提交 c12a969b 编写于 作者: J jerrywgz

refine comment and unittest, test=develop

上级 0d4b60ab
......@@ -32,7 +32,7 @@ class BoxCoderOp : public framework::OperatorWithKernel {
if (ctx->IsRuntime()) {
PADDLE_ENFORCE_EQ(prior_box_dims.size(), 2,
"The rank of Input of PriorBox must be 2");
"The rank of Input PriorBox must be 2");
PADDLE_ENFORCE_EQ(prior_box_dims[1], 4,
"The shape of PriorBox is [N, 4]");
if (ctx->HasInput("PriorBoxVar")) {
......@@ -58,7 +58,7 @@ class BoxCoderOp : public framework::OperatorWithKernel {
int axis = ctx->Attrs().Get<int>("axis");
if (code_type == BoxCodeType::kEncodeCenterSize) {
PADDLE_ENFORCE_EQ(target_box_dims.size(), 2,
"The rank of Input of TargetBox must be 2");
"The rank of Input TargetBox must be 2");
PADDLE_ENFORCE_EQ(target_box_dims[1], 4,
"The shape of TargetBox is [M, 4]");
ctx->SetOutputDim(
......@@ -66,7 +66,7 @@ class BoxCoderOp : public framework::OperatorWithKernel {
framework::make_ddim({target_box_dims[0], prior_box_dims[0], 4}));
} else if (code_type == BoxCodeType::kDecodeCenterSize) {
PADDLE_ENFORCE_EQ(target_box_dims.size(), 3,
"The rank of Input of TargetBox must be 3");
"The rank of Input TargetBox must be 3");
if (axis == 0) {
PADDLE_ENFORCE_EQ(target_box_dims[1], prior_box_dims[0]);
} else if (axis == 1) {
......@@ -126,8 +126,11 @@ class BoxCoderOpMaker : public framework::OpProtoAndCheckerMaker {
"whether treat the priorbox as a noramlized box")
.SetDefault(true);
AddAttr<int>("axis",
"(int, default 1)"
"which axis to broadcast for box decode, it is only valid"
"(int, default 0)"
"which axis in PriorBox to broadcast for box decode,"
"for example, if axis is 0 and TargetBox has shape"
"[N, M, 4] and PriorBox has shape [M, 4], then PriorBox "
"will broadcast to [N, M, 4] for decoding. It is only valid"
"when code type is decode_center_size")
.SetDefault(0)
.InEnum({0, 1});
......
......@@ -79,10 +79,7 @@ __global__ void DecodeCenterSizeKernel(const T* prior_box_data,
if (idx < row * col) {
const int col_idx = idx % col;
const int row_idx = idx / col;
if (axis == 0)
prior_box_offset = col_idx * len;
else if (axis == 1)
prior_box_offset = row_idx * len;
prior_box_offset = axis == 0 ? col_idx * len : row_idx * len;
T prior_box_width = prior_box_data[prior_box_offset + 2] -
prior_box_data[prior_box_offset] +
(normalized == false);
......@@ -98,10 +95,7 @@ __global__ void DecodeCenterSizeKernel(const T* prior_box_data,
if (prior_box_var_data) {
int prior_var_offset = 0;
if (prior_box_var_size == 2) {
if (axis == 0)
prior_var_offset = col_idx * len;
else if (axis == 1)
prior_var_offset = row_idx * len;
prior_var_offset = axis == 0 ? col_idx * len : row_idx * len;
}
target_box_width = exp(prior_box_var_data[prior_var_offset + 2] *
target_box_data[idx * len + 2]) *
......
......@@ -342,8 +342,8 @@ def box_coder(prior_box,
target_box,
code_type="encode_center_size",
box_normalized=True,
axis=0,
name=None):
name=None,
axis=0):
"""
${comment}
......
......@@ -21,121 +21,80 @@ import math
from op_test import OpTest
def box_coder(target_box,
prior_box,
prior_box_var,
output_box,
code_type,
box_normalized,
axis=0):
prior_box_width = prior_box[:, 2] - prior_box[:, 0] + \
(box_normalized==False)
prior_box_height = prior_box[:, 3] - prior_box[:, 1] + \
(box_normalized==False)
prior_box_x = prior_box_width * 0.5 + prior_box[:, 0]
prior_box_y = prior_box_height * 0.5 + prior_box[:, 1]
if axis == 0:
prior_box_width = prior_box_width.reshape(1, prior_box.shape[0])
prior_box_height = prior_box_height.reshape(1, prior_box.shape[0])
prior_box_x = prior_box_x.reshape(1, prior_box.shape[0])
prior_box_y = prior_box_y.reshape(1, prior_box.shape[0])
def box_decoder(t_box, p_box, pb_v, output_box, norm, axis=0):
pb_w = p_box[:, 2] - p_box[:, 0] + (norm == False)
pb_h = p_box[:, 3] - p_box[:, 1] + (norm == False)
pb_x = pb_w * 0.5 + p_box[:, 0]
pb_y = pb_h * 0.5 + p_box[:, 1]
shape = (1, p_box.shape[0]) if axis == 0 else (p_box.shape[0], 1)
pb_w = pb_w.reshape(shape)
pb_h = pb_h.reshape(shape)
pb_x = pb_x.reshape(shape)
pb_y = pb_y.reshape(shape)
if pb_v.ndim == 2:
pb_v = pb_v.reshape(1, pb_v.shape[0], pb_v.shape[1])
if pb_v.ndim == 1:
tb_x = pb_v[0] * t_box[:, :, 0] * pb_w + pb_x
tb_y = pb_v[1] * t_box[:, :, 1] * pb_h + pb_y
tb_w = np.exp(pb_v[2] * t_box[:, :, 2]) * pb_w
tb_h = np.exp(pb_v[3] * t_box[:, :, 3]) * pb_h
else:
prior_box_width = prior_box_width.reshape(prior_box.shape[0], 1)
prior_box_height = prior_box_height.reshape(prior_box.shape[0], 1)
prior_box_x = prior_box_x.reshape(prior_box.shape[0], 1)
prior_box_y = prior_box_y.reshape(prior_box.shape[0], 1)
if prior_box_var.ndim == 2:
prior_box_var = prior_box_var.reshape(1, prior_box_var.shape[0],
prior_box_var.shape[1])
if (code_type == "EncodeCenterSize"):
target_box_x = ((target_box[:, 2] + target_box[:, 0]) / 2).reshape(
target_box.shape[0], 1)
target_box_y = ((target_box[:, 3] + target_box[:, 1]) / 2).reshape(
target_box.shape[0], 1)
target_box_width = ((target_box[:, 2] - target_box[:, 0])).reshape(
target_box.shape[0], 1)
target_box_height = ((target_box[:, 3] - target_box[:, 1])).reshape(
target_box.shape[0], 1)
if not box_normalized:
target_box_height = target_box_height + 1
target_box_width = target_box_width + 1
if prior_box_var.ndim == 1:
output_box[:,:,0] = (target_box_x - prior_box_x) / \
prior_box_width / \
prior_box_var[0]
output_box[:,:,1] = (target_box_y - prior_box_y) / \
prior_box_height / \
prior_box_var[1]
output_box[:,:,2] = np.log(np.fabs(target_box_width / \
prior_box_width)) / \
prior_box_var[2]
output_box[:,:,3] = np.log(np.fabs(target_box_height / \
prior_box_height)) / \
prior_box_var[3]
tb_x = pb_v[:, :, 0] * t_box[:, :, 0] * pb_w + pb_x
tb_y = pb_v[:, :, 1] * t_box[:, :, 1] * pb_h + pb_y
tb_w = np.exp(pb_v[:, :, 2] * t_box[:, :, 2]) * pb_w
tb_h = np.exp(pb_v[:, :, 3] * t_box[:, :, 3]) * pb_h
output_box[:, :, 0] = tb_x - tb_w / 2
output_box[:, :, 1] = tb_y - tb_h / 2
output_box[:, :, 2] = tb_x + tb_w / 2 - (not norm)
output_box[:, :, 3] = tb_y + tb_h / 2 - (not norm)
def box_encoder(t_box, p_box, pb_v, output_box, norm):
pb_w = p_box[:, 2] - p_box[:, 0] + (norm == False)
pb_h = p_box[:, 3] - p_box[:, 1] + (norm == False)
pb_x = pb_w * 0.5 + p_box[:, 0]
pb_y = pb_h * 0.5 + p_box[:, 1]
shape = (1, p_box.shape[0])
pb_w = pb_w.reshape(shape)
pb_h = pb_h.reshape(shape)
pb_x = pb_x.reshape(shape)
pb_y = pb_y.reshape(shape)
if pb_v.ndim == 2:
pb_v = pb_v.reshape(1, pb_v.shape[0], pb_v.shape[1])
tb_x = ((t_box[:, 2] + t_box[:, 0]) / 2).reshape(t_box.shape[0], 1)
tb_y = ((t_box[:, 3] + t_box[:, 1]) / 2).reshape(t_box.shape[0], 1)
tb_w = (t_box[:, 2] - t_box[:, 0]).reshape(t_box.shape[0], 1) + (not norm)
tb_h = (t_box[:, 3] - t_box[:, 1]).reshape(t_box.shape[0], 1) + (not norm)
if pb_v.ndim == 1:
output_box[:, :, 0] = (tb_x - pb_x) / pb_w / pb_v[0]
output_box[:, :, 1] = (tb_y - pb_y) / pb_h / pb_v[1]
output_box[:, :, 2] = np.log(np.fabs(tb_w / pb_w)) / pb_v[2]
output_box[:, :, 3] = np.log(np.fabs(tb_h / pb_h)) / pb_v[3]
else:
output_box[:,:,0] = (target_box_x - prior_box_x) / \
prior_box_width / \
prior_box_var[:,:,0]
output_box[:,:,1] = (target_box_y - prior_box_y) / \
prior_box_height / \
prior_box_var[:,:,1]
output_box[:,:,2] = np.log(np.fabs(target_box_width / \
prior_box_width)) / \
prior_box_var[:,:,2]
output_box[:,:,3] = np.log(np.fabs(target_box_height / \
prior_box_height)) / \
prior_box_var[:,:,3]
output_box[:, :, 0] = (tb_x - pb_x) / pb_w / pb_v[:, :, 0]
output_box[:, :, 1] = (tb_y - pb_y) / pb_h / pb_v[:, :, 1]
output_box[:, :, 2] = np.log(np.fabs(tb_w / pb_w)) / pb_v[:, :, 2]
output_box[:, :, 3] = np.log(np.fabs(tb_h / pb_h)) / pb_v[:, :, 3]
elif (code_type == "DecodeCenterSize"):
if prior_box_var.ndim == 1:
target_box_x = prior_box_var[0] * target_box[:,:,0] * \
prior_box_width + prior_box_x
target_box_y = prior_box_var[1] * target_box[:,:,1] * \
prior_box_height + prior_box_y
target_box_width = np.exp(prior_box_var[2] * target_box[:,:,2]) * \
prior_box_width
target_box_height = np.exp(prior_box_var[3] * target_box[:,:,3]) * \
prior_box_height
else:
target_box_x = prior_box_var[:,:,0] * target_box[:,:,0] * \
prior_box_width + prior_box_x
target_box_y = prior_box_var[:,:,1] * target_box[:,:,1] * \
prior_box_height + prior_box_y
target_box_width = np.exp(prior_box_var[:,:,2] * \
target_box[:,:,2]) * prior_box_width
target_box_height = np.exp(prior_box_var[:,:,3] * \
target_box[:,:,3]) * prior_box_height
output_box[:, :, 0] = target_box_x - target_box_width / 2
output_box[:, :, 1] = target_box_y - target_box_height / 2
output_box[:, :, 2] = target_box_x + target_box_width / 2
output_box[:, :, 3] = target_box_y + target_box_height / 2
if not box_normalized:
output_box[:, :, 2] = output_box[:, :, 2] - 1
output_box[:, :, 3] = output_box[:, :, 3] - 1
def batch_box_coder(prior_box,
prior_box_var,
target_box,
lod,
code_type,
box_normalized,
axis=0):
n = target_box.shape[0]
m = prior_box.shape[0]
def batch_box_coder(p_box, pb_v, t_box, lod, code_type, norm, axis=0):
n = t_box.shape[0]
m = p_box.shape[0]
if code_type == "DecodeCenterSize":
m = target_box.shape[1]
m = t_box.shape[1]
output_box = np.zeros((n, m, 4), dtype=np.float32)
cur_offset = 0
for i in range(len(lod)):
if (code_type == "EncodeCenterSize"):
box_coder(target_box[cur_offset:(cur_offset + lod[i]), :],
prior_box, prior_box_var,
box_encoder(t_box[cur_offset:(cur_offset + lod[i]), :], p_box, pb_v,
output_box[cur_offset:(cur_offset + lod[i]), :, :],
code_type, box_normalized)
norm)
elif (code_type == "DecodeCenterSize"):
box_coder(target_box, prior_box, prior_box_var, output_box,
code_type, box_normalized, axis)
box_decoder(t_box, p_box, pb_v, output_box, norm, axis)
cur_offset += lod[i]
return output_box
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册