diff --git a/doc/api/v2/config/layer.rst b/doc/api/v2/config/layer.rst index 1329b77bb44f52c66a703740715b890c47234e72..c94627a72806fa2eca77c79da24f7f3ca18f0259 100644 --- a/doc/api/v2/config/layer.rst +++ b/doc/api/v2/config/layer.rst @@ -434,9 +434,9 @@ lambda_cost .. autoclass:: paddle.v2.layer.lambda_cost :noindex: -mse_cost +square_error_cost -------- -.. autoclass:: paddle.v2.layer.mse_cost +.. autoclass:: paddle.v2.layer.square_error_cost :noindex: rank_cost diff --git a/doc/getstarted/basic_usage/index_en.rst b/doc/getstarted/basic_usage/index_en.rst index 6775da20c2f51000f305b095d40abd27b8fa6c0e..2cc438ebbe0f97345d25354b93b4ebbd43502415 100644 --- a/doc/getstarted/basic_usage/index_en.rst +++ b/doc/getstarted/basic_usage/index_en.rst @@ -49,7 +49,7 @@ To recover this relationship between ``X`` and ``Y``, we use a neural network wi x = data_layer(name='x', size=1) y = data_layer(name='y', size=1) y_predict = fc_layer(input=x, param_attr=ParamAttr(name='w'), size=1, act=LinearActivation(), bias_attr=ParamAttr(name='b')) - cost = mse_cost(input=y_predict, label=y) + cost = square_error_cost(input=y_predict, label=y) outputs(cost) Some of the most fundamental usages of PaddlePaddle are demonstrated: diff --git a/doc/getstarted/concepts/src/train.py b/doc/getstarted/concepts/src/train.py index 7e604f23de38543a00f305d508af0791193f78ba..8aceb23406a476f08639cc6223cdf730b728a705 100644 --- a/doc/getstarted/concepts/src/train.py +++ b/doc/getstarted/concepts/src/train.py @@ -8,7 +8,7 @@ paddle.init(use_gpu=False) x = paddle.layer.data(name='x', type=paddle.data_type.dense_vector(2)) y_predict = paddle.layer.fc(input=x, size=1, act=paddle.activation.Linear()) y = paddle.layer.data(name='y', type=paddle.data_type.dense_vector(1)) -cost = paddle.layer.mse_cost(input=y_predict, label=y) +cost = paddle.layer.square_error_cost(input=y_predict, label=y) # create parameters parameters = paddle.parameters.create(cost) diff --git a/doc/getstarted/concepts/use_concepts_cn.rst b/doc/getstarted/concepts/use_concepts_cn.rst index f15b11bd780402a3ec1755900e8c648f5d2a7bc5..25bf7ff1d03b9a425d61845258bfe81f1422ecde 100644 --- a/doc/getstarted/concepts/use_concepts_cn.rst +++ b/doc/getstarted/concepts/use_concepts_cn.rst @@ -81,7 +81,7 @@ PaddlePaddle支持不同类型的输入数据,主要包括四种类型,和 .. code-block:: bash y_predict = paddle.layer.fc(input=x, size=1, act=paddle.activation.Linear()) - cost = paddle.layer.mse_cost(input=y_predict, label=y) + cost = paddle.layer.square_error_cost(input=y_predict, label=y) 其中,x与y为之前描述的输入层;而y_predict是接收x作为输入,接上一个全连接层;cost接收y_predict与y作为输入,接上均方误差层。 @@ -147,4 +147,4 @@ PaddlePaddle支持不同类型的输入数据,主要包括四种类型,和 .. literalinclude:: src/train.py :linenos: -有关线性回归的实际应用,可以参考PaddlePaddle book的 `第一章节 `_。 \ No newline at end of file +有关线性回归的实际应用,可以参考PaddlePaddle book的 `第一章节 `_。 diff --git a/doc/howto/usage/k8s/k8s_distributed_cn.md b/doc/howto/usage/k8s/k8s_distributed_cn.md index 3121b3f59df650c0a22d0bd305a6f793b202d30e..a9bebf09558b06993119803458977abedbbfbdd0 100644 --- a/doc/howto/usage/k8s/k8s_distributed_cn.md +++ b/doc/howto/usage/k8s/k8s_distributed_cn.md @@ -213,7 +213,7 @@ I1116 09:10:17.123440 50 Util.cpp:130] Calling runInitFunctions I1116 09:10:17.123764 50 Util.cpp:143] Call runInitFunctions done. [WARNING 2016-11-16 09:10:17,227 default_decorators.py:40] please use keyword arguments in paddle config. [INFO 2016-11-16 09:10:17,239 networks.py:1282] The input order is [movie_id, title, genres, user_id, gender, age, occupation, rating] -[INFO 2016-11-16 09:10:17,239 networks.py:1289] The output order is [__mse_cost_0__] +[INFO 2016-11-16 09:10:17,239 networks.py:1289] The output order is [__square_error_cost_0__] I1116 09:10:17.392917 50 Trainer.cpp:170] trainer mode: Normal I1116 09:10:17.613910 50 PyDataProvider2.cpp:257] loading dataprovider dataprovider::process I1116 09:10:17.680917 50 PyDataProvider2.cpp:257] loading dataprovider dataprovider::process