Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
bea41444
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
bea41444
编写于
1月 18, 2018
作者:
Y
yangyaming
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Refine the implementation and add unit test.
上级
f20617be
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
196 addition
and
34 deletion
+196
-34
paddle/operators/sequence_reshape_op.cc
paddle/operators/sequence_reshape_op.cc
+55
-9
paddle/operators/sequence_reshape_op.cu
paddle/operators/sequence_reshape_op.cu
+23
-0
paddle/operators/sequence_reshape_op.h
paddle/operators/sequence_reshape_op.h
+42
-25
python/paddle/v2/fluid/tests/test_sequence_reshape.py
python/paddle/v2/fluid/tests/test_sequence_reshape.py
+76
-0
未找到文件。
paddle/operators/sequence_reshape_op.cc
浏览文件 @
bea41444
...
...
@@ -27,9 +27,8 @@ class SequenceReshapeOp : public framework::OperatorWithKernel {
"Output(Out) of SequenceReshapeOp should not be null."
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
2U
,
"Rank of Input(X) should be 2."
);
int
dimension
=
ctx
->
Attrs
().
Get
<
int
>
(
"dimension"
);
ctx
->
SetOutputDim
(
"Out"
,
{{
x_dims
[
0
],
static_cast
<
int64_t
>
(
dimension
)}});
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Out"
);
int
dimension
=
ctx
->
Attrs
().
Get
<
int
>
(
"new_dim"
);
ctx
->
SetOutputDim
(
"Out"
,
{
x_dims
[
0
],
static_cast
<
int64_t
>
(
dimension
)});
}
};
...
...
@@ -37,11 +36,41 @@ class SequenceReshapeOpMaker : public framework::OpProtoAndCheckerMaker {
public:
SequenceReshapeOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
""
);
AddOutput
(
"Out"
,
""
);
AddAttr
<
int
>
(
"dimension"
,
""
);
AddAttr
<
bool
>
(
"is_padding"
,
"Default padding zero."
);
AddComment
(
R"DOC()DOC"
);
AddInput
(
"X"
,
"(LoDTensor, default LoDTensor<float>) A 2-D LoDTensor with shape "
"being [N, M]."
);
AddOutput
(
"Out"
,
"(LoDTensor, default LoDTensor<float>) A 2-D LoDTensor with "
"shape [T, new_dim] where T is calculated based on X.lod, M and "
"new_dim."
);
AddAttr
<
int
>
(
"new_dim"
,
"Sequence dimension of the output LoDTensor."
);
AddComment
(
R"DOC(
Sequence Reshape Operator.
This operator will rearrange the input sequences. The new dimension is set by
attribute and length of each sequence may change longer or shorter which is
decided by original length, original dimension and new dimension. The following
example will help to illustrate the function of this operator:
x is a LoDTensor:
x.lod = [[0, 2, 6]]
x.data = [[0.1, 0.2], [0.3, 0.4],
[0.5, 0.6], [0.7, 0.8], [0.9, 1.0], [1.1, 1.2]]
x.dims = [6, 2]
set new_dim = 4
then out is a LoDTensor:
out.lod = [[0, 1, 3]]
out.data = [[0.1, 0.2, 0.3, 0.4],
[0.5, 0.6, 0.7, 0.8], [0.9, 1.0, 1.1, 1.2]]
out.dims = [3, 4]
Currently, only 1-level LoDTensor is supported and please make sure (original
length * original dimension) can be divided by new_dim with no remainder for
each sequence.
)DOC"
);
}
};
...
...
@@ -63,12 +92,29 @@ class SequenceReshapeGradOp : public framework::OperatorWithKernel {
}
};
class
SequenceReshapeGradOpMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
protected:
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
auto
*
op_desc_ptr
=
new
framework
::
OpDesc
();
op_desc_ptr
->
SetType
(
"sequence_reshape_grad"
);
op_desc_ptr
->
SetInput
(
"X"
,
Input
(
"X"
));
op_desc_ptr
->
SetInput
(
"Out"
,
Output
(
"Out"
));
op_desc_ptr
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
OutputGrad
(
"Out"
));
op_desc_ptr
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
InputGrad
(
"X"
));
op_desc_ptr
->
SetAttrMap
(
Attrs
());
return
std
::
unique_ptr
<
framework
::
OpDesc
>
(
op_desc_ptr
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
sequence_reshape
,
ops
::
SequenceReshapeOp
,
ops
::
SequenceReshapeOpMaker
);
ops
::
SequenceReshapeOpMaker
,
ops
::
SequenceReshapeGradOpMaker
);
REGISTER_OPERATOR
(
sequence_reshape_grad
,
ops
::
SequenceReshapeGradOp
);
REGISTER_OP_CPU_KERNEL
(
sequence_reshape
,
...
...
paddle/operators/sequence_reshape_op.cu
0 → 100644
浏览文件 @
bea41444
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/sequence_reshape_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
sequence_reshape
,
ops
::
SequenceReshapeKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
);
REGISTER_OP_CUDA_KERNEL
(
sequence_reshape_grad
,
ops
::
SequenceReshapeGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
);
paddle/operators/sequence_reshape_op.h
浏览文件 @
bea41444
...
...
@@ -26,53 +26,63 @@ class SequenceReshapeKernel : public framework::OpKernel<T> {
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
in
=
context
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
out
=
context
.
Output
<
LoDTensor
>
(
"Out"
);
int
out_width
=
context
.
Attr
<
int
>
(
"dimension"
);
bool
whether_padding
=
context
.
Attr
<
bool
>
(
"whether_padding"
);
int
out_width
=
context
.
Attr
<
int
>
(
"new_dim"
);
const
T
*
p_in_data
=
in
->
data
<
T
>
();
T
*
p_out_data
=
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
// compute shape for output
auto
in_dims
=
in
->
dims
();
int64_t
in_width
=
in_dims
[
1
];
auto
&
in_lod
=
in
->
lod
();
PADDLE_ENFORCE_EQ
(
in_lod
.
size
(),
1UL
,
"Only support one level sequence now."
);
PADDLE_ENFORCE_GE
(
in_dims
[
0
],
/* batch size = */
static_cast
<
int64_t
>
(
in_lod
[
0
].
size
()
-
1
),
"The 1st dimension of Input(X) must be equal or larger than batch "
"size."
);
PADDLE_ENFORCE_EQ
(
in_dims
[
0
],
in_lod
[
0
].
back
(),
"Inconsistent size between X.shape[0] and X.lod()[0].back()."
);
auto
in_lod_l0
=
in_lod
[
0
];
int
seq_num
=
in_lod_l0
.
size
()
-
1
;
auto
&
out_lod
=
*
out
->
mutable_lod
();
out_lod
.
push_back
(
std
::
vector
<
size_t
>
({
0
}));
size_t
offset
=
0
;
out_lod
.
resize
(
1
);
out_lod
[
0
].
clear
();
out_lod
[
0
].
push_back
(
0
);
for
(
int
i
=
0
;
i
<
seq_num
;
++
i
)
{
size_t
seq_len
=
in_lod_l0
[
i
+
1
]
-
in_lod_l0
[
i
];
if
(
whether_padding
)
{
offset
+=
std
::
ceil
((
float
)(
seq_len
*
in_width
)
/
out_width
);
}
else
{
offset
+=
(
seq_len
*
in_width
)
/
out_width
;
}
out_lod
[
0
].
push_back
(
offset
);
size_t
offset
=
0
;
offset
=
(
seq_len
*
in_width
)
/
out_width
;
PADDLE_ENFORCE_EQ
(
offset
*
out_width
,
seq_len
*
in_width
,
"Please make sure (sequence_length * dimension) can be "
"divided by new_dim with no remainder for each "
"sequence. The %dth sequence is invalid."
,
i
+
1
);
PADDLE_ENFORCE_GT
(
offset
,
0
,
"Illegal operation, length of the %dth sequence become "
"to 0 after reshaped."
,
i
+
1
);
out_lod
[
0
].
push_back
(
out_lod
[
0
].
back
()
+
offset
);
}
out
->
Resize
({{
static_cast
<
int64_t
>
(
out_lod
[
0
].
back
()),
out_width
}});
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
out
->
Resize
({
static_cast
<
int64_t
>
(
out_lod
[
0
].
back
()),
out_width
});
T
*
p_out_data
=
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
math
::
set_constant
(
context
.
device_context
(),
out
,
0.0
f
);
for
(
int
i
=
0
;
i
<
seq_num
;
++
i
)
{
size_t
in_offset
=
in_lod_l0
[
i
]
*
in_width
;
size_t
out_offset
=
out_lod
[
0
][
i
]
*
out_width
;
size_t
bytes
=
sizeof
(
T
)
*
(
in_lod_l0
[
i
+
1
]
-
in_lod_l0
[
i
])
*
in_width
;
size_t
in_count
=
(
in_lod_l0
[
i
+
1
]
-
in_lod_l0
[
i
])
*
in_width
;
size_t
out_count
=
(
out_lod
[
0
][
i
+
1
]
-
out_lod
[
0
][
i
])
*
out_width
;
size_t
bytes
=
sizeof
(
T
)
*
std
::
min
(
in_count
,
out_count
);
if
(
platform
::
is_cpu_place
(
context
.
GetPlace
()))
{
std
::
memcpy
(
p_out_data
+
out_offset
,
p_in_data
+
in_offset
,
bytes
);
memory
::
Copy
(
boost
::
get
<
platform
::
CPUPlace
>
(
context
.
GetPlace
()),
p_out_data
+
out_offset
,
boost
::
get
<
platform
::
CPUPlace
>
(
context
.
GetPlace
()),
p_in_data
+
in_offset
,
bytes
);
}
else
{
#ifdef PADDLE_WITH_CUDA
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
auto
&
dev_ctx
=
context
.
template
device_context
<
platform
::
CUDADeviceContext
>();
memory
::
Copy
(
boost
::
get
<
platform
::
CUDAPlace
>
(
context
.
GetPlace
()),
p_out_data
+
out_offset
,
boost
::
get
<
platform
::
CUDAPlace
>
(
context
.
GetPlace
()),
...
...
@@ -103,16 +113,23 @@ class SequenceReshapeGradKernel : public framework::OpKernel<T> {
auto
&
out_lod
=
out_tensor_ptr
->
lod
();
int
out_width
=
out_tensor_ptr
->
dims
()[
1
];
math
::
set_constant
(
context
.
device_context
(),
x_grad_tensor_ptr
,
0.0
f
);
for
(
int
i
=
0
;
i
<
seq_num
;
++
i
)
{
size_t
src_offset
=
out_lod
[
0
][
i
]
*
out_width
;
size_t
dst_offset
=
x_lod
[
0
][
i
]
*
x_width
;
size_t
bytes
=
sizeof
(
T
)
*
(
x_lod
[
0
][
i
+
1
]
-
x_lod
[
0
][
i
])
*
x_width
;
size_t
src_count
=
(
out_lod
[
0
][
i
+
1
]
-
out_lod
[
0
][
i
])
*
out_width
;
size_t
dst_count
=
(
x_lod
[
0
][
i
+
1
]
-
x_lod
[
0
][
i
])
*
x_width
;
size_t
bytes
=
sizeof
(
T
)
*
std
::
min
(
src_count
,
dst_count
);
if
(
platform
::
is_cpu_place
(
context
.
GetPlace
()))
{
std
::
memcpy
(
p_x_grad_data
+
dst_offset
,
p_out_grad_data
+
src_offset
,
bytes
);
memory
::
Copy
(
boost
::
get
<
platform
::
CPUPlace
>
(
context
.
GetPlace
()),
p_x_grad_data
+
dst_offset
,
boost
::
get
<
platform
::
CPUPlace
>
(
context
.
GetPlace
()),
p_out_grad_data
+
src_offset
,
bytes
);
}
else
{
#ifdef PADDLE_WITH_CUDA
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
auto
&
dev_ctx
=
context
.
template
device_context
<
platform
::
CUDADeviceContext
>();
memory
::
Copy
(
boost
::
get
<
platform
::
CUDAPlace
>
(
context
.
GetPlace
()),
p_x_grad_data
+
dst_offset
,
boost
::
get
<
platform
::
CUDAPlace
>
(
context
.
GetPlace
()),
...
...
python/paddle/v2/fluid/tests/test_sequence_reshape.py
0 → 100644
浏览文件 @
bea41444
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import
unittest
import
numpy
as
np
import
math
from
op_test
import
OpTest
class
TestSequenceReshape
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
'sequence_reshape'
dimension
=
12
x_lod
=
[[
0
,
4
,
5
,
8
,
11
]]
x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
11
,
24
]).
astype
(
'float32'
)
self
.
inputs
=
{
'X'
:
(
x
,
x_lod
)}
self
.
attrs
=
{
'new_dim'
:
dimension
}
out
,
out_lod
=
self
.
compute_output
(
x
,
x_lod
,
dimension
)
self
.
outputs
=
{
'Out'
:
(
out
,
out_lod
)}
def
compute_output
(
self
,
x
,
x_lod
,
dimension
):
x_width
=
x
.
shape
[
1
]
out_lod
=
[[
0
]]
for
i
in
xrange
(
len
(
x_lod
[
0
])
-
1
):
seq_len
=
x_lod
[
0
][
i
+
1
]
-
x_lod
[
0
][
i
]
offset
=
(
seq_len
*
x_width
)
/
dimension
assert
int
(
offset
)
*
dimension
==
seq_len
*
x_width
out_lod
[
0
].
append
(
out_lod
[
0
][
-
1
]
+
int
(
offset
))
out
=
np
.
zeros
(
shape
=
(
out_lod
[
0
][
-
1
],
dimension
)).
astype
(
'float32'
)
for
i
in
xrange
(
len
(
x_lod
[
0
])
-
1
):
x_offset
=
x_lod
[
0
][
i
]
*
x_width
out_offset
=
out_lod
[
0
][
i
]
*
dimension
out_count
=
(
out_lod
[
0
][
i
+
1
]
-
out_lod
[
0
][
i
])
*
dimension
x_count
=
(
x_lod
[
0
][
i
+
1
]
-
x_lod
[
0
][
i
])
*
x_width
count
=
min
(
out_count
,
x_count
)
out
.
ravel
()[
out_offset
:
out_offset
+
count
]
=
x
.
ravel
()[
x_offset
:
x_offset
+
count
]
return
out
,
out_lod
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
"X"
],
"Out"
)
class
TestSequenceReshape_reduce
(
TestSequenceReshape
):
def
setUp
(
self
):
self
.
op_type
=
'sequence_reshape'
dimension
=
24
x_lod
=
[[
0
,
4
,
6
,
8
,
12
]]
x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
12
,
12
]).
astype
(
'float32'
)
self
.
inputs
=
{
'X'
:
(
x
,
x_lod
)}
self
.
attrs
=
{
'new_dim'
:
dimension
}
out
,
out_lod
=
self
.
compute_output
(
x
,
x_lod
,
dimension
)
self
.
outputs
=
{
'Out'
:
(
out
,
out_lod
)}
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录