Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
c109e3bf
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
694
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
c109e3bf
编写于
2月 24, 2017
作者:
D
dangqingqing
浏览文件
操作
浏览文件
下载
差异文件
add more unit tests
上级
f3c7fbee
4311bfed
变更
21
显示空白变更内容
内联
并排
Showing
21 changed file
with
630 addition
and
128 deletion
+630
-128
paddle/api/Evaluator.cpp
paddle/api/Evaluator.cpp
+15
-0
paddle/api/PaddleAPI.h
paddle/api/PaddleAPI.h
+4
-0
paddle/api/test/testTrain.py
paddle/api/test/testTrain.py
+6
-1
paddle/gserver/evaluators/CTCErrorEvaluator.cpp
paddle/gserver/evaluators/CTCErrorEvaluator.cpp
+1
-1
paddle/gserver/evaluators/Evaluator.cpp
paddle/gserver/evaluators/Evaluator.cpp
+158
-54
paddle/gserver/evaluators/Evaluator.h
paddle/gserver/evaluators/Evaluator.h
+138
-2
paddle/gserver/gradientmachines/NeuralNetwork.cpp
paddle/gserver/gradientmachines/NeuralNetwork.cpp
+49
-1
paddle/gserver/tests/test_Evaluator.cpp
paddle/gserver/tests/test_Evaluator.cpp
+12
-0
paddle/scripts/docker/Dockerfile
paddle/scripts/docker/Dockerfile
+6
-4
paddle/scripts/docker/Dockerfile.gpu
paddle/scripts/docker/Dockerfile.gpu
+6
-4
paddle/scripts/docker/build.sh
paddle/scripts/docker/build.sh
+28
-24
paddle/utils/Error.h
paddle/utils/Error.h
+17
-11
paddle/utils/tests/test_Error.cpp
paddle/utils/tests/test_Error.cpp
+4
-4
python/paddle/v2/__init__.py
python/paddle/v2/__init__.py
+2
-1
python/paddle/v2/attr.py
python/paddle/v2/attr.py
+23
-0
python/paddle/v2/data_feeder.py
python/paddle/v2/data_feeder.py
+18
-7
python/paddle/v2/data_type.py
python/paddle/v2/data_type.py
+2
-2
python/paddle/v2/layer.py
python/paddle/v2/layer.py
+7
-2
python/paddle/v2/tests/CMakeLists.txt
python/paddle/v2/tests/CMakeLists.txt
+4
-0
python/paddle/v2/tests/test_data_feeder.py
python/paddle/v2/tests/test_data_feeder.py
+67
-10
python/paddle/v2/tests/test_layer.py
python/paddle/v2/tests/test_layer.py
+63
-0
未找到文件。
paddle/api/Evaluator.cpp
浏览文件 @
c109e3bf
...
...
@@ -27,3 +27,18 @@ std::string Evaluator::toString() {
m
->
rawPtr
->
printStats
(
sout
);
return
sout
.
str
();
}
std
::
vector
<
std
::
string
>
Evaluator
::
getNames
()
const
{
std
::
vector
<
std
::
string
>
retv
;
m
->
rawPtr
->
getNames
(
&
retv
);
return
retv
;
}
double
Evaluator
::
getValue
(
const
std
::
string
name
)
const
{
paddle
::
Error
err
;
double
v
=
m
->
rawPtr
->
getValue
(
name
,
&
err
);
if
(
err
)
{
throw
std
::
runtime_error
(
err
.
msg
());
}
return
v
;
}
paddle/api/PaddleAPI.h
浏览文件 @
c109e3bf
...
...
@@ -900,6 +900,10 @@ public:
*/
std
::
string
toString
();
std
::
vector
<
std
::
string
>
getNames
()
const
;
double
getValue
(
const
std
::
string
name
)
const
;
private:
EvaluatorPrivate
*
m
;
...
...
paddle/api/test/testTrain.py
浏览文件 @
c109e3bf
...
...
@@ -89,9 +89,14 @@ def main():
except
Exception
as
e
:
print
e
ev
=
m
.
makeEvaluator
()
ev
.
start
()
m
.
forwardBackward
(
inArgs
,
outArgs
,
swig_paddle
.
PASS_TRAIN
,
update_callback
)
m
.
eval
(
ev
)
ev
.
finish
()
for
name
in
ev
.
getNames
():
print
name
,
ev
.
getValue
(
name
)
for
optimizer
in
optimizers
:
optimizer
.
finishBatch
()
...
...
paddle/gserver/evaluators/CTCErrorEvaluator.cpp
浏览文件 @
c109e3bf
...
...
@@ -20,7 +20,7 @@ namespace paddle {
/**
* calculate sequence-to-sequence edit distance
*/
class
CTCErrorEvaluator
:
public
Evaluator
{
class
CTCErrorEvaluator
:
public
NotGetable
Evaluator
{
private:
MatrixPtr
outActivations_
;
int
numTimes_
,
numClasses_
,
numSequences_
,
blank_
;
...
...
paddle/gserver/evaluators/Evaluator.cpp
浏览文件 @
c109e3bf
...
...
@@ -13,9 +13,9 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/gserver/evaluators/Evaluator.h"
#include "paddle/utils/Stat.h"
#include "paddle/gserver/gradientmachines/NeuralNetwork.h"
#include "paddle/utils/Stat.h"
#include "paddle/utils/StringUtil.h"
DECLARE_int32
(
trainer_id
);
...
...
@@ -122,6 +122,10 @@ public:
virtual
void
distributeEval
(
ParameterClient2
*
client
)
{
mergeResultsOfAllClients
(
client
);
}
// Evaluator interface
protected:
std
::
string
getTypeImpl
()
const
{
return
"classification_error"
;
}
};
/**
...
...
@@ -160,6 +164,10 @@ public:
virtual
void
distributeEval
(
ParameterClient2
*
client
)
{
mergeResultsOfAllClients
(
client
);
}
// Evaluator interface
protected:
std
::
string
getTypeImpl
()
const
{
return
"seq_classification_error"
;
}
};
REGISTER_EVALUATOR
(
seq_classification_error
,
SequenceClassificationErrorEvaluator
);
...
...
@@ -250,6 +258,10 @@ public:
private:
IVectorPtr
cpuLabel_
;
MatrixPtr
cpuWeight_
;
// Evaluator interface
protected:
std
::
string
getTypeImpl
()
const
{
return
"sum"
;
}
};
/**
* @brief column sum Evaluator
...
...
@@ -357,10 +369,18 @@ public:
}
private:
ColumnSumEvaluator
()
{}
int32_t
colIdx_
;
size_t
colNum_
;
MatrixPtr
sum_
;
/* cpu matrix */
// Evaluator interface
protected:
std
::
string
getTypeImpl
()
const
{
if
(
colIdx_
==
-
1
)
return
"last-column-sum"
;
else
return
"column-sum"
;
}
};
void
AucEvaluator
::
start
()
{
...
...
@@ -469,6 +489,16 @@ double AucEvaluator::calcAuc() const {
}
}
real
AucEvaluator
::
getValueImpl
()
const
{
return
calcAuc
();
}
std
::
string
AucEvaluator
::
getTypeImpl
()
const
{
if
(
colIdx_
==
-
1
)
{
return
"last-column-auc"
;
}
else
{
return
"auc"
;
}
}
// class RankAucEvaluator
REGISTER_EVALUATOR
(
rankauc
,
RankAucEvaluator
);
...
...
@@ -548,12 +578,15 @@ double RankAucEvaluator::calcRankAuc(real* outputData,
:
aucTmp
/
(
clickSum
*
noClickSum
);
}
std
::
string
RankAucEvaluator
::
getTypeImpl
()
const
{
return
"rankauc"
;
}
// class PrecisionRecallEvaluator
REGISTER_EVALUATOR
(
precision_recall
,
PrecisionRecallEvaluator
);
void
PrecisionRecallEvaluator
::
start
()
{
Evaluator
::
start
();
statsInfo_
.
clear
();
values_
.
clear
();
}
real
PrecisionRecallEvaluator
::
evalImp
(
std
::
vector
<
Argument
>&
arguments
)
{
...
...
@@ -614,52 +647,23 @@ real PrecisionRecallEvaluator::evalImp(std::vector<Argument>& arguments) {
}
void
PrecisionRecallEvaluator
::
printStats
(
std
::
ostream
&
os
)
const
{
int
label
=
config_
.
positive_label
();
if
(
label
!=
-
1
)
{
CHECK
(
label
>=
0
&&
label
<
(
int
)
statsInfo_
.
size
())
<<
"positive_label ["
<<
label
<<
"] should be in range [0, "
<<
statsInfo_
.
size
()
<<
")"
;
double
precision
=
calcPrecision
(
statsInfo_
[
label
].
TP
,
statsInfo_
[
label
].
FP
);
double
recall
=
calcRecall
(
statsInfo_
[
label
].
TP
,
statsInfo_
[
label
].
FN
);
os
<<
"positive_label="
<<
label
<<
" precision="
<<
precision
<<
" recall="
<<
recall
<<
" F1-score="
<<
calcF1Score
(
precision
,
recall
);
return
;
}
// micro average method: precision = (TP1+TP2)/(TP1+FP1+TP2+FP2)
// macro average method: precision = (precision1+precision2)/2
double
microTotalTP
=
0
;
double
microTotalFP
=
0
;
double
microTotalFN
=
0
;
double
macroAvgPrecision
=
0
;
double
macroAvgRecall
=
0
;
size_t
numLabels
=
statsInfo_
.
size
();
for
(
size_t
i
=
0
;
i
<
numLabels
;
++
i
)
{
microTotalTP
+=
statsInfo_
[
i
].
TP
;
microTotalFP
+=
statsInfo_
[
i
].
FP
;
microTotalFN
+=
statsInfo_
[
i
].
FN
;
macroAvgPrecision
+=
calcPrecision
(
statsInfo_
[
i
].
TP
,
statsInfo_
[
i
].
FP
);
macroAvgRecall
+=
calcRecall
(
statsInfo_
[
i
].
TP
,
statsInfo_
[
i
].
FN
);
}
macroAvgPrecision
/=
numLabels
;
macroAvgRecall
/=
numLabels
;
double
macroAvgF1Score
=
calcF1Score
(
macroAvgPrecision
,
macroAvgRecall
);
os
<<
"macro-average-precision="
<<
macroAvgPrecision
<<
" macro-average-recall="
<<
macroAvgRecall
<<
" macro-average-F1-score="
<<
macroAvgF1Score
;
double
microAvgPrecision
=
calcPrecision
(
microTotalTP
,
microTotalFP
);
double
microAvgRecall
=
calcPrecision
(
microTotalTP
,
microTotalFN
);
double
microAvgF1Score
=
calcF1Score
(
microAvgPrecision
,
microAvgRecall
);
PrintStatsInfo
info
;
bool
containMacroMicroInfo
=
getStatsInfo
(
&
info
);
os
<<
"positive_label="
<<
config_
.
positive_label
()
<<
" precision="
<<
info
.
precision
<<
" recall="
<<
info
.
recall
<<
" F1-score="
<<
info
.
f1
;
if
(
containMacroMicroInfo
)
{
os
<<
"macro-average-precision="
<<
info
.
macroAvgPrecision
<<
" macro-average-recall="
<<
info
.
macroAvgRecall
<<
" macro-average-F1-score="
<<
info
.
macroAvgF1Score
;
if
(
!
isMultiBinaryLabel_
)
{
// precision and recall are equal in this case
os
<<
" micro-average-precision="
<<
microAvgPrecision
;
os
<<
" micro-average-precision="
<<
info
.
microAvgPrecision
;
}
else
{
os
<<
" micro-average-precision="
<<
microAvgPrecision
<<
" micro-average-recall="
<<
microAvgRecall
<<
" micro-average-F1-score="
<<
microAvgF1Score
;
os
<<
" micro-average-precision="
<<
info
.
microAvgPrecision
<<
" micro-average-recall="
<<
info
.
microAvgRecall
<<
" micro-average-F1-score="
<<
info
.
microAvgF1Score
;
}
}
}
...
...
@@ -741,6 +745,60 @@ void PrecisionRecallEvaluator::calcStatsInfoMulti(const MatrixPtr& output,
}
}
void
PrecisionRecallEvaluator
::
storeLocalValues
()
const
{
if
(
this
->
values_
.
size
()
==
0
)
{
PrintStatsInfo
info
;
bool
containMacroMicroInfo
=
getStatsInfo
(
&
info
);
values_
[
"precision"
]
=
info
.
precision
;
values_
[
"recal"
]
=
info
.
recall
;
values_
[
"F1-score"
]
=
info
.
f1
;
if
(
containMacroMicroInfo
)
{
values_
[
"macro-average-precision"
]
=
info
.
macroAvgPrecision
;
values_
[
"macro-average-recall"
]
=
info
.
macroAvgRecall
;
values_
[
"macro-average-F1-score"
]
=
info
.
macroAvgF1Score
;
if
(
!
isMultiBinaryLabel_
)
{
// precision and recall are equal in this case
values_
[
"micro-average-precision"
]
=
info
.
microAvgPrecision
;
}
else
{
values_
[
"micro-average-precision"
]
=
info
.
microAvgPrecision
;
values_
[
"micro-average-recall"
]
=
info
.
microAvgRecall
;
values_
[
"micro-average-F1-score"
]
=
info
.
microAvgF1Score
;
}
}
}
}
void
PrecisionRecallEvaluator
::
getNames
(
std
::
vector
<
std
::
string
>*
names
)
{
this
->
storeLocalValues
();
names
->
reserve
(
this
->
values_
.
size
());
for
(
auto
it
=
this
->
values_
.
begin
();
it
!=
this
->
values_
.
end
();
++
it
)
{
names
->
push_back
(
this
->
config_
.
name
()
+
"."
+
it
->
first
);
}
}
real
PrecisionRecallEvaluator
::
getValue
(
const
std
::
string
&
name
,
Error
*
err
)
const
{
this
->
storeLocalValues
();
std
::
vector
<
std
::
string
>
buffers
;
paddle
::
str
::
split
(
name
,
'.'
,
&
buffers
);
auto
it
=
this
->
values_
.
find
(
buffers
[
buffers
.
size
()
-
1
]);
if
(
it
==
this
->
values_
.
end
())
{
// not found
*
err
=
Error
(
"No such key %s"
,
name
.
c_str
());
return
.0
f
;
}
return
it
->
second
;
}
std
::
string
PrecisionRecallEvaluator
::
getType
(
const
std
::
string
&
name
,
Error
*
err
)
const
{
this
->
getValue
(
name
,
err
);
if
(
!
err
->
isOK
())
{
return
""
;
}
return
"precision_recall"
;
}
void
PrecisionRecallEvaluator
::
distributeEval
(
ParameterClient2
*
client
)
{
size_t
size
=
4
*
statsInfo_
.
size
();
double
*
buf
=
new
double
[
size
];
...
...
@@ -760,6 +818,47 @@ void PrecisionRecallEvaluator::distributeEval(ParameterClient2* client) {
delete
[]
buf
;
}
bool
PrecisionRecallEvaluator
::
getStatsInfo
(
PrecisionRecallEvaluator
::
PrintStatsInfo
*
info
)
const
{
int
label
=
config_
.
positive_label
();
if
(
label
!=
-
1
)
{
CHECK
(
label
>=
0
&&
label
<
(
int
)
statsInfo_
.
size
())
<<
"positive_label ["
<<
label
<<
"] should be in range [0, "
<<
statsInfo_
.
size
()
<<
")"
;
info
->
precision
=
calcPrecision
(
statsInfo_
[
label
].
TP
,
statsInfo_
[
label
].
FP
);
info
->
recall
=
calcRecall
(
statsInfo_
[
label
].
TP
,
statsInfo_
[
label
].
FN
);
info
->
f1
=
calcF1Score
(
info
->
precision
,
info
->
recall
);
return
false
;
}
// micro average method: precision = (TP1+TP2)/(TP1+FP1+TP2+FP2)
// macro average method: precision = (precision1+precision2)/2
double
microTotalTP
=
0
;
double
microTotalFP
=
0
;
double
microTotalFN
=
0
;
info
->
macroAvgPrecision
=
0
;
info
->
macroAvgRecall
=
0
;
size_t
numLabels
=
statsInfo_
.
size
();
for
(
size_t
i
=
0
;
i
<
numLabels
;
++
i
)
{
microTotalTP
+=
statsInfo_
[
i
].
TP
;
microTotalFP
+=
statsInfo_
[
i
].
FP
;
microTotalFN
+=
statsInfo_
[
i
].
FN
;
info
->
macroAvgPrecision
+=
calcPrecision
(
statsInfo_
[
i
].
TP
,
statsInfo_
[
i
].
FP
);
info
->
macroAvgRecall
+=
calcRecall
(
statsInfo_
[
i
].
TP
,
statsInfo_
[
i
].
FN
);
}
info
->
macroAvgPrecision
/=
numLabels
;
info
->
macroAvgRecall
/=
numLabels
;
info
->
macroAvgF1Score
=
calcF1Score
(
info
->
macroAvgPrecision
,
info
->
macroAvgRecall
);
info
->
microAvgPrecision
=
calcPrecision
(
microTotalTP
,
microTotalFP
);
info
->
microAvgRecall
=
calcPrecision
(
microTotalTP
,
microTotalFN
);
info
->
microAvgF1Score
=
calcF1Score
(
info
->
microAvgPrecision
,
info
->
microAvgRecall
);
return
true
;
}
REGISTER_EVALUATOR
(
pnpair
,
PnpairEvaluator
);
void
PnpairEvaluator
::
start
()
{
Evaluator
::
start
();
...
...
@@ -884,6 +983,8 @@ void PnpairEvaluator::calc(std::vector<PredictionResult>& predictArray) {
<<
" calc total special pair: "
<<
special
;
}
std
::
string
PnpairEvaluator
::
getTypeImpl
()
const
{
return
"pnpair"
;
}
ClassRegistrar
<
Evaluator
>
Evaluator
::
registrar_
;
Evaluator
*
Evaluator
::
create
(
const
EvaluatorConfig
&
config
)
{
Evaluator
*
evaluator
=
registrar_
.
createByType
(
config
.
type
());
...
...
@@ -905,7 +1006,7 @@ static InitFunction __reg_type_auc_sum__([]() {
*
* The config file api is value_printer_evaluator.
*/
class
ValuePrinter
:
public
Evaluator
{
class
ValuePrinter
:
public
NotGetable
Evaluator
{
public:
virtual
void
eval
(
const
NeuralNetwork
&
nn
)
{
for
(
const
std
::
string
&
name
:
config_
.
input_layers
())
{
...
...
@@ -919,12 +1020,13 @@ public:
virtual
real
evalImp
(
std
::
vector
<
Argument
>&
arguments
)
{
return
0
;
}
};
REGISTER_EVALUATOR
(
value_printer
,
ValuePrinter
);
/**
* @brief print gradient of each layer.
*
* The config file api is gradient_printer_evaluator.
*/
class
GradientPrinter
:
public
Evaluator
{
class
GradientPrinter
:
public
NotGetable
Evaluator
{
public:
virtual
void
eval
(
const
NeuralNetwork
&
nn
)
{
for
(
const
std
::
string
&
name
:
config_
.
input_layers
())
{
...
...
@@ -947,7 +1049,7 @@ REGISTER_EVALUATOR(gradient_printer, GradientPrinter);
*
* The config file api is maxid_printer_evaluator.
*/
class
MaxIdPrinter
:
public
Evaluator
{
class
MaxIdPrinter
:
public
NotGetable
Evaluator
{
private:
IVectorPtr
maxIds_
;
MatrixPtr
maxValues_
;
...
...
@@ -989,7 +1091,7 @@ REGISTER_EVALUATOR(max_id_printer, MaxIdPrinter);
*
* The config file api is maxframe_printer_evaluator.
*/
class
MaxFramePrinter
:
public
Evaluator
{
class
MaxFramePrinter
:
public
NotGetable
Evaluator
{
private:
IVectorPtr
maxIds_
;
MatrixPtr
maxValues_
;
...
...
@@ -1076,7 +1178,7 @@ REGISTER_EVALUATOR(max_frame_printer, MaxFramePrinter);
* The config file api is seqtext_printer_evaluator.
*
*/
class
SequenceTextPrinter
:
public
Evaluator
{
class
SequenceTextPrinter
:
public
NotGetable
Evaluator
{
private:
/// dict_file, which contains a list of tokens
std
::
vector
<
std
::
string
>
dict_
;
...
...
@@ -1243,4 +1345,6 @@ public:
};
REGISTER_EVALUATOR
(
classification_error_printer
,
ClassificationErrorPrinter
);
std
::
string
DummyEvaluator
::
getTypeImpl
()
const
{
return
"dummy"
;
}
}
// namespace paddle
paddle/gserver/evaluators/Evaluator.h
浏览文件 @
c109e3bf
...
...
@@ -19,6 +19,7 @@ limitations under the License. */
#include "paddle/parameter/Argument.h"
#include "paddle/pserver/ParameterClient2.h"
#include "paddle/utils/ClassRegistrar.h"
#include "paddle/utils/Error.h"
namespace
paddle
{
...
...
@@ -117,12 +118,105 @@ public:
static
ClassRegistrar
<
Evaluator
>
registrar_
;
/**
* @brief getNames will return all field names of current evaluator.
*
* The format of name is `evaluator_name.evaluator_fields`. If the evaluator
* has multiple field, the name could be `evaluator_name.field1`. For example
* the PrecisionRecallEvaluator contains `precision`, `recall` fields. The get
* names will return `precision_recall_evaluator.precision`,
* `precision_recall_evaluator.recal`, etc.
*
* Also, if current Evaluator is a combined evaluator. getNames will return
* all names of all evaluators inside the combined evaluator.
*
* @param names [out]: the field names of current evaluator.
* @note Never clear the names parameter inside getNames.
*/
virtual
void
getNames
(
std
::
vector
<
std
::
string
>*
names
)
{
names
->
push_back
(
config_
.
name
());
}
/**
* @brief getValue will return the current evaluate value of one field.
*
* @param name: The field name of current evaluator.
* @param err [out]: The error state.
*
* @return The evaluate value(metric).
*/
virtual
real
getValue
(
const
std
::
string
&
name
,
Error
*
err
)
const
{
if
(
name
!=
config_
.
name
())
{
*
err
=
Error
(
"no such name of evaluator %s"
,
name
.
c_str
());
return
.0
f
;
}
return
this
->
getValueImpl
();
}
/**
* @brief getType will return the evaluator type by field name.
*
* Evaluate Type is the current type of evaluator in string. Such as 'auc',
* 'precision_recall'. In combined evaluator, different name may get different
* evaluate type because it could be evaluated by different evaluator inside.
*
* @param name: The field name of current Evaluator.
* @param err: The error state. nullptr means don't care.
* @return the evaluator type string.
*/
virtual
std
::
string
getType
(
const
std
::
string
&
name
,
Error
*
err
)
const
{
if
(
name
!=
config_
.
name
())
{
*
err
=
Error
(
"no such name of evaluator %s"
,
name
.
c_str
());
return
std
::
string
();
}
return
this
->
getTypeImpl
();
}
protected:
/**
* @brief getValueImpl The simplest way to define getValue result. If this
* evaluator doesn't contain multiple fields, and do not throw any error, just
* implemented this method to get the evaluate result(metric).
* @return Evaluate result(metric).
*/
virtual
real
getValueImpl
()
const
{
return
numSamples_
!=
.0
?
totalScore_
/
numSamples_
:
.0
;
}
/**
* @brief getTypeImpl The simplest way to define getType result. If this
* evaluator doesn't combine many evaluators, the get type should only return
* itself type.
* @return Evaluator type.
*/
virtual
std
::
string
getTypeImpl
()
const
{
return
"base"
;
}
protected:
EvaluatorConfig
config_
;
double
numSamples_
;
double
totalScore_
;
};
/**
* @brief The NotGetableEvaluator class is the base class of evaluator that
* cannot get value in runtime. The most NotGetableEvaluator is Printer
* Evaluator, which is only used to debug network configuration.
*/
class
NotGetableEvaluator
:
public
Evaluator
{
// Evaluator interface
public:
void
getNames
(
std
::
vector
<
std
::
string
>*
names
)
{}
real
getValue
(
const
std
::
string
&
name
,
Error
*
err
)
const
{
*
err
=
Error
(
"Not implemented"
);
return
.0
f
;
}
std
::
string
getType
(
const
std
::
string
&
name
,
Error
*
err
)
const
{
*
err
=
Error
(
"Not implemented"
);
return
""
;
}
};
class
DummyEvaluator
:
public
Evaluator
{
public:
DummyEvaluator
()
{}
...
...
@@ -135,6 +229,10 @@ public:
}
virtual
void
finish
()
{}
virtual
void
printStats
(
std
::
ostream
&
)
const
{}
// Evaluator interface
protected:
std
::
string
getTypeImpl
()
const
;
};
/**
* @brief evaluate AUC using colIdx-th column as prediction.
...
...
@@ -191,6 +289,11 @@ private:
}
double
calcAuc
()
const
;
// Evaluator interface
protected:
real
getValueImpl
()
const
;
std
::
string
getTypeImpl
()
const
;
};
/**
...
...
@@ -223,6 +326,10 @@ private:
real
*
clickData
,
real
*
pvData
,
size_t
size
);
// Evaluator interface
protected:
std
::
string
getTypeImpl
()
const
;
};
/**
* @brief precision, recall and f1 score Evaluator
...
...
@@ -272,6 +379,20 @@ private:
IVectorPtr
cpuLabel_
;
MatrixPtr
cpuWeight_
;
struct
PrintStatsInfo
{
double
precision
;
double
recall
;
double
f1
;
double
macroAvgPrecision
;
double
macroAvgRecall
;
double
macroAvgF1Score
;
double
microAvgPrecision
;
double
microAvgRecall
;
double
microAvgF1Score
;
};
bool
getStatsInfo
(
PrintStatsInfo
*
info
)
const
;
void
calcStatsInfo
(
const
MatrixPtr
&
output
,
const
IVectorPtr
&
label
,
const
MatrixPtr
&
weight
);
...
...
@@ -303,6 +424,15 @@ private:
return
0
;
}
}
mutable
std
::
unordered_map
<
std
::
string
,
real
>
values_
;
void
storeLocalValues
()
const
;
// Evaluator interface
public:
void
getNames
(
std
::
vector
<
std
::
string
>*
names
);
real
getValue
(
const
std
::
string
&
name
,
Error
*
err
)
const
;
std
::
string
getType
(
const
std
::
string
&
name
,
Error
*
err
)
const
;
};
/*
...
...
@@ -349,8 +479,7 @@ public:
virtual
void
finish
()
{
calc
(
predictArray_
);
}
virtual
void
printStats
(
std
::
ostream
&
os
)
const
{
os
<<
" pos/neg"
<<
"="
<<
pairArray_
[
0
]
/
((
pairArray_
[
1
]
<=
0
)
?
1.0
:
pairArray_
[
1
]);
os
<<
" pos/neg="
<<
this
->
getValueImpl
();
}
virtual
void
distributeEval
(
ParameterClient2
*
client
)
{
...
...
@@ -366,6 +495,13 @@ private:
IVectorPtr
cpuLabel_
;
IVectorPtr
cpuInfo_
;
MatrixPtr
cpuWeight_
;
// Evaluator interface
protected:
real
getValueImpl
()
const
{
return
pairArray_
[
0
]
/
((
pairArray_
[
1
]
<=
0
)
?
1.0
:
pairArray_
[
1
]);
}
std
::
string
getTypeImpl
()
const
;
};
}
// namespace paddle
paddle/gserver/gradientmachines/NeuralNetwork.cpp
浏览文件 @
c109e3bf
...
...
@@ -306,7 +306,6 @@ void NeuralNetwork::onPassEnd() {
class
CombinedEvaluator
:
public
Evaluator
{
public:
CombinedEvaluator
()
{}
void
addEvaluator
(
std
::
unique_ptr
<
Evaluator
>&&
evaluator
)
{
evaluators_
.
emplace_back
(
std
::
move
(
evaluator
));
}
...
...
@@ -346,6 +345,55 @@ public:
protected:
std
::
vector
<
std
::
unique_ptr
<
Evaluator
>>
evaluators_
;
// Evaluator interface
public:
/**
* @brief getNames will return all inside evaluators' names.
* @param names [out]: return names.
*/
void
getNames
(
std
::
vector
<
std
::
string
>*
names
)
{
for
(
auto
&
eval
:
evaluators_
)
{
eval
->
getNames
(
names
);
}
}
/**
* @brief getValue could get all inside evaluators' value.
*/
real
getValue
(
const
std
::
string
&
name
,
Error
*
err
)
const
{
return
this
->
getMethodHelper
<
real
>
(
name
,
err
,
[
&
name
,
err
](
const
std
::
unique_ptr
<
Evaluator
>&
eval
)
{
return
eval
->
getValue
(
name
,
err
);
});
}
/**
* @brief getType could get all inside evaluators' type.
*/
std
::
string
getType
(
const
std
::
string
&
name
,
Error
*
err
)
const
{
return
this
->
getMethodHelper
<
std
::
string
>
(
name
,
err
,
[
&
name
,
err
](
const
std
::
unique_ptr
<
Evaluator
>&
eval
)
{
return
eval
->
getType
(
name
,
err
);
});
}
private:
template
<
typename
T
>
T
getMethodHelper
(
const
std
::
string
&
name
,
Error
*
err
,
const
std
::
function
<
T
(
const
std
::
unique_ptr
<
Evaluator
>&
)
>&
callback
)
const
{
for
(
auto
&
eval
:
evaluators_
)
{
std
::
vector
<
std
::
string
>
names
;
eval
->
getNames
(
&
names
);
if
(
std
::
find
(
names
.
begin
(),
names
.
end
(),
name
)
!=
names
.
end
())
{
return
callback
(
eval
);
}
}
*
err
=
Error
(
"No such key %s"
,
name
.
c_str
());
return
T
();
}
};
Evaluator
*
NeuralNetwork
::
makeEvaluator
()
const
{
...
...
paddle/gserver/tests/test_Evaluator.cpp
浏览文件 @
c109e3bf
...
...
@@ -110,6 +110,18 @@ void testEvaluator(TestConfig testConf,
testEvaluator
->
finish
();
LOG
(
INFO
)
<<
*
testEvaluator
;
std
::
vector
<
std
::
string
>
names
;
testEvaluator
->
getNames
(
&
names
);
paddle
::
Error
err
;
for
(
auto
&
name
:
names
)
{
auto
value
=
testEvaluator
->
getValue
(
name
,
&
err
);
ASSERT_TRUE
(
err
.
isOK
());
LOG
(
INFO
)
<<
name
<<
" "
<<
value
;
auto
tp
=
testEvaluator
->
getType
(
name
,
&
err
);
ASSERT_TRUE
(
err
.
isOK
());
ASSERT_EQ
(
testConf
.
evaluatorConfig
.
type
(),
tp
);
}
double
totalScore2
=
0.0
;
if
(
testConf
.
testAccumulate
)
{
testEvaluator
->
start
();
...
...
paddle/scripts/docker/Dockerfile
浏览文件 @
c109e3bf
...
...
@@ -10,28 +10,30 @@ RUN apt-get update && \
apt-get
install
-y
wget unzip
tar
xz-utils bzip2
gzip
coreutils
&&
\
apt-get
install
-y
curl
sed grep
graphviz libjpeg-dev zlib1g-dev
&&
\
apt-get
install
-y
python-numpy python-matplotlib gcc g++ gfortran
&&
\
apt-get
install
-y
automake
clang-3.8 llvm-3.8 libclang-3.8-dev
&&
\
apt-get
install
-y
automake
&&
\
apt-get clean
-y
RUN
pip
install
--upgrade
pip
&&
\
pip
install
-U
protobuf
&&
\
pip
install
-U
"protobuf==3.1.0"
&&
\
pip
install
-U
wheel pillow BeautifulSoup
&&
\
pip
install
-U
docopt PyYAML sphinx
&&
\
pip
install
-U
sphinx_rtd_theme recommonmark jupyter
RUN
curl
-sSL
https://cmake.org/files/v3.4/cmake-3.4.1.tar.gz |
tar
-xz
&&
\
cd
cmake-3.4.1
&&
./bootstrap
&&
make
-j
4
&&
make
install
&&
\
cd
cmake-3.4.1
&&
./bootstrap
&&
make
-j
`
nproc
`
&&
make
install
&&
\
cd
..
&&
rm
-rf
cmake-3.4.1
ARG
BUILD_WOBOQ
ARG
BUILD_AND_INSTALL
ARG
WITH_AVX
ARG
WITH_DOC
ARG
WITH_STYLE_CHECK
ENV
BUILD_WOBOQ=${BUILD_WOBOQ:-OFF}
ENV
BUILD_AND_INSTALL=${BUILD_AND_INSTALL:-OFF}
ENV
WITH_GPU=OFF
ENV
WITH_AVX=${WITH_AVX:-ON}
ENV
WITH_DOC=${WITH_DOC:-O
N
}
ENV
WITH_DOC=${WITH_DOC:-O
FF
}
ENV
WITH_STYLE_CHECK=${WITH_STYLE_CHECK:-OFF}
RUN
mkdir
/paddle
...
...
paddle/scripts/docker/Dockerfile.gpu
浏览文件 @
c109e3bf
...
...
@@ -10,28 +10,30 @@ RUN apt-get update && \
apt-get install -y wget unzip tar xz-utils bzip2 gzip coreutils && \
apt-get install -y curl sed grep graphviz libjpeg-dev zlib1g-dev && \
apt-get install -y python-numpy python-matplotlib gcc g++ gfortran && \
apt-get install -y automake
clang-3.8 llvm-3.8 libclang-3.8-dev
&& \
apt-get install -y automake && \
apt-get clean -y
RUN pip install --upgrade pip && \
pip install -U
protobuf
&& \
pip install -U
"protobuf==3.1.0"
&& \
pip install -U wheel pillow BeautifulSoup && \
pip install -U docopt PyYAML sphinx && \
pip install -U sphinx_rtd_theme recommonmark jupyter
RUN curl -sSL https://cmake.org/files/v3.4/cmake-3.4.1.tar.gz | tar -xz && \
cd cmake-3.4.1 && ./bootstrap && make -j
4
&& make install && \
cd cmake-3.4.1 && ./bootstrap && make -j
`nproc`
&& make install && \
cd .. && rm -rf cmake-3.4.1
ARG BUILD_WOBOQ
ARG BUILD_AND_INSTALL
ARG WITH_AVX
ARG WITH_DOC
ARG WITH_STYLE_CHECK
ENV BUILD_WOBOQ=${BUILD_WOBOQ:-OFF}
ENV BUILD_AND_INSTALL=${BUILD_AND_INSTALL:-OFF}
ENV WITH_GPU=ON
ENV WITH_AVX=${WITH_AVX:-ON}
ENV WITH_DOC=${WITH_DOC:-O
N
}
ENV WITH_DOC=${WITH_DOC:-O
FF
}
ENV WITH_STYLE_CHECK=${WITH_STYLE_CHECK:-OFF}
RUN mkdir /paddle
...
...
paddle/scripts/docker/build.sh
浏览文件 @
c109e3bf
...
...
@@ -11,7 +11,7 @@ set -e
# If Dockerfile.* sets BUILD_AND_INSTALL to 'ON', it would have copied
# source tree to /paddle, and this scripts should build it into
# /paddle/build.
if
[[
${
BUILD_AND_INSTALL
:-
O
N
}
==
'ON'
]]
;
then
if
[[
${
BUILD_AND_INSTALL
:-
O
FF
}
==
'ON'
]]
;
then
if
[[
${
WITH_GPU
:-
OFF
}
==
'ON'
]]
;
then
ln
-s
/usr/lib/x86_64-linux-gnu/libcudnn.so /usr/lib/libcudnn.so
fi
...
...
@@ -19,7 +19,7 @@ if [[ ${BUILD_AND_INSTALL:-ON} == 'ON' ]]; then
mkdir
-p
/paddle/build
# -p means no error if exists
cd
/paddle/build
cmake ..
\
-DWITH_DOC
=
ON
\
-DWITH_DOC
=
${
WITH_DOC
:-
OFF
}
\
-DWITH_GPU
=
${
WITH_GPU
:-
OFF
}
\
-DWITH_AVX
=
${
WITH_AVX
:-
OFF
}
\
-DWITH_SWIG_PY
=
ON
\
...
...
@@ -29,6 +29,8 @@ if [[ ${BUILD_AND_INSTALL:-ON} == 'ON' ]]; then
make
-j
`
nproc
`
make
install
if
[[
${
BUILD_WOBOQ
:-
OFF
}
==
'ON'
]]
;
then
apt-get
install
-y
clang-3.8 llvm-3.8 libclang-3.8-dev
# Install woboq_codebrowser.
git clone https://github.com/woboq/woboq_codebrowser /woboq
cd
/woboq
...
...
@@ -49,8 +51,10 @@ if [[ ${BUILD_AND_INSTALL:-ON} == 'ON' ]]; then
/woboq/indexgenerator/codebrowser_indexgenerator
$WOBOQ_OUT
cd
/woboq
make clean
fi
pip
install
/usr/local/opt/paddle/share/wheels/
*
.whl
pip
install
/usr/local/opt/paddle/share/wheels/py_paddle
*
linux
*
.whl
pip
install
/usr/local/opt/paddle/share/wheels/paddle
*
.whl
paddle version
fi
...
...
paddle/utils/Error.h
浏览文件 @
c109e3bf
...
...
@@ -37,10 +37,10 @@ namespace paddle {
*
* Error __must_check bar() {
* // do something.
*
Status s
= foo(); // invoke other method return status.
* if (
!s) return s
;
*
Error err
= foo(); // invoke other method return status.
* if (
err) return err
;
* // do something else.
* return
Status
();
* return
Error
();
* }
* @endcode{cpp}
*
...
...
@@ -53,8 +53,8 @@ namespace paddle {
*
* int foo(Error* error) {
* // Do something.
* Error
s
= bar();
* if (
!s
) {
* Error
err
= bar();
* if (
err
) {
* *error = s;
* return 0;
* }
...
...
@@ -68,10 +68,10 @@ namespace paddle {
* }
*
* Error foobar() {
* Error
s
;
* Error
err
;
* // do something.
* foo(&
s
);
* if (
!s) return s
;
* foo(&
err
);
* if (
err) return err
;
* }
* @endcode{cpp}
*
...
...
@@ -112,16 +112,22 @@ public:
}
/**
* @brief operator bool, return True if there is
no
error.
* @brief operator bool, return True if there is
something
error.
*/
operator
bool
()
const
{
return
msg_
==
nullptr
;
}
operator
bool
()
const
{
return
!
this
->
isOK
();
}
/**
* @brief isOK return True if there is no error.
* @return True if no error.
*/
bool
isOK
()
const
{
return
msg_
==
nullptr
;
}
/**
* @brief check this status by glog.
* @note It is a temp method used during cleaning Paddle code. It will be
* removed later.
*/
void
check
()
const
{
CHECK
(
*
this
)
<<
msg
();
}
void
check
()
const
{
CHECK
(
this
->
isOK
()
)
<<
msg
();
}
private:
std
::
shared_ptr
<
std
::
string
>
msg_
;
...
...
paddle/utils/tests/test_Error.cpp
浏览文件 @
c109e3bf
...
...
@@ -18,17 +18,17 @@ limitations under the License. */
TEST
(
Error
,
testAll
)
{
paddle
::
Error
error
;
ASSERT_TRUE
(
error
);
error
=
paddle
::
Error
(
"I'm the error"
);
ASSERT_FALSE
(
error
);
error
=
paddle
::
Error
(
"I'm the error"
);
ASSERT_TRUE
(
error
);
ASSERT_STREQ
(
"I'm the error"
,
error
.
msg
());
error
=
paddle
::
Error
(
"error2"
);
ASSERT_
FALS
E
(
error
);
ASSERT_
TRU
E
(
error
);
ASSERT_STREQ
(
"error2"
,
error
.
msg
());
int
i
=
3
;
auto
error3
=
paddle
::
Error
(
"error%d"
,
i
);
ASSERT_
FALS
E
(
error3
);
ASSERT_
TRU
E
(
error3
);
ASSERT_STREQ
(
"error3"
,
error3
.
msg
());
}
python/paddle/v2/__init__.py
浏览文件 @
c109e3bf
...
...
@@ -19,11 +19,12 @@ import trainer
import
event
import
data_type
import
data_feeder
import
attr
import
py_paddle.swig_paddle
as
api
__all__
=
[
'optimizer'
,
'layer'
,
'activation'
,
'parameters'
,
'init'
,
'trainer'
,
'event'
,
'data_type'
,
'data_feeder'
'event'
,
'data_type'
,
'
attr'
,
'
data_feeder'
]
...
...
python/paddle/v2/attr.py
0 → 100644
浏览文件 @
c109e3bf
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle.trainer_config_helpers.attrs
import
*
__all__
=
[
"Param"
,
"Extra"
,
]
Param
=
ParameterAttribute
Extra
=
ExtraLayerAttribute
python/paddle/v2/data_feeder.py
浏览文件 @
c109e3bf
...
...
@@ -23,9 +23,10 @@ class DataFeeder(DataProviderConverter):
"""
DataFeeder converts the data returned by paddle.reader into a data structure
of Arguments which is defined in the API. The paddle.reader usually returns
a list of mini-batch data. Each item in the list is a list or a tuple,
which is one sample with one or multiple features. DataFeeder converts this
mini-batch data into Arguments in order to feed it to C++ interface.
a list of mini-batch data entries. Each data entry in the list is one sampe.
Each sample is a list or a tuple with one feature or multiple features.
DataFeeder converts this mini-batch data entries into Arguments in order
to feed it to C++ interface.
The example usage:
...
...
@@ -37,6 +38,10 @@ class DataFeeder(DataProviderConverter):
( [1.0,2.0,3.0,4.0], 5, [6,7,8] ), # first sample
( [1.0,2.0,3.0,4.0], 5, [6,7,8] ) # second sample
]
# or minibatch_data = [
# [ [1.0,2.0,3.0,4.0], 5, [6,7,8] ], # first sample
# [ [1.0,2.0,3.0,4.0], 5, [6,7,8] ] # second sample
# ]
arg = feeder(minibatch_data)
"""
...
...
@@ -63,13 +68,19 @@ class DataFeeder(DataProviderConverter):
def
convert
(
self
,
dat
,
argument
=
None
):
"""
:param dat: A list of mini-batch data. Each item is a list or tuple,
:param dat: A list of mini-batch data. Each sample is a list or tuple
one feature or multiple features.
for example:
[
(feature_0, feature_1, feature_2, ...), # first sample
(feature_0, feature_1, feature_2, ...), # second sample
...
([0.2, 0.2], ), # first sample
([0.8, 0.3], ), # second sample
]
or,
[
[[0.2, 0.2], ], # first sample
[[0.8, 0.3], ], # second sample
]
:type dat: List
:param argument: An Arguments object contains this mini-batch data with
one or multiple features. The Arguments definition is
...
...
python/paddle/v2/data_type.py
浏览文件 @
c109e3bf
...
...
@@ -14,9 +14,9 @@
from
paddle.trainer.PyDataProvider2
import
\
InputType
,
dense_vector
,
sparse_binary_vector
,
\
sparse_vector
,
integer_value
sparse_vector
,
integer_value
,
integer_value_sequence
__all__
=
[
'InputType'
,
'dense_vector'
,
'sparse_binary_vector'
,
'sparse_vector'
,
'integer_value'
'integer_value'
,
'integer_value_sequence'
]
python/paddle/v2/layer.py
浏览文件 @
c109e3bf
...
...
@@ -74,6 +74,8 @@ from paddle.trainer_config_helpers.config_parser_utils import \
from
paddle.trainer_config_helpers.default_decorators
import
wrap_name_default
import
data_type
import
activation
import
attr
__all__
=
[
'parse_network'
,
'data'
,
'fc'
,
'max_id'
,
'classification_cost'
,
...
...
@@ -230,8 +232,11 @@ if __name__ == '__main__':
weight
=
data
(
name
=
'weight'
,
type
=
data_type
.
dense_vector
(
10
))
score
=
data
(
name
=
'score'
,
type
=
data_type
.
dense_vector
(
1
))
hidden
=
fc
(
input
=
pixel
,
size
=
100
,
act
=
conf_helps
.
SigmoidActivation
())
inference
=
fc
(
input
=
hidden
,
size
=
10
,
act
=
conf_helps
.
SoftmaxActivation
())
hidden
=
fc
(
input
=
pixel
,
size
=
100
,
act
=
activation
.
Sigmoid
(),
param_attr
=
attr
.
Param
(
name
=
'hidden'
))
inference
=
fc
(
input
=
hidden
,
size
=
10
,
act
=
activation
.
Softmax
())
maxid
=
max_id
(
input
=
inference
)
cost1
=
classification_cost
(
input
=
inference
,
label
=
label
)
cost2
=
classification_cost
(
input
=
inference
,
label
=
label
,
weight
=
weight
)
...
...
python/paddle/v2/tests/CMakeLists.txt
浏览文件 @
c109e3bf
add_test
(
NAME test_v2_layer
COMMAND
${
PROJ_ROOT
}
/paddle/.set_python_path.sh -d
${
PROJ_ROOT
}
/python/
${
PYTHON_EXECUTABLE
}
${
PROJ_ROOT
}
/python/paddle/v2/tests/test_layer.py
WORKING_DIRECTORY
${
PROJ_ROOT
}
/python/paddle
)
add_test
(
NAME test_v2_api
COMMAND bash
${
PROJ_ROOT
}
/python/paddle/v2/tests/run_tests.sh
${
PYTHON_EXECUTABLE
}
)
python/paddle/v2/tests/test_data_feeder.py
浏览文件 @
c109e3bf
...
...
@@ -32,7 +32,7 @@ class DataFeederTest(unittest.TestCase):
num
=
np
.
random
.
randint
(
size_limit
)
return
np
.
random
.
randint
(
high
,
size
=
num
).
tolist
()
def
test_dense
_vector
(
self
):
def
test_dense
(
self
):
def
compare
(
input
):
feeder
=
DataFeeder
([(
'image'
,
data_type
.
dense_vector
(
784
))],
{
'image'
:
0
})
...
...
@@ -51,7 +51,7 @@ class DataFeederTest(unittest.TestCase):
data
.
append
(
each_sample
)
compare
(
data
)
#
test
list
#
each feature is a
list
data
=
[]
for
i
in
xrange
(
batch_size
):
each_sample
=
[]
...
...
@@ -59,6 +59,13 @@ class DataFeederTest(unittest.TestCase):
data
.
append
(
each_sample
)
compare
(
data
)
# test tuple
data
=
[]
for
i
in
xrange
(
batch_size
):
each_sample
=
(
self
.
dense_reader
(
dim
).
tolist
(),
)
data
.
append
(
each_sample
)
compare
(
data
)
def
test_sparse_binary
(
self
):
dim
=
10000
batch_size
=
32
...
...
@@ -86,7 +93,7 @@ class DataFeederTest(unittest.TestCase):
a
=
self
.
sparse_binary_reader
(
dim
,
40
,
non_empty
=
True
)
b
=
self
.
dense_reader
(
len
(
a
)).
tolist
()
v
.
append
(
a
)
w
.
append
(
b
[
0
]
)
w
.
append
(
np
.
array
(
b
,
dtype
=
"float32"
)
)
each_sample
.
append
(
zip
(
a
,
b
))
data
.
append
(
each_sample
)
...
...
@@ -97,6 +104,10 @@ class DataFeederTest(unittest.TestCase):
assert
isinstance
(
output
,
api
.
Matrix
)
for
i
in
xrange
(
batch_size
):
self
.
assertEqual
(
output
.
getSparseRowCols
(
i
),
v
[
i
])
cols_value
=
output
.
getSparseRowColsVal
(
i
)
value
=
[
val
[
1
]
for
val
in
cols_value
]
value
=
np
.
array
(
value
,
dtype
=
"float32"
)
self
.
assertAlmostEqual
(
value
.
all
(),
w
[
i
].
all
())
def
test_integer
(
self
):
dim
=
100
...
...
@@ -113,16 +124,42 @@ class DataFeederTest(unittest.TestCase):
index
=
np
.
array
(
index
,
dtype
=
'int'
)
self
.
assertEqual
(
output
.
all
(),
index
.
flatten
().
all
())
def
test_multiple_slots
(
self
):
def
test_integer_sequence
(
self
):
dim
=
10000
batch_size
=
32
start
=
[
0
]
data
=
[]
for
i
in
xrange
(
batch_size
):
each_sample
=
[]
each_sample
.
append
(
self
.
sparse_binary_reader
(
dim
,
30
,
non_empty
=
True
))
data
.
append
(
each_sample
)
start
.
append
(
len
(
each_sample
[
0
])
+
start
[
-
1
])
feeder
=
DataFeeder
([(
'input'
,
data_type
.
integer_value_sequence
(
dim
))],
{
'input'
:
0
})
arg
=
feeder
(
data
)
output_data
=
arg
.
getSlotIds
(
0
).
copyToNumpyArray
()
output_start
=
arg
.
getSlotSequenceStartPositions
(
0
).
copyToNumpyArray
()
index
=
[]
for
dat
in
data
:
index
.
extend
(
x
for
x
in
dat
[
0
])
# only one feature, so dat[0]
index
=
np
.
array
(
index
,
dtype
=
'int'
)
start
=
np
.
array
(
start
,
dtype
=
'int'
)
self
.
assertEqual
(
output_data
.
all
(),
index
.
all
())
self
.
assertEqual
(
output_start
.
all
(),
start
.
all
())
def
test_multiple_features
(
self
):
batch_size
=
2
data
=
[]
for
i
in
xrange
(
batch_size
):
each_sample
=
[]
each_sample
.
append
(
np
.
random
.
randint
(
10
))
# size of feature 2: 10
each_sample
.
append
(
np
.
random
.
randint
(
10
))
each_sample
.
append
(
self
.
sparse_binary_reader
(
20000
,
40
,
non_empty
=
True
))
# size of feature 1: 20000
each_sample
.
append
(
self
.
dense_reader
(
100
))
# size of feature 0: 100
20000
,
40
,
non_empty
=
True
))
each_sample
.
append
(
self
.
dense_reader
(
100
))
data
.
append
(
each_sample
)
# test multiple features
...
...
@@ -150,10 +187,30 @@ class DataFeederTest(unittest.TestCase):
self
.
assertEqual
(
output_dense
[
i
].
all
(),
data
[
i
][
2
].
all
())
self
.
assertEqual
(
output_index
[
i
],
data
[
i
][
0
])
def
test_multiple_features_tuple
(
self
):
batch_size
=
2
data
=
[]
for
i
in
xrange
(
batch_size
):
a
=
np
.
random
.
randint
(
10
)
b
=
self
.
sparse_binary_reader
(
20000
,
40
,
non_empty
=
True
)
c
=
self
.
dense_reader
(
100
)
each_sample
=
(
a
,
b
,
c
)
data
.
append
(
each_sample
)
# test multiple features
data_types
=
[(
'fea0'
,
data_type
.
dense_vector
(
100
)),
(
'fea1'
,
data_type
.
sparse_binary_vector
(
20000
)),
(
'fea2'
,
data_type
.
integer_value
(
10
))]
feeder
=
DataFeeder
(
data_types
,
{
'fea0'
:
2
,
'fea1'
:
1
,
'fea2'
:
0
})
arg
=
feeder
(
data
)
out_dense
=
arg
.
getSlotValue
(
0
).
copyToNumpyMat
()
out_sparse
=
arg
.
getSlotValue
(
1
)
out_index
=
arg
.
getSlotIds
(
2
).
copyToNumpyArray
()
for
i
in
xrange
(
batch_size
):
self
.
assertEqual
(
out_dense
[
i
].
all
(),
data
[
i
][
2
].
all
())
self
.
assertEqual
(
out_sparse
.
getSparseRowCols
(
i
),
data
[
i
][
1
])
self
.
assertEqual
(
out_index
[
i
],
data
[
i
][
0
])
if
__name__
==
'__main__'
:
api
.
initPaddle
(
"--use_gpu=0"
)
unittest
.
main
()
if
__name__
==
'__main__'
:
api
.
initPaddle
(
"--use_gpu=0"
)
...
...
python/paddle/v2/tests/test_layer.py
0 → 100644
浏览文件 @
c109e3bf
# Copyright PaddlePaddle contributors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
difflib
import
unittest
import
paddle.trainer_config_helpers
as
conf_helps
import
paddle.v2.activation
as
activation
import
paddle.v2.attr
as
attr
import
paddle.v2.data_type
as
data_type
import
paddle.v2.layer
as
layer
from
paddle.trainer_config_helpers.config_parser_utils
import
\
parse_network_config
as
parse_network
pixel
=
layer
.
data
(
name
=
'pixel'
,
type
=
data_type
.
dense_vector
(
784
))
label
=
layer
.
data
(
name
=
'label'
,
type
=
data_type
.
integer_value
(
10
))
weight
=
layer
.
data
(
name
=
'weight'
,
type
=
data_type
.
dense_vector
(
10
))
score
=
layer
.
data
(
name
=
'score'
,
type
=
data_type
.
dense_vector
(
1
))
hidden
=
layer
.
fc
(
input
=
pixel
,
size
=
100
,
act
=
activation
.
Sigmoid
(),
param_attr
=
attr
.
Param
(
name
=
'hidden'
))
inference
=
layer
.
fc
(
input
=
hidden
,
size
=
10
,
act
=
activation
.
Softmax
())
class
CostLayerTest
(
unittest
.
TestCase
):
def
test_cost_layer
(
self
):
cost1
=
layer
.
classification_cost
(
input
=
inference
,
label
=
label
)
cost2
=
layer
.
classification_cost
(
input
=
inference
,
label
=
label
,
weight
=
weight
)
cost3
=
layer
.
cross_entropy_cost
(
input
=
inference
,
label
=
label
)
cost4
=
layer
.
cross_entropy_with_selfnorm_cost
(
input
=
inference
,
label
=
label
)
cost5
=
layer
.
regression_cost
(
input
=
inference
,
label
=
label
)
cost6
=
layer
.
regression_cost
(
input
=
inference
,
label
=
label
,
weight
=
weight
)
cost7
=
layer
.
multi_binary_label_cross_entropy_cost
(
input
=
inference
,
label
=
label
)
cost8
=
layer
.
rank_cost
(
left
=
score
,
right
=
score
,
label
=
score
)
cost9
=
layer
.
lambda_cost
(
input
=
inference
,
score
=
score
)
cost10
=
layer
.
sum_cost
(
input
=
inference
)
cost11
=
layer
.
huber_cost
(
input
=
score
,
label
=
label
)
print
dir
(
layer
)
layer
.
parse_network
(
cost1
,
cost2
)
print
dir
(
layer
)
#print layer.parse_network(cost3, cost4)
#print layer.parse_network(cost5, cost6)
#print layer.parse_network(cost7, cost8, cost9, cost10, cost11)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录