place
),
self
.
type
());
#ifdef PADDLE_WITH_CUDA
}
else
{
if
(
platform
::
is_cuda_pinned_place
(
place
))
{
output
->
mutable_data
(
boost
::
get
<
platform
::
CUDAPinnedPlace
>
(
place
),
self
.
type
());
}
else
if
((
platform
::
is_gpu_place
(
place
)))
{
output
->
mutable_data
(
boost
::
get
<
platform
::
CUDAPlace
>
(
place
),
self
.
type
());
}
#endif
}
return
output
;
}
template
<
typename
T
>
void
_sliceDapper
(
const
framework
::
Tensor
*
in
,
framework
::
Tensor
*
out
,
const
platform
::
CPUDeviceContext
&
ctx
,
const
std
::
vector
<
int
>
&
axes
,
const
std
::
vector
<
int
>
&
starts
,
int
size
)
{
switch
(
size
)
{
case
1
:
_sliceCompute
<
T
,
1
>
(
in
,
out
,
ctx
,
axes
,
starts
);
break
;
case
2
:
_sliceCompute
<
T
,
2
>
(
in
,
out
,
ctx
,
axes
,
starts
);
break
;
case
3
:
_sliceCompute
<
T
,
3
>
(
in
,
out
,
ctx
,
axes
,
starts
);
break
;
case
4
:
_sliceCompute
<
T
,
4
>
(
in
,
out
,
ctx
,
axes
,
starts
);
break
;
case
5
:
_sliceCompute
<
T
,
5
>
(
in
,
out
,
ctx
,
axes
,
starts
);
break
;
case
6
:
_sliceCompute
<
T
,
6
>
(
in
,
out
,
ctx
,
axes
,
starts
);
break
;
case
7
:
_sliceCompute
<
T
,
7
>
(
in
,
out
,
ctx
,
axes
,
starts
);
break
;
case
8
:
_sliceCompute
<
T
,
8
>
(
in
,
out
,
ctx
,
axes
,
starts
);
break
;
case
9
:
_sliceCompute
<
T
,
9
>
(
in
,
out
,
ctx
,
axes
,
starts
);
break
;
default:
PADDLE_THROW
(
"dim size not exepected, current is %d"
,
size
);
break
;
}
}
template
<
typename
T
>
inline
framework
::
Tensor
*
_sliceWrapper
(
const
framework
::
Tensor
&
self
,
const
platform
::
CPUDeviceContext
&
ctx
,
py
::
object
obj
,
int
dim
,
int64_t
start
,
int64_t
slicelength
)
{
framework
::
DDim
dstDDim
=
self
.
dims
();
dstDDim
[
dim
]
=
static_cast
<
int64_t
>
(
slicelength
);
std
::
vector
<
int
>
axes
({
dim
});
std
::
vector
<
int
>
starts
({
static_cast
<
int
>
(
start
)});
framework
::
Tensor
*
output
=
_getTensor
(
self
,
dstDDim
);
_sliceDapper
<
T
>
(
&
self
,
output
,
ctx
,
axes
,
starts
,
dstDDim
.
size
());
return
output
;
}
template
<
typename
T
>
inline
framework
::
Tensor
*
_sliceAndConcat
(
const
framework
::
Tensor
&
self
,
py
::
object
obj
,
int
dim
)
{
platform
::
CPUDeviceContext
ctx
;
int64_t
start
,
stop
,
step
,
slicelength
;
_getSliceinfo
(
self
,
obj
,
dim
,
&
start
,
&
stop
,
&
step
,
&
slicelength
);
if
(
step
==
1
||
slicelength
==
1
)
{
return
_sliceWrapper
<
T
>
(
self
,
ctx
,
obj
,
dim
,
start
,
slicelength
);
}
else
{
std
::
vector
<
framework
::
Tensor
>
ins
;
for
(
auto
i
=
0
;
i
<
slicelength
;
++
i
,
start
+=
step
)
{
ins
.
emplace_back
(
*
_sliceWrapper
<
T
>
(
self
,
ctx
,
obj
,
dim
,
start
,
1
));
}
// do the concat operation
framework
::
DDim
dstDDim
=
self
.
dims
();
dstDDim
[
dim
]
=
static_cast
<
int64_t
>
(
slicelength
);
framework
::
Tensor
*
output1
=
_getTensor
(
self
,
dstDDim
);
_concatCompute
<
T
>
(
ins
,
output1
,
ctx
,
dim
);
return
output1
;
}
}
inline
framework
::
Tensor
*
_sliceTensor
(
const
framework
::
Tensor
&
self
,
py
::
object
obj
,
int
dim
)
{
auto
src_type
=
self
.
type
();
switch
(
src_type
)
{
case
framework
::
proto
::
VarType
::
FP16
:
return
_sliceAndConcat
<
paddle
::
platform
::
float16
>
(
self
,
obj
,
dim
);
case
framework
::
proto
::
VarType
::
FP32
:
return
_sliceAndConcat
<
float
>
(
self
,
obj
,
dim
);
case
framework
::
proto
::
VarType
::
FP64
:
return
_sliceAndConcat
<
double
>
(
self
,
obj
,
dim
);
case
framework
::
proto
::
VarType
::
INT32
:
return
_sliceAndConcat
<
int
>
(
self
,
obj
,
dim
);
case
framework
::
proto
::
VarType
::
INT64
:
return
_sliceAndConcat
<
int64_t
>
(
self
,
obj
,
dim
);
case
framework
::
proto
::
VarType
::
BOOL
:
return
_sliceAndConcat
<
bool
>
(
self
,
obj
,
dim
);
case
framework
::
proto
::
VarType
::
INT16
:
return
_sliceAndConcat
<
bool
>
(
self
,
obj
,
dim
);
case
framework
::
proto
::
VarType
::
UINT8
:
return
_sliceAndConcat
<
bool
>
(
self
,
obj
,
dim
);
default:
PADDLE_THROW
(
"Not support type %d"
,
src_type
);
}
}
inline
framework
::
Tensor
*
_pySliceTensor
(
const
framework
::
Tensor
&
self
,
py
::
object
obj
)
{
if
(
py
::
isinstance
<
py
::
tuple
>
(
obj
))
{
py
::
list
l
=
static_cast
<
py
::
list
>
(
obj
);
std
::
unique_ptr
<
framework
::
Tensor
>
target
;
framework
::
Tensor
*
src
=
const_cast
<
framework
::
Tensor
*>
(
&
self
);
for
(
auto
i
=
0
;
i
<
static_cast
<
int
>
(
l
.
size
());
++
i
)
{
src
=
_sliceTensor
(
*
src
,
l
[
i
],
i
);
if
(
i
+
1
==
static_cast
<
int
>
(
l
.
size
()))
{
return
src
;
}
else
{
target
.
reset
(
src
);
}
}
return
nullptr
;
}
else
{
return
_sliceTensor
(
self
,
obj
,
0
);
}
}
inline
framework
::
Tensor
*
PySliceTensor
(
const
framework
::
Tensor
&
self
,
py
::
object
obj
)
{
if
(
platform
::
is_gpu_place
(
self
.
place
()))
{
std
::
unique_ptr
<
framework
::
Tensor
>
holder
;
framework
::
Tensor
src
;
framework
::
TensorCopySync
(
self
,
platform
::
CPUPlace
(),
&
src
);
framework
::
Tensor
*
output
=
_pySliceTensor
(
src
,
obj
);
holder
.
reset
(
output
);
framework
::
Tensor
*
dst
=
_getTensor
(
*
output
,
output
->
dims
());
framework
::
TensorCopySync
(
*
output
,
self
.
place
(),
dst
);
return
dst
;
}
else
{
return
_pySliceTensor
(
self
,
obj
);
}
}
#ifdef PADDLE_WITH_CUDA
template
<
typename
T
>
void
PyCUDATensorSetFromArray
(
...
...
python/paddle/fluid/framework.py
浏览文件 @
c300b1ba
...
...
@@ -627,6 +627,183 @@ class Variable(object):
"""
self
.
error_clip
=
error_clip
def
_slice_indices
(
self
,
slice
,
length
):
"""
Reference implementation for the slice.indices method.
"""
# Compute step and length as integers.
step
=
1
if
slice
.
step
is
None
else
slice
.
step
# Raise ValueError for negative length or zero step.
if
length
<
0
:
raise
ValueError
(
"length should not be negative"
)
if
step
==
0
:
raise
ValueError
(
"slice step cannot be zero"
)
# Find lower and upper bounds for start and stop.
lower
=
-
1
if
step
<
0
else
0
upper
=
length
-
1
if
step
<
0
else
length
# Compute start.
if
slice
.
start
is
None
:
start
=
upper
if
step
<
0
else
lower
else
:
start
=
slice
.
start
start
=
max
(
start
+
length
,
lower
)
if
start
<
0
else
min
(
start
,
upper
)
# Compute stop.
if
slice
.
stop
is
None
:
stop
=
lower
if
step
<
0
else
upper
else
:
stop
=
slice
.
stop
stop
=
max
(
stop
+
length
,
lower
)
if
stop
<
0
else
min
(
stop
,
upper
)
return
start
,
stop
,
step
def
_detectEllipsis
(
self
,
item
):
has_ellipsis
=
False
start
=
0
end
=
len
(
self
.
shape
)
for
index
,
o
in
enumerate
(
item
):
if
o
is
Ellipsis
:
if
has_ellipsis
:
raise
ValueError
(
"Index can have one ellipsis only."
)
has_ellipsis
=
True
start
=
index
else
:
if
has_ellipsis
:
end
=
index
return
has_ellipsis
,
start
,
end
def
_reconstructSliceinfo
(
self
,
item
):
has_ellipsis
,
start
,
end
=
self
.
_detectEllipsis
(
item
)
if
has_ellipsis
:
newitem
=
[]
for
i
in
range
(
start
):
newitem
.
append
(
item
[
i
])
for
i
in
range
(
start
,
end
):
newitem
.
append
(
slice
(
None
,
None
,
None
))
for
i
in
range
(
end
,
len
(
item
)):
newitem
.
append
(
item
[
i
])
return
newitem
else
:
return
None
def
_detectContinuesSlice
(
self
,
item
):
starts
=
[]
ends
=
[]
for
index
,
o
in
enumerate
(
item
):
if
isinstance
(
o
,
int
):
start
=
int
(
o
)
if
(
index
>
0
and
index
>=
self
.
shape
[
index
])
\
or
(
index
<
0
and
(
index
+
self
.
shape
[
index
])
<
0
):
raise
IndexError
(
"invalid index"
)
start
=
max
(
start
+
self
.
shape
[
index
],
0
)
if
start
<
0
else
min
(
start
,
self
.
shape
[
index
])
starts
.
append
(
start
)
ends
.
append
(
start
+
1
)
elif
isinstance
(
o
,
slice
):
start
,
stop
,
step
=
self
.
_slice_indices
(
o
,
self
.
shape
[
index
])
if
step
==
1
or
step
==
-
1
:
starts
.
append
(
start
)
ends
.
append
(
stop
)
else
:
return
False
,
None
else
:
raise
IndexError
(
"Valid index accept int or slice or ellipsis"
)
return
True
,
[
starts
,
ends
]
def
_cloneVar
(
self
,
copy
=
False
):
if
not
copy
:
return
self
.
block
.
create_var
(
name
=
unique_name
.
generate
(
"."
.
join
(
self
.
name
)),
dtype
=
self
.
dtype
,
persistable
=
self
.
persistable
,
stop_gradient
=
self
.
_stop_gradient
,
)
else
:
return
self
def
_sliceVar
(
self
,
axes
,
starts
,
ends
):
new_var
=
self
.
_cloneVar
()
self
.
block
.
append_op
(
type
=
"slice"
,
inputs
=
{
'Input'
:
[
self
]},
outputs
=
{
'Out'
:
[
new_var
]},
attrs
=
{
'axes'
:
axes
,
'starts'
:
starts
,
'ends'
:
ends
})
return
new_var
def
_concatVar
(
self
,
inputs
,
axis
):
new_var
=
self
.
_cloneVar
()
self
.
block
.
append_op
(
type
=
"concat"
,
inputs
=
{
'X'
:
inputs
},
outputs
=
{
'Out'
:
[
new_var
]},
attrs
=
{
'axis'
:
axis
,
})
return
new_var
def
_sliceAndConcatVar
(
self
,
item
,
axis
):
if
isinstance
(
item
,
slice
):
if
self
.
shape
[
axis
]
<
0
:
return
self
.
_cloneVar
(
True
)
start
,
stop
,
step
=
self
.
_slice_indices
(
item
,
self
.
shape
[
axis
])
if
step
==
1
:
return
self
.
_sliceVar
([
axis
],
[
start
],
[
stop
])
else
:
vars
=
[]
if
step
>
0
:
while
start
<
stop
:
vars
.
append
(
self
.
_sliceVar
([
axis
],
[
start
],
[
start
+
1
]))
start
+=
step
else
:
while
start
>
stop
:
vars
.
append
(
self
.
_sliceVar
([
axis
],
[
start
],
[
start
+
1
]))
start
+=
step
return
self
.
_concatVar
(
vars
,
axis
)
elif
isinstance
(
item
,
int
):
if
self
.
shape
[
axis
]
<
0
:
return
self
.
_cloneVar
(
True
)
index
=
int
(
item
)
if
(
index
>
0
and
index
>=
self
.
shape
[
axis
])
\
or
(
index
<
0
and
(
index
+
self
.
shape
[
axis
])
<
0
):
raise
IndexError
(
"invalid index"
)
return
self
.
_sliceVar
([
axis
],
[
index
],
[
index
+
1
])
else
:
raise
IndexError
(
"Valid index accept int or slice or tuple"
)
def
__getitem__
(
self
,
item
):
"""
Slice the variable.
Args:
item(int/slice/tuple) : the index.
Returns:
Sliced variable
"""
new_var
=
None
if
isinstance
(
item
,
tuple
):
if
len
(
item
)
>
len
(
self
.
shape
):
raise
IndexError
(
"Too many indexes"
)
newitem
=
self
.
_reconstructSliceinfo
(
item
)
or
item
check
,
info
=
self
.
_detectContinuesSlice
(
newitem
)
if
check
:
starts
=
info
[
0
]
ends
=
info
[
1
]
axes
=
[
i
for
i
in
range
(
len
(
starts
))]
return
self
.
_sliceVar
(
axes
,
starts
,
ends
)
else
:
new_var
=
self
for
index
,
o
in
enumerate
(
newitem
):
new_var
=
new_var
.
_sliceAndConcatVar
(
o
,
index
)
else
:
new_var
=
self
.
_sliceAndConcatVar
(
item
,
0
)
return
new_var
def
get_all_op_protos
():
"""
...
...
python/paddle/fluid/tests/unittests/test_tensor.py
浏览文件 @
c300b1ba
...
...
@@ -14,6 +14,7 @@
from
__future__
import
print_function
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
import
unittest
import
numpy
...
...
@@ -183,6 +184,58 @@ class TestTensor(unittest.TestCase):
tensor_array
=
numpy
.
array
(
tensor
)
self
.
assertEqual
((
0
,
1
),
tensor_array
.
shape
)
def
run_sliece_tensor
(
self
,
place
):
tensor
=
fluid
.
Tensor
()
shape
=
[
3
,
3
,
3
]
tensor
.
_set_dims
(
shape
)
tensor_array
=
numpy
.
array
([[[
1
,
2
,
3
],
[
4
,
5
,
6
],
[
7
,
8
,
9
]],
[[
10
,
11
,
12
],
[
13
,
14
,
15
],
[
16
,
17
,
18
]],
[[
19
,
20
,
21
],
[
22
,
23
,
24
],
[
25
,
26
,
27
]]])
tensor
.
set
(
tensor_array
,
place
)
n1
=
tensor
[
1
]
t1
=
tensor_array
[
1
]
self
.
assertTrue
((
numpy
.
array
(
n1
)
==
numpy
.
array
(
t1
)).
all
())
n2
=
tensor
[
1
:]
t2
=
tensor_array
[
1
:]
self
.
assertTrue
((
numpy
.
array
(
n2
)
==
numpy
.
array
(
t2
)).
all
())
n3
=
tensor
[
0
:
2
:]
t3
=
tensor_array
[
0
:
2
:]
self
.
assertTrue
((
numpy
.
array
(
n3
)
==
numpy
.
array
(
t3
)).
all
())
n4
=
tensor
[
2
::
-
2
]
t4
=
tensor_array
[
2
::
-
2
]
self
.
assertTrue
((
numpy
.
array
(
n4
)
==
numpy
.
array
(
t4
)).
all
())
n5
=
tensor
[
2
::
-
2
][
0
]
t5
=
tensor_array
[
2
::
-
2
][
0
]
self
.
assertTrue
((
numpy
.
array
(
n5
)
==
numpy
.
array
(
t5
)).
all
())
n6
=
tensor
[
2
:
-
1
:
-
1
]
t6
=
tensor_array
[
2
:
-
1
:
-
1
]
self
.
assertTrue
((
numpy
.
array
(
n6
)
==
numpy
.
array
(
t6
)).
all
())
n7
=
tensor
[
0
:,
0
:]
t7
=
tensor_array
[
0
:,
0
:]
self
.
assertTrue
((
numpy
.
array
(
n7
)
==
numpy
.
array
(
t7
)).
all
())
n8
=
tensor
[
0
::
1
,
0
::
-
1
,
2
:]
t8
=
tensor_array
[
0
::
1
,
0
::
-
1
,
2
:]
self
.
assertTrue
((
numpy
.
array
(
n8
)
==
numpy
.
array
(
t8
)).
all
())
def
test_sliece_tensor
(
self
):
# run cpu first
place
=
core
.
CPUPlace
()
self
.
run_sliece_tensor
(
place
)
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
self
.
run_sliece_tensor
(
place
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_variable.py
浏览文件 @
c300b1ba
...
...
@@ -16,8 +16,10 @@ from __future__ import print_function
import
unittest
from
paddle.fluid.framework
import
default_main_program
,
Program
,
convert_np_dtype_to_dtype_
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
import
numpy
as
np
from
test_imperative_base
import
new_program_scope
class
TestVariable
(
unittest
.
TestCase
):
...
...
@@ -60,6 +62,100 @@ class TestVariable(unittest.TestCase):
name
=
'step_scopes'
,
type
=
core
.
VarDesc
.
VarType
.
STEP_SCOPES
)
self
.
assertEqual
(
core
.
VarDesc
.
VarType
.
STEP_SCOPES
,
var
.
type
)
def
_test_slice
(
self
):
b
=
default_main_program
().
current_block
()
w
=
b
.
create_var
(
dtype
=
"float64"
,
shape
=
[
784
,
100
,
100
],
lod_level
=
0
)
for
i
in
range
(
3
):
nw
=
w
[
i
]
self
.
assertEqual
((
1
,
100
,
100
),
nw
.
shape
)
nw
=
w
[:]
self
.
assertEqual
((
784
,
100
,
100
),
nw
.
shape
)
nw
=
w
[:,
:,
...]
self
.
assertEqual
((
784
,
100
,
100
),
nw
.
shape
)
nw
=
w
[::
2
,
::
2
,
:]
self
.
assertEqual
((
392
,
50
,
100
),
nw
.
shape
)
nw
=
w
[::
-
2
,
::
-
2
,
:]
self
.
assertEqual
((
392
,
50
,
100
),
nw
.
shape
)
self
.
assertEqual
(
0
,
nw
.
lod_level
)
place
=
fluid
.
CPUPlace
()
main
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main
):
exe
=
fluid
.
Executor
(
place
)
tensor_array
=
np
.
array
(
[[[
1
,
2
,
3
],
[
4
,
5
,
6
],
[
7
,
8
,
9
]],
[[
10
,
11
,
12
],
[
13
,
14
,
15
],
[
16
,
17
,
18
]],
[[
19
,
20
,
21
],
[
22
,
23
,
24
],
[
25
,
26
,
27
]]]).
astype
(
'float32'
)
var
=
fluid
.
layers
.
assign
(
tensor_array
)
var1
=
var
[
0
,
1
,
1
]
var2
=
var
[
1
:]
var3
=
var
[
0
:
1
]
var4
=
var
[...,
]
var5
=
var
[
2
::
-
2
]
var6
=
var
[
1
,
1
:,
1
:]
var7
=
var
[
1
,
...,
1
:]
var8
=
var
[
1
,
...]
local_out
=
exe
.
run
(
main
,
fetch_list
=
[
var
,
var1
,
var2
,
var3
,
var4
,
var5
,
var6
,
var7
,
var8
])
self
.
assertTrue
((
np
.
array
(
local_out
[
1
])
==
np
.
array
(
tensor_array
[
0
,
1
,
1
])).
all
())
self
.
assertTrue
((
np
.
array
(
local_out
[
2
])
==
np
.
array
(
tensor_array
[
1
:])).
all
())
self
.
assertTrue
((
np
.
array
(
local_out
[
3
])
==
np
.
array
(
tensor_array
[
0
:
1
])).
all
())
self
.
assertTrue
((
np
.
array
(
local_out
[
4
])
==
np
.
array
(
tensor_array
[...,
])).
all
())
self
.
assertTrue
((
np
.
array
(
local_out
[
5
])
==
np
.
array
(
tensor_array
[
2
::
-
2
])).
all
())
self
.
assertTrue
((
np
.
array
(
local_out
[
6
])
==
np
.
array
(
tensor_array
[
1
,
1
:,
1
:])).
all
())
self
.
assertTrue
((
np
.
array
(
local_out
[
7
])
==
np
.
array
(
tensor_array
[
1
,
...,
1
:])).
all
())
self
.
assertTrue
((
np
.
array
(
local_out
[
8
])
==
np
.
array
(
tensor_array
[
1
,
...])).
all
())
def
test_slice
(
self
):
self
.
_test_slice
()
class
TestVariableImperative
(
unittest
.
TestCase
):
def
_test_slice
(
self
):
b
=
default_main_program
().
current_block
()
w
=
b
.
create_var
(
dtype
=
"float64"
,
shape
=
[
784
,
100
,
100
],
lod_level
=
0
)
for
i
in
range
(
3
):
nw
=
w
[
i
]
self
.
assertEqual
([
1
,
100
,
100
],
nw
.
shape
)
nw
=
w
[:]
self
.
assertEqual
([
784
,
100
,
100
],
nw
.
shape
)
nw
=
w
[:,
:,
:]
self
.
assertEqual
([
784
,
100
,
100
],
nw
.
shape
)
nw
=
w
[::
2
,
::
2
,
:]
self
.
assertEqual
([
392
,
50
,
100
],
nw
.
shape
)
nw
=
w
[::
-
2
,
::
-
2
,
:]
self
.
assertEqual
([
392
,
50
,
100
],
nw
.
shape
)
nw
=
w
[
0
::
-
2
,
0
::
-
2
,
:]
self
.
assertEqual
([
1
,
1
,
100
],
nw
.
shape
)
def
test_slice
(
self
):
with
fluid
.
imperative
.
guard
():
self
.
_test_slice
()
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录