未验证 提交 bfc439ce 编写于 作者: G George Ni 提交者: GitHub

[MOT] add deepsort video infer and doc (#3346)

* add deepsort video infer modelzoo, test=document_fix

* fix deepsort doc results, test=document_fix
上级 37962dcb
......@@ -45,20 +45,24 @@ pip install -r requirements.txt
## Model Zoo
### DeepSORT on MOT-16 Training Set
### DeepSORT Results on MOT-16 Training Set
| backbone | input shape | MOTA | IDF1 | IDS | FP | FN | FPS | download| config |
| :---------| :------- | :----: | :----: | :--: | :----: | :---: | :---: | :---: | :---: |
| ResNet-101 | 1088x608 | 72.2 | 60.5 | 998 | 8054 | 21644 | - | [download](https://paddledet.bj.bcebos.com/models/mot/deepsort_pcb_pyramid_r101.pdparams)|[config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/deepsort/deepsort_pcb_pyramid_r101.yml) |
| backbone | input shape | MOTA | IDF1 | IDS | FP | FN | FPS | det result/model |ReID model| config |
| :---------| :------- | :----: | :----: | :--: | :----: | :---: | :---: | :---: | :---: | :---: |
| ResNet-101 | 1088x608 | 72.2 | 60.5 | 998 | 8054 | 21644 | - | [det result](https://dataset.bj.bcebos.com/mot/det_results_dir.zip) |[ReID model](https://paddledet.bj.bcebos.com/models/mot/deepsort_pcb_pyramid_r101.pdparams)|[config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/deepsort/deepsort_pcb_pyramid_r101.yml) |
| ResNet-101 | 1088x608 | 68.3 | 56.5 | 1722 | 17337 | 15890 | - | [det model](https://paddledet.bj.bcebos.com/models/mot/jde_yolov3_darknet53_30e_1088x608.pdparams) |[ReID model](https://paddledet.bj.bcebos.com/models/mot/deepsort_pcb_pyramid_r101.pdparams)|[config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/deepsort/deepsort_pcb_pyramid_r101.yml) |
### DeepSORT on MOT-16 Test Set
### DeepSORT Results on MOT-16 Test Set
| backbone | input shape | MOTA | IDF1 | IDS | FP | FN | FPS | download| config |
| :---------| :------- | :----: | :----: | :--: | :----: | :---: | :---: | :---: | :---: |
| ResNet-101 | 1088x608 | 64.1 | 53.0 | 1024 | 12457 | 51919 | - | [download](https://paddledet.bj.bcebos.com/models/mot/deepsort_pcb_pyramid_r101.pdparams)|[config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/deepsort/deepsort_pcb_pyramid_r101.yml) |
| backbone | input shape | MOTA | IDF1 | IDS | FP | FN | FPS | det result/model |ReID model| config |
| :---------| :------- | :----: | :----: | :--: | :----: | :---: | :---: | :---: | :---: | :---: |
| ResNet-101 | 1088x608 | 64.1 | 53.0 | 1024 | 12457 | 51919 | - |[det result](https://dataset.bj.bcebos.com/mot/det_results_dir.zip) |[ReID model](https://paddledet.bj.bcebos.com/models/mot/deepsort_pcb_pyramid_r101.pdparams)|[config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/deepsort/deepsort_pcb_pyramid_r101.yml) |
| ResNet-101 | 1088x608 | 61.2 | 48.5 | 1799 | 25796 | 43232 | - | [det model](https://paddledet.bj.bcebos.com/models/mot/jde_yolov3_darknet53_30e_1088x608.pdparams) |[ReID model](https://paddledet.bj.bcebos.com/models/mot/deepsort_pcb_pyramid_r101.pdparams)|[config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/deepsort/deepsort_pcb_pyramid_r101.yml) |
**Notes:**
DeepSORT does not need to train on MOT dataset, only used for evaluation. Before DeepSORT evaluation, you should get detection results by a detection model first, and then prepare them like this:
DeepSORT does not need to train on MOT dataset, only used for evaluation. Now it supports two evaluation methods.
- 1.Load the result file and the ReID model. Before DeepSORT evaluation, you should get detection results by a detection model first, and then prepare them like this:
```
det_results_dir
|——————MOT16-02.txt
......@@ -69,24 +73,24 @@ det_results_dir
|——————MOT16-11.txt
|——————MOT16-13.txt
```
For MOT16 dataset, you can download the det_results_dir.zip of one detection model provided by PaddleDetection:
For MOT16 dataset, you can download a detection result after matching called det_results_dir.zip provided by PaddleDetection:
```
wget https://dataset.bj.bcebos.com/mot/det_results_dir.zip
```
Each txt is the detection result of all the pictures extracted from each video, and each line describes a bounding box with the following format:
If you use a stronger detection model, you can get better results. Each txt is the detection result of all the pictures extracted from each video, and each line describes a bounding box with the following format:
```
[frame_id],[identity],[bb_left],[bb_top],[width],[height],[conf]
[frame_id],[bb_left],[bb_top],[width],[height],[conf]
```
**Notes:**
- `frame_id` is the frame number of the image
- `identity` is the object id using default value `-1`
- `bb_left` is the X coordinate of the left bound of the object box
- `bb_top` is the Y coordinate of the upper bound of the object box
- `width,height` is the pixel width and height
- `conf` is the object score with default value `1` (the results had been filtered out according to the detection score threshold)
- 2.Load the detection model and the ReID model at the same time. Here, the JDE version of YOLOv3 is selected. For more detail of configuration, see `configs/mot/deepsort/_base_/deepsort_yolov3_darknet53_pcb_pyramid_r101.yml`.
### JDE on MOT-16 Training Set
### JDE Results on MOT-16 Training Set
| backbone | input shape | MOTA | IDF1 | IDS | FP | FN | FPS | download | config |
| :----------------- | :------- | :----: | :----: | :---: | :----: | :---: | :---: | :---: | :---: |
......@@ -94,7 +98,7 @@ Each txt is the detection result of all the pictures extracted from each video,
| DarkNet53 | 864x480 | 69.1 | 64.7 | 1539 | 7544 | 25046 | - |[model](https://paddledet.bj.bcebos.com/models/mot/jde_darknet53_30e_864x480.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/jde/jde_darknet53_30e_864x480.yml) |
| DarkNet53 | 576x320 | 63.7 | 64.4 | 1310 | 6782 | 31964 | - |[model](https://paddledet.bj.bcebos.com/models/mot/jde_darknet53_30e_576x320.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/jde/jde_darknet53_30e_576x320.yml) |
### JDE on MOT-16 Test Set
### JDE Results on MOT-16 Test Set
| backbone | input shape | MOTA | IDF1 | IDS | FP | FN | FPS | download | config |
| :----------------- | :------- | :----: | :----: | :---: | :----: | :---: | :---: | :---: | :---: |
......
......@@ -46,18 +46,23 @@ pip install -r requirements.txt
### DeepSORT在MOT-16 Training Set上结果
| 骨干网络 | 输入尺寸 | MOTA | IDF1 | IDS | FP | FN | FPS | 下载链接 | 配置文件 |
| :---------| :------- | :----: | :----: | :--: | :----: | :---: | :---: | :-----: | :-----: |
| ResNet-101 | 1088x608 | 72.2 | 60.5 | 998 | 8054 | 21644 | - | [下载链接](https://paddledet.bj.bcebos.com/models/mot/deepsort_pcb_pyramid_r101.pdparams)|[配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/deepsort/deepsort_pcb_pyramid_r101.yml) |
| 骨干网络 | 输入尺寸 | MOTA | IDF1 | IDS | FP | FN | FPS | 检测结果或模型 | ReID模型 |配置文件 |
| :---------| :------- | :----: | :----: | :--: | :----: | :---: | :---: | :-----:| :-----: | :-----: |
| ResNet-101 | 1088x608 | 72.2 | 60.5 | 998 | 8054 | 21644 | - | [检测结果](https://dataset.bj.bcebos.com/mot/det_results_dir.zip) |[ReID模型](https://paddledet.bj.bcebos.com/models/mot/deepsort_pcb_pyramid_r101.pdparams)|[配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/deepsort/deepsort_pcb_pyramid_r101.yml) |
| ResNet-101 | 1088x608 | 68.3 | 56.5 | 1722 | 17337 | 15890 | - | [检测模型](https://paddledet.bj.bcebos.com/models/mot/jde_yolov3_darknet53_30e_1088x608.pdparams) |[ReID模型](https://paddledet.bj.bcebos.com/models/mot/deepsort_pcb_pyramid_r101.pdparams)|[配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/deepsort/deepsort_pcb_pyramid_r101.yml) |
### DeepSORT在MOT-16 Test Set上结果
| 骨干网络 | 输入尺寸 | MOTA | IDF1 | IDS | FP | FN | FPS | 下载链接 | 配置文件 |
| :---------| :------- | :----: | :----: | :--: | :----: | :---: | :---: | :-----: | :-----: |
| ResNet-101 | 1088x608 | 64.1 | 53.0 | 1024 | 12457 | 51919 | - | [下载链接](https://paddledet.bj.bcebos.com/models/mot/deepsort_pcb_pyramid_r101.pdparams)|[配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/deepsort/deepsort_pcb_pyramid_r101.yml) |
| 骨干网络 | 输入尺寸 | MOTA | IDF1 | IDS | FP | FN | FPS | 检测结果或模型 | ReID模型 |配置文件 |
| :---------| :------- | :----: | :----: | :--: | :----: | :---: | :---: | :-----: | :-----: |:-----: |
| ResNet-101 | 1088x608 | 64.1 | 53.0 | 1024 | 12457 | 51919 | - | [检测结果](https://dataset.bj.bcebos.com/mot/det_results_dir.zip) | [ReID模型](https://paddledet.bj.bcebos.com/models/mot/deepsort_pcb_pyramid_r101.pdparams)|[配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/deepsort/deepsort_pcb_pyramid_r101.yml) |
| ResNet-101 | 1088x608 | 61.2 | 48.5 | 1799 | 25796 | 43232 | - | [检测模型](https://paddledet.bj.bcebos.com/models/mot/jde_yolov3_darknet53_30e_1088x608.pdparams) |[ReID模型](https://paddledet.bj.bcebos.com/models/mot/deepsort_pcb_pyramid_r101.pdparams)|[配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/deepsort/deepsort_pcb_pyramid_r101.yml) |
**注意:**
DeepSORT不需要训练MOT数据集,只用于评估。在使用DeepSORT模型评估之前,应该首先通过一个检测模型得到检测结果,然后像这样准备好结果文件:
DeepSORT不需要训练MOT数据集,只用于评估,现在支持两种评估的方式。
- 第1种方式是加载检测结果文件和ReID模型,在使用DeepSORT模型评估之前,应该首先通过一个检测模型得到检测结果,然后像这样准备好结果文件:
```
det_results_dir
|——————MOT16-02.txt
......@@ -68,22 +73,22 @@ det_results_dir
|——————MOT16-11.txt
|——————MOT16-13.txt
```
对于MOT16数据集,可以下载PaddleDetection提供的一个检测结果det_results_dir.zip并解压:
对于MOT16数据集,可以下载PaddleDetection提供的一个经过匹配之后的检测框结果det_results_dir.zip并解压:
```
wget https://dataset.bj.bcebos.com/mot/det_results_dir.zip
```
其中每个txt是每个视频中所有图片的检测结果,每行都描述一个边界框,格式如下:
如果使用更强的检测模型,可以取得更好的结果。其中每个txt是每个视频中所有图片的检测结果,每行都描述一个边界框,格式如下:
```
[frame_id],[identity],[bb_left],[bb_top],[width],[height],[conf]
[frame_id],[bb_left],[bb_top],[width],[height],[conf]
```
**注意**:
- `frame_id`是图片帧的序号
- `identity`是目标id采用默认值为`-1`
- `bb_left`是目标框的左边界的x坐标
- `bb_top`是目标框的上边界的y坐标
- `width,height`是真实的像素宽高
- `conf`是目标得分设置为`1`(已经按检测的得分阈值筛选出的检测结果)
- 第2种方式是同时加载检测模型和ReID模型,此处选用JDE版本的YOLOv3,具体配置见`configs/mot/deepsort/_base_/deepsort_yolov3_darknet53_pcb_pyramid_r101.yml`
### JDE在MOT-16 Training Set上结果
......
......@@ -13,20 +13,24 @@ English | [简体中文](README_cn.md)
## Model Zoo
### DeepSORT on MOT-16 Training Set
### DeepSORT Results on MOT-16 Training Set
| backbone | input shape | MOTA | IDF1 | IDS | FP | FN | FPS | download| config |
| :---------| :------- | :----: | :----: | :--: | :----: | :---: | :---: | :---: | :---: |
| ResNet101 | 1088x608 | 72.2 | 60.5 | 998 | 8054 | 21644 | - | [download](https://paddledet.bj.bcebos.com/models/mot/deepsort_pcb_pyramid_r101.pdparams)|[config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/deepsort/deepsort_pcb_pyramid_r101.yml) |
| backbone | input shape | MOTA | IDF1 | IDS | FP | FN | FPS | det result/model |ReID model| config |
| :---------| :------- | :----: | :----: | :--: | :----: | :---: | :---: | :---: | :---: | :---: |
| ResNet-101 | 1088x608 | 72.2 | 60.5 | 998 | 8054 | 21644 | - | [det result](https://dataset.bj.bcebos.com/mot/det_results_dir.zip) |[ReID model](https://paddledet.bj.bcebos.com/models/mot/deepsort_pcb_pyramid_r101.pdparams)|[config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/deepsort/deepsort_pcb_pyramid_r101.yml) |
| ResNet-101 | 1088x608 | 68.3 | 56.5 | 1722 | 17337 | 15890 | - | [det model](https://paddledet.bj.bcebos.com/models/mot/jde_yolov3_darknet53_30e_1088x608.pdparams) |[ReID model](https://paddledet.bj.bcebos.com/models/mot/deepsort_pcb_pyramid_r101.pdparams)|[config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/deepsort/deepsort_pcb_pyramid_r101.yml) |
### DeepSORT on MOT-16 Test Set
### DeepSORT Results on MOT-16 Test Set
| backbone | input shape | MOTA | IDF1 | IDS | FP | FN | FPS | download| config |
| :---------| :------- | :----: | :----: | :--: | :----: | :---: | :---: | :---: | :---: |
| ResNet101 | 1088x608 | 64.1 | 53.0 | 1024 | 12457 | 51919 | - | [download](https://paddledet.bj.bcebos.com/models/mot/deepsort_pcb_pyramid_r101.pdparams)|[config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/deepsort/deepsort_pcb_pyramid_r101.yml) |
| backbone | input shape | MOTA | IDF1 | IDS | FP | FN | FPS | det result/model |ReID model| config |
| :---------| :------- | :----: | :----: | :--: | :----: | :---: | :---: | :---: | :---: | :---: |
| ResNet-101 | 1088x608 | 64.1 | 53.0 | 1024 | 12457 | 51919 | - |[det result](https://dataset.bj.bcebos.com/mot/det_results_dir.zip) |[ReID model](https://paddledet.bj.bcebos.com/models/mot/deepsort_pcb_pyramid_r101.pdparams)|[config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/deepsort/deepsort_pcb_pyramid_r101.yml) |
| ResNet-101 | 1088x608 | 61.2 | 48.5 | 1799 | 25796 | 43232 | - | [det model](https://paddledet.bj.bcebos.com/models/mot/jde_yolov3_darknet53_30e_1088x608.pdparams) |[ReID model](https://paddledet.bj.bcebos.com/models/mot/deepsort_pcb_pyramid_r101.pdparams)|[config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/deepsort/deepsort_pcb_pyramid_r101.yml) |
**Notes:**
DeepSORT does not need to train on MOT dataset, only used for evaluation. Before DeepSORT evaluation, you should get detection results by a detection model first, and then prepare them like this:
DeepSORT does not need to train on MOT dataset, only used for evaluation. Now it supports two evaluation methods.
- 1.Load the result file and the ReID model. Before DeepSORT evaluation, you should get detection results by a detection model first, and then prepare them like this:
```
det_results_dir
|——————MOT16-02.txt
......@@ -37,30 +41,44 @@ det_results_dir
|——————MOT16-11.txt
|——————MOT16-13.txt
```
For MOT16 dataset, you can download the det_results_dir.zip provided by PaddleDetection:
For MOT16 dataset, you can download a detection result after matching called det_results_dir.zip provided by PaddleDetection:
```
wget https://dataset.bj.bcebos.com/mot/det_results_dir.zip
```
Each txt is the detection result of all the pictures extracted from each video, and each line describes a bounding box with the following format:
If you use a stronger detection model, you can get better results. Each txt is the detection result of all the pictures extracted from each video, and each line describes a bounding box with the following format:
```
[frame_id],[identity],[bb_left],[bb_top],[width],[height],[conf]
[frame_id],[bb_left],[bb_top],[width],[height],[conf]
```
**Notes:**
- `frame_id` is the frame number of the image
- `identity` is the object id using default value `-1`
- `bb_left` is the X coordinate of the left bound of the object box
- `bb_top` is the Y coordinate of the upper bound of the object box
- `width,height` is the pixel width and height
- `conf` is the object score with default value `1` (the results had been filtered out according to the detection score threshold)
- 2.Load the detection model and the ReID model at the same time. Here, the JDE version of YOLOv3 is selected. For more detail of configuration, see `configs/mot/deepsort/_base_/deepsort_yolov3_darknet53_pcb_pyramid_r101.yml`.
## Getting Start
### 1. Evaluation
```bash
# track the objects by loading detected result files
# Load the result file and ReID model to get the tracking result
CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/deepsort/deepsort_pcb_pyramid_r101.yml --det_results_dir {your detection results}
# Load the detection model and ReID model to get the tracking results
CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/deepsort/deepsort_yolov3_pcb_pyramid_r101.yml
```
### 2. Inference
Inference a vidoe on single GPU with following command:
```bash
# inference on video and save a video
CUDA_VISIBLE_DEVICES=0 python tools/infer_mot.py -c configs/mot/deepsort/deepsort_yolov3_pcb_pyramid_r101.yml --video_file={your video name}.mp4 --save_videos
```
**Notes:**
Please make sure that [ffmpeg](https://ffmpeg.org/ffmpeg.html) is installed first, on Linux(Ubuntu) platform you can directly install it by the following command:`apt-get update && apt-get install -y ffmpeg`.
## Citations
```
......
......@@ -15,18 +15,23 @@
### DeepSORT在MOT-16 Training Set上结果
| 骨干网络 | 输入尺寸 | MOTA | IDF1 | IDS | FP | FN | FPS | 下载链接 | 配置文件 |
| :---------| :------- | :----: | :----: | :--: | :----: | :---: | :---: | :-----: | :-----: |
| ResNet101 | 1088x608 | 72.2 | 60.5 | 998 | 8054 | 21644 | - | [下载链接](https://paddledet.bj.bcebos.com/models/mot/deepsort_pcb_pyramid_r101.pdparams)|[配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/deepsort/deepsort_pcb_pyramid_r101.yml) |
| 骨干网络 | 输入尺寸 | MOTA | IDF1 | IDS | FP | FN | FPS | 检测结果或模型 | ReID模型 |配置文件 |
| :---------| :------- | :----: | :----: | :--: | :----: | :---: | :---: | :-----:| :-----: | :-----: |
| ResNet-101 | 1088x608 | 72.2 | 60.5 | 998 | 8054 | 21644 | - | [检测结果](https://dataset.bj.bcebos.com/mot/det_results_dir.zip) |[ReID模型](https://paddledet.bj.bcebos.com/models/mot/deepsort_pcb_pyramid_r101.pdparams)|[配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/deepsort/deepsort_pcb_pyramid_r101.yml) |
| ResNet-101 | 1088x608 | 68.3 | 56.5 | 1722 | 17337 | 15890 | - | [检测模型](https://paddledet.bj.bcebos.com/models/mot/jde_yolov3_darknet53_30e_1088x608.pdparams) |[ReID模型](https://paddledet.bj.bcebos.com/models/mot/deepsort_pcb_pyramid_r101.pdparams)|[配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/deepsort/deepsort_pcb_pyramid_r101.yml) |
### DeepSORT在MOT-16 Test Set上结果
| 骨干网络 | 输入尺寸 | MOTA | IDF1 | IDS | FP | FN | FPS | 下载链接 | 配置文件 |
| :---------| :------- | :----: | :----: | :--: | :----: | :---: | :---: | :-----: | :-----: |
| ResNet101 | 1088x608 | 64.1 | 53.0 | 1024 | 12457 | 51919 | - | [下载链接](https://paddledet.bj.bcebos.com/models/mot/deepsort_pcb_pyramid_r101.pdparams)|[配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/deepsort/deepsort_pcb_pyramid_r101.yml) |
| 骨干网络 | 输入尺寸 | MOTA | IDF1 | IDS | FP | FN | FPS | 检测结果或模型 | ReID模型 |配置文件 |
| :---------| :------- | :----: | :----: | :--: | :----: | :---: | :---: | :-----: | :-----: |:-----: |
| ResNet-101 | 1088x608 | 64.1 | 53.0 | 1024 | 12457 | 51919 | - | [检测结果](https://dataset.bj.bcebos.com/mot/det_results_dir.zip) | [ReID模型](https://paddledet.bj.bcebos.com/models/mot/deepsort_pcb_pyramid_r101.pdparams)|[配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/deepsort/deepsort_pcb_pyramid_r101.yml) |
| ResNet-101 | 1088x608 | 61.2 | 48.5 | 1799 | 25796 | 43232 | - | [检测模型](https://paddledet.bj.bcebos.com/models/mot/jde_yolov3_darknet53_30e_1088x608.pdparams) |[ReID模型](https://paddledet.bj.bcebos.com/models/mot/deepsort_pcb_pyramid_r101.pdparams)|[配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/deepsort/deepsort_pcb_pyramid_r101.yml) |
**注意:**
DeepSORT不需要训练MOT数据集,只用于评估。在使用DeepSORT模型评估之前,应该首先通过一个检测模型得到检测结果,然后像这样准备好结果文件:
DeepSORT不需要训练MOT数据集,只用于评估,现在支持两种评估的方式。
- 第1种方式是加载检测结果文件和ReID模型,在使用DeepSORT模型评估之前,应该首先通过一个检测模型得到检测结果,然后像这样准备好结果文件:
```
det_results_dir
|——————MOT16-02.txt
......@@ -37,31 +42,46 @@ det_results_dir
|——————MOT16-11.txt
|——————MOT16-13.txt
```
对于MOT16数据集,可以下载PaddleDetection提供的det_results_dir.zip并解压:
对于MOT16数据集,可以下载PaddleDetection提供的一个经过匹配之后的检测框结果det_results_dir.zip并解压:
```
wget https://dataset.bj.bcebos.com/mot/det_results_dir.zip
```
其中每个txt是每个视频中所有图片的检测结果,每行都描述一个边界框,格式如下:
如果使用更强的检测模型,可以取得更好的结果。其中每个txt是每个视频中所有图片的检测结果,每行都描述一个边界框,格式如下:
```
[frame_id],[identity],[bb_left],[bb_top],[width],[height],[conf]
[frame_id],[bb_left],[bb_top],[width],[height],[conf]
```
**注意**:
- `frame_id`是图片帧的序号
- `identity`是目标id采用默认值为`-1`
- `bb_left`是目标框的左边界的x坐标
- `bb_top`是目标框的上边界的y坐标
- `width,height`是真实的像素宽高
- `conf`是目标得分设置为`1`(已经按检测的得分阈值筛选出的检测结果)
- 第2种方式是同时加载检测模型和ReID模型,此处选用JDE版本的YOLOv3,具体配置见`configs/mot/deepsort/_base_/deepsort_yolov3_darknet53_pcb_pyramid_r101.yml`
## 快速开始
### 1. 评估
```bash
# 加载检测结果文件得到跟踪结果
# 加载检测结果文件和ReID模型,得到跟踪结果
CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/deepsort/deepsort_pcb_pyramid_r101.yml --det_results_dir {your detection results}
# 加载检测模型和ReID模型,得到跟踪结果
CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/deepsort/deepsort_yolov3_pcb_pyramid_r101.yml
```
### 2. 预测
使用单个GPU通过如下命令预测一个视频,并保存为视频
```bash
# 加载检测模型和ReID模型,得到跟踪结果
CUDA_VISIBLE_DEVICES=0 python tools/infer_mot.py -c configs/mot/deepsort/deepsort_yolov3_pcb_pyramid_r101.yml --video_file={your video name}.mp4 --save_videos
```
**注意:**
请先确保已经安装了[ffmpeg](https://ffmpeg.org/ffmpeg.html), Linux(Ubuntu)平台可以直接用以下命令安装:`apt-get update && apt-get install -y ffmpeg`
## 引用
```
@inproceedings{Wojke2017simple,
......
......@@ -18,7 +18,7 @@ English | [简体中文](README_cn.md)
## Model Zoo
### JDE on MOT-16 Training Set
### JDE Results on MOT-16 Training Set
| backbone | input shape | MOTA | IDF1 | IDS | FP | FN | FPS | download | config |
| :----------------- | :------- | :----: | :----: | :---: | :----: | :---: | :---: | :---: | :---: |
......@@ -26,7 +26,7 @@ English | [简体中文](README_cn.md)
| DarkNet53 | 864x480 | 69.1 | 64.7 | 1539 | 7544 | 25046 | - |[model](https://paddledet.bj.bcebos.com/models/mot/jde_darknet53_30e_864x480.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/jde/jde_darknet53_30e_864x480.yml) |
| DarkNet53 | 576x320 | 63.7 | 64.4 | 1310 | 6782 | 31964 | - |[model](https://paddledet.bj.bcebos.com/models/mot/jde_darknet53_30e_576x320.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/jde/jde_darknet53_30e_576x320.yml) |
### JDE on MOT-16 Test Set
### JDE Results on MOT-16 Test Set
| backbone | input shape | MOTA | IDF1 | IDS | FP | FN | FPS | download | config |
| :----------------- | :------- | :----: | :----: | :---: | :----: | :---: | :---: | :---: | :---: |
......
......@@ -113,8 +113,8 @@ def load_det_results(det_file, num_frames):
results = {'bbox': [], 'score': []}
lables_with_frame = labels[labels[:, 0] == frame_i + 1]
for l in lables_with_frame:
results['bbox'].append(l[2:6])
results['score'].append(l[6])
results['bbox'].append(l[1:5])
results['score'].append(l[5])
results_list.append(results)
return results_list
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册