Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
bd0527b8
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 2 年 前同步成功
通知
708
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
bd0527b8
编写于
8月 26, 2021
作者:
C
CHENSONG
提交者:
GitHub
8月 26, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Swin faster rcnn v1 (#4050)
* add faster rcnn with swin_transformer tiny
上级
18a1f730
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
923 addition
and
0 deletion
+923
-0
configs/faster_rcnn/_base_/faster_rcnn_swin_transformer.yml
configs/faster_rcnn/_base_/faster_rcnn_swin_transformer.yml
+73
-0
configs/faster_rcnn/_base_/faster_rcnn_swin_transformer_reader.yml
...aster_rcnn/_base_/faster_rcnn_swin_transformer_reader.yml
+41
-0
configs/faster_rcnn/_base_/optimizer_swin_transformer_1x.yml
configs/faster_rcnn/_base_/optimizer_swin_transformer_1x.yml
+17
-0
configs/faster_rcnn/faster_rcnn_swin_transformer_tiny_1x_coco.yml
...faster_rcnn/faster_rcnn_swin_transformer_tiny_1x_coco.yml
+8
-0
configs/faster_rcnn/faster_rcnn_swin_transformer_tiny_2x_coco.yml
...faster_rcnn/faster_rcnn_swin_transformer_tiny_2x_coco.yml
+22
-0
configs/faster_rcnn/faster_rcnn_swin_transformer_tiny_3x_coco.yml
...faster_rcnn/faster_rcnn_swin_transformer_tiny_3x_coco.yml
+22
-0
ppdet/modeling/backbones/__init__.py
ppdet/modeling/backbones/__init__.py
+2
-0
ppdet/modeling/backbones/swin_transformer.py
ppdet/modeling/backbones/swin_transformer.py
+738
-0
未找到文件。
configs/faster_rcnn/_base_/faster_rcnn_swin_transformer.yml
0 → 100644
浏览文件 @
bd0527b8
architecture
:
FasterRCNN
FasterRCNN
:
backbone
:
SwinTransformer
neck
:
FPN
rpn_head
:
RPNHead
bbox_head
:
BBoxHead
bbox_post_process
:
BBoxPostProcess
SwinTransformer
:
embed_dim
:
96
depths
:
[
2
,
2
,
6
,
2
]
num_heads
:
[
3
,
6
,
12
,
24
]
window_size
:
7
ape
:
false
drop_path_rate
:
0.1
patch_norm
:
true
out_indices
:
[
0
,
1
,
2
,
3
]
drop_path_rate
:
0.1
pretrained
:
https://paddledet.bj.bcebos.com/models/pretrained/swin_tiny_patch4_window7_224.pdparams
FPN
:
out_channel
:
256
RPNHead
:
anchor_generator
:
aspect_ratios
:
[
0.5
,
1.0
,
2.0
]
anchor_sizes
:
[[
32
],
[
64
],
[
128
],
[
256
],
[
512
]]
strides
:
[
4
,
8
,
16
,
32
,
64
]
rpn_target_assign
:
batch_size_per_im
:
256
fg_fraction
:
0.5
negative_overlap
:
0.3
positive_overlap
:
0.7
use_random
:
True
train_proposal
:
min_size
:
0.0
nms_thresh
:
0.7
pre_nms_top_n
:
2000
post_nms_top_n
:
1000
topk_after_collect
:
True
test_proposal
:
min_size
:
0.0
nms_thresh
:
0.7
pre_nms_top_n
:
1000
post_nms_top_n
:
1000
BBoxHead
:
head
:
TwoFCHead
roi_extractor
:
resolution
:
7
sampling_ratio
:
0
aligned
:
True
bbox_assigner
:
BBoxAssigner
BBoxAssigner
:
batch_size_per_im
:
512
bg_thresh
:
0.5
fg_thresh
:
0.5
fg_fraction
:
0.25
use_random
:
True
TwoFCHead
:
out_channel
:
1024
BBoxPostProcess
:
decode
:
RCNNBox
nms
:
name
:
MultiClassNMS
keep_top_k
:
100
score_threshold
:
0.05
nms_threshold
:
0.5
configs/faster_rcnn/_base_/faster_rcnn_swin_transformer_reader.yml
0 → 100644
浏览文件 @
bd0527b8
worker_num
:
2
TrainReader
:
sample_transforms
:
-
Decode
:
{}
-
RandomResizeCrop
:
{
resizes
:
[
400
,
500
,
600
],
cropsizes
:
[[
384
,
600
],
],
prob
:
0.5
}
-
RandomResize
:
{
target_size
:
[[
480
,
1333
],
[
512
,
1333
],
[
544
,
1333
],
[
576
,
1333
],
[
608
,
1333
],
[
640
,
1333
],
[
672
,
1333
],
[
704
,
1333
],
[
736
,
1333
],
[
768
,
1333
],
[
800
,
1333
]],
keep_ratio
:
True
,
interp
:
2
}
-
RandomFlip
:
{
prob
:
0.5
}
-
NormalizeImage
:
{
is_scale
:
true
,
mean
:
[
0.485
,
0.456
,
0.406
],
std
:
[
0.229
,
0.224
,
0.225
]}
-
Permute
:
{}
batch_transforms
:
-
PadBatch
:
{
pad_to_stride
:
32
}
batch_size
:
2
shuffle
:
true
drop_last
:
true
collate_batch
:
false
EvalReader
:
sample_transforms
:
-
Decode
:
{}
-
Resize
:
{
interp
:
2
,
target_size
:
[
800
,
1333
],
keep_ratio
:
True
}
-
NormalizeImage
:
{
is_scale
:
true
,
mean
:
[
0.485
,
0.456
,
0.406
],
std
:
[
0.229
,
0.224
,
0.225
]}
-
Permute
:
{}
batch_transforms
:
-
PadBatch
:
{
pad_to_stride
:
32
}
batch_size
:
1
shuffle
:
false
drop_last
:
false
drop_empty
:
false
TestReader
:
sample_transforms
:
-
Decode
:
{}
-
Resize
:
{
interp
:
2
,
target_size
:
[
800
,
1333
],
keep_ratio
:
True
}
-
NormalizeImage
:
{
is_scale
:
true
,
mean
:
[
0.485
,
0.456
,
0.406
],
std
:
[
0.229
,
0.224
,
0.225
]}
-
Permute
:
{}
batch_transforms
:
-
PadBatch
:
{
pad_to_stride
:
32
}
batch_size
:
1
shuffle
:
false
drop_last
:
false
configs/faster_rcnn/_base_/optimizer_swin_transformer_1x.yml
0 → 100644
浏览文件 @
bd0527b8
epoch
:
12
LearningRate
:
base_lr
:
0.0001
schedulers
:
-
!PiecewiseDecay
gamma
:
0.1
milestones
:
[
8
,
11
]
-
!LinearWarmup
start_factor
:
0.1
steps
:
1000
OptimizerBuilder
:
clip_grad_by_norm
:
1.0
optimizer
:
type
:
AdamW
weight_decay
:
0.05
configs/faster_rcnn/faster_rcnn_swin_transformer_tiny_1x_coco.yml
0 → 100644
浏览文件 @
bd0527b8
_BASE_
:
[
'
../datasets/coco_detection.yml'
,
'
../runtime.yml'
,
'
_base_/optimizer_swin_transformer_1x.yml'
,
'
_base_/faster_rcnn_swin_transformer.yml'
,
'
_base_/faster_rcnn_swin_transformer_reader.yml'
,
]
weights
:
output/faster_swin_transformer_tiny_1x/model_final
configs/faster_rcnn/faster_rcnn_swin_transformer_tiny_2x_coco.yml
0 → 100644
浏览文件 @
bd0527b8
_BASE_
:
[
'
faster_rcnn_swin_transformer_tiny_1x_coco.yml'
,
]
weights
:
output/faster_swin_transformer_tiny_2x/model_final
epoch
:
24
LearningRate
:
base_lr
:
0.0001
schedulers
:
-
!PiecewiseDecay
gamma
:
0.1
milestones
:
[
16
,
22
]
-
!LinearWarmup
start_factor
:
0.1
steps
:
1000
OptimizerBuilder
:
clip_grad_by_norm
:
1.0
optimizer
:
type
:
AdamW
weight_decay
:
0.05
configs/faster_rcnn/faster_rcnn_swin_transformer_tiny_3x_coco.yml
0 → 100644
浏览文件 @
bd0527b8
_BASE_
:
[
'
faster_rcnn_swin_transformer_tiny_1x_coco.yml'
,
]
weights
:
output/faster_swin_transformer_tiny_3x/model_final
epoch
:
36
LearningRate
:
base_lr
:
0.0001
schedulers
:
-
!PiecewiseDecay
gamma
:
0.1
milestones
:
[
24
,
33
]
-
!LinearWarmup
start_factor
:
0.1
steps
:
1000
OptimizerBuilder
:
clip_grad_by_norm
:
1.0
optimizer
:
type
:
AdamW
weight_decay
:
0.05
ppdet/modeling/backbones/__init__.py
浏览文件 @
bd0527b8
...
@@ -25,6 +25,7 @@ from . import senet
...
@@ -25,6 +25,7 @@ from . import senet
from
.
import
res2net
from
.
import
res2net
from
.
import
dla
from
.
import
dla
from
.
import
shufflenet_v2
from
.
import
shufflenet_v2
from
.
import
swin_transformer
from
.vgg
import
*
from
.vgg
import
*
from
.resnet
import
*
from
.resnet
import
*
...
@@ -39,3 +40,4 @@ from .senet import *
...
@@ -39,3 +40,4 @@ from .senet import *
from
.res2net
import
*
from
.res2net
import
*
from
.dla
import
*
from
.dla
import
*
from
.shufflenet_v2
import
*
from
.shufflenet_v2
import
*
from
.swin_transformer
import
*
ppdet/modeling/backbones/swin_transformer.py
0 → 100644
浏览文件 @
bd0527b8
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle
import
paddle.nn
as
nn
import
paddle.nn.functional
as
F
from
paddle.nn.initializer
import
TruncatedNormal
,
Constant
,
Assign
from
ppdet.modeling.shape_spec
import
ShapeSpec
from
ppdet.core.workspace
import
register
,
serializable
import
numpy
as
np
# Common initializations
ones_
=
Constant
(
value
=
1.
)
zeros_
=
Constant
(
value
=
0.
)
trunc_normal_
=
TruncatedNormal
(
std
=
.
02
)
# Common Functions
def
to_2tuple
(
x
):
return
tuple
([
x
]
*
2
)
def
add_parameter
(
layer
,
datas
,
name
=
None
):
parameter
=
layer
.
create_parameter
(
shape
=
(
datas
.
shape
),
default_initializer
=
Assign
(
datas
))
if
name
:
layer
.
add_parameter
(
name
,
parameter
)
return
parameter
# Common Layers
def
drop_path
(
x
,
drop_prob
=
0.
,
training
=
False
):
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ...
"""
if
drop_prob
==
0.
or
not
training
:
return
x
keep_prob
=
paddle
.
to_tensor
(
1
-
drop_prob
)
shape
=
(
paddle
.
shape
(
x
)[
0
],
)
+
(
1
,
)
*
(
x
.
ndim
-
1
)
random_tensor
=
keep_prob
+
paddle
.
rand
(
shape
,
dtype
=
x
.
dtype
)
random_tensor
=
paddle
.
floor
(
random_tensor
)
# binarize
output
=
x
.
divide
(
keep_prob
)
*
random_tensor
return
output
class
DropPath
(
nn
.
Layer
):
def
__init__
(
self
,
drop_prob
=
None
):
super
(
DropPath
,
self
).
__init__
()
self
.
drop_prob
=
drop_prob
def
forward
(
self
,
x
):
return
drop_path
(
x
,
self
.
drop_prob
,
self
.
training
)
class
Identity
(
nn
.
Layer
):
def
__init__
(
self
):
super
(
Identity
,
self
).
__init__
()
def
forward
(
self
,
input
):
return
input
class
Mlp
(
nn
.
Layer
):
def
__init__
(
self
,
in_features
,
hidden_features
=
None
,
out_features
=
None
,
act_layer
=
nn
.
GELU
,
drop
=
0.
):
super
().
__init__
()
out_features
=
out_features
or
in_features
hidden_features
=
hidden_features
or
in_features
self
.
fc1
=
nn
.
Linear
(
in_features
,
hidden_features
)
self
.
act
=
act_layer
()
self
.
fc2
=
nn
.
Linear
(
hidden_features
,
out_features
)
self
.
drop
=
nn
.
Dropout
(
drop
)
def
forward
(
self
,
x
):
x
=
self
.
fc1
(
x
)
x
=
self
.
act
(
x
)
x
=
self
.
drop
(
x
)
x
=
self
.
fc2
(
x
)
x
=
self
.
drop
(
x
)
return
x
def
window_partition
(
x
,
window_size
):
"""
Args:
x: (B, H, W, C)
window_size (int): window size
Returns:
windows: (num_windows*B, window_size, window_size, C)
"""
B
,
H
,
W
,
C
=
x
.
shape
x
=
x
.
reshape
(
[
B
,
H
//
window_size
,
window_size
,
W
//
window_size
,
window_size
,
C
])
windows
=
x
.
transpose
([
0
,
1
,
3
,
2
,
4
,
5
]).
reshape
(
[
-
1
,
window_size
,
window_size
,
C
])
return
windows
def
window_reverse
(
windows
,
window_size
,
H
,
W
):
"""
Args:
windows: (num_windows*B, window_size, window_size, C)
window_size (int): Window size
H (int): Height of image
W (int): Width of image
Returns:
x: (B, H, W, C)
"""
B
=
int
(
windows
.
shape
[
0
]
/
(
H
*
W
/
window_size
/
window_size
))
x
=
windows
.
reshape
(
[
B
,
H
//
window_size
,
W
//
window_size
,
window_size
,
window_size
,
-
1
])
x
=
x
.
transpose
([
0
,
1
,
3
,
2
,
4
,
5
]).
reshape
([
B
,
H
,
W
,
-
1
])
return
x
class
WindowAttention
(
nn
.
Layer
):
""" Window based multi-head self attention (W-MSA) module with relative position bias.
It supports both of shifted and non-shifted window.
Args:
dim (int): Number of input channels.
window_size (tuple[int]): The height and width of the window.
num_heads (int): Number of attention heads.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
"""
def
__init__
(
self
,
dim
,
window_size
,
num_heads
,
qkv_bias
=
True
,
qk_scale
=
None
,
attn_drop
=
0.
,
proj_drop
=
0.
):
super
().
__init__
()
self
.
dim
=
dim
self
.
window_size
=
window_size
# Wh, Ww
self
.
num_heads
=
num_heads
head_dim
=
dim
//
num_heads
self
.
scale
=
qk_scale
or
head_dim
**-
0.5
# define a parameter table of relative position bias
self
.
relative_position_bias_table
=
add_parameter
(
self
,
paddle
.
zeros
(((
2
*
window_size
[
0
]
-
1
)
*
(
2
*
window_size
[
1
]
-
1
),
num_heads
)))
# 2*Wh-1 * 2*Ww-1, nH
# get pair-wise relative position index for each token inside the window
coords_h
=
paddle
.
arange
(
self
.
window_size
[
0
])
coords_w
=
paddle
.
arange
(
self
.
window_size
[
1
])
coords
=
paddle
.
stack
(
paddle
.
meshgrid
(
[
coords_h
,
coords_w
]))
# 2, Wh, Ww
coords_flatten
=
paddle
.
flatten
(
coords
,
1
)
# 2, Wh*Ww
coords_flatten_1
=
coords_flatten
.
unsqueeze
(
axis
=
2
)
coords_flatten_2
=
coords_flatten
.
unsqueeze
(
axis
=
1
)
relative_coords
=
coords_flatten_1
-
coords_flatten_2
relative_coords
=
relative_coords
.
transpose
(
[
1
,
2
,
0
])
# Wh*Ww, Wh*Ww, 2
relative_coords
[:,
:,
0
]
+=
self
.
window_size
[
0
]
-
1
# shift to start from 0
relative_coords
[:,
:,
1
]
+=
self
.
window_size
[
1
]
-
1
relative_coords
[:,
:,
0
]
*=
2
*
self
.
window_size
[
1
]
-
1
self
.
relative_position_index
=
relative_coords
.
sum
(
-
1
)
# Wh*Ww, Wh*Ww
self
.
register_buffer
(
"relative_position_index"
,
self
.
relative_position_index
)
self
.
qkv
=
nn
.
Linear
(
dim
,
dim
*
3
,
bias_attr
=
qkv_bias
)
self
.
attn_drop
=
nn
.
Dropout
(
attn_drop
)
self
.
proj
=
nn
.
Linear
(
dim
,
dim
)
self
.
proj_drop
=
nn
.
Dropout
(
proj_drop
)
trunc_normal_
(
self
.
relative_position_bias_table
)
self
.
softmax
=
nn
.
Softmax
(
axis
=-
1
)
def
forward
(
self
,
x
,
mask
=
None
):
""" Forward function.
Args:
x: input features with shape of (num_windows*B, N, C)
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
"""
B_
,
N
,
C
=
x
.
shape
qkv
=
self
.
qkv
(
x
).
reshape
(
[
B_
,
N
,
3
,
self
.
num_heads
,
C
//
self
.
num_heads
]).
transpose
(
[
2
,
0
,
3
,
1
,
4
])
q
,
k
,
v
=
qkv
[
0
],
qkv
[
1
],
qkv
[
2
]
q
=
q
*
self
.
scale
attn
=
paddle
.
mm
(
q
,
k
.
transpose
([
0
,
1
,
3
,
2
]))
index
=
self
.
relative_position_index
.
reshape
([
-
1
])
relative_position_bias
=
paddle
.
index_select
(
self
.
relative_position_bias_table
,
index
)
relative_position_bias
=
relative_position_bias
.
reshape
([
self
.
window_size
[
0
]
*
self
.
window_size
[
1
],
self
.
window_size
[
0
]
*
self
.
window_size
[
1
],
-
1
])
# Wh*Ww,Wh*Ww,nH
relative_position_bias
=
relative_position_bias
.
transpose
(
[
2
,
0
,
1
])
# nH, Wh*Ww, Wh*Ww
attn
=
attn
+
relative_position_bias
.
unsqueeze
(
0
)
if
mask
is
not
None
:
nW
=
mask
.
shape
[
0
]
attn
=
attn
.
reshape
([
B_
//
nW
,
nW
,
self
.
num_heads
,
N
,
N
])
+
mask
.
unsqueeze
(
1
).
unsqueeze
(
0
)
attn
=
attn
.
reshape
([
-
1
,
self
.
num_heads
,
N
,
N
])
attn
=
self
.
softmax
(
attn
)
else
:
attn
=
self
.
softmax
(
attn
)
attn
=
self
.
attn_drop
(
attn
)
# x = (attn @ v).transpose(1, 2).reshape([B_, N, C])
x
=
paddle
.
mm
(
attn
,
v
).
transpose
([
0
,
2
,
1
,
3
]).
reshape
([
B_
,
N
,
C
])
x
=
self
.
proj
(
x
)
x
=
self
.
proj_drop
(
x
)
return
x
class
SwinTransformerBlock
(
nn
.
Layer
):
""" Swin Transformer Block.
Args:
dim (int): Number of input channels.
num_heads (int): Number of attention heads.
window_size (int): Window size.
shift_size (int): Shift size for SW-MSA.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
drop (float, optional): Dropout rate. Default: 0.0
attn_drop (float, optional): Attention dropout rate. Default: 0.0
drop_path (float, optional): Stochastic depth rate. Default: 0.0
act_layer (nn.Layer, optional): Activation layer. Default: nn.GELU
norm_layer (nn.Layer, optional): Normalization layer. Default: nn.LayerNorm
"""
def
__init__
(
self
,
dim
,
num_heads
,
window_size
=
7
,
shift_size
=
0
,
mlp_ratio
=
4.
,
qkv_bias
=
True
,
qk_scale
=
None
,
drop
=
0.
,
attn_drop
=
0.
,
drop_path
=
0.
,
act_layer
=
nn
.
GELU
,
norm_layer
=
nn
.
LayerNorm
):
super
().
__init__
()
self
.
dim
=
dim
self
.
num_heads
=
num_heads
self
.
window_size
=
window_size
self
.
shift_size
=
shift_size
self
.
mlp_ratio
=
mlp_ratio
assert
0
<=
self
.
shift_size
<
self
.
window_size
,
"shift_size must in 0-window_size"
self
.
norm1
=
norm_layer
(
dim
)
self
.
attn
=
WindowAttention
(
dim
,
window_size
=
to_2tuple
(
self
.
window_size
),
num_heads
=
num_heads
,
qkv_bias
=
qkv_bias
,
qk_scale
=
qk_scale
,
attn_drop
=
attn_drop
,
proj_drop
=
drop
)
self
.
drop_path
=
DropPath
(
drop_path
)
if
drop_path
>
0.
else
Identity
()
self
.
norm2
=
norm_layer
(
dim
)
mlp_hidden_dim
=
int
(
dim
*
mlp_ratio
)
self
.
mlp
=
Mlp
(
in_features
=
dim
,
hidden_features
=
mlp_hidden_dim
,
act_layer
=
act_layer
,
drop
=
drop
)
self
.
H
=
None
self
.
W
=
None
def
forward
(
self
,
x
,
mask_matrix
):
""" Forward function.
Args:
x: Input feature, tensor size (B, H*W, C).
H, W: Spatial resolution of the input feature.
mask_matrix: Attention mask for cyclic shift.
"""
B
,
L
,
C
=
x
.
shape
H
,
W
=
self
.
H
,
self
.
W
assert
L
==
H
*
W
,
"input feature has wrong size"
shortcut
=
x
x
=
self
.
norm1
(
x
)
x
=
x
.
reshape
([
B
,
H
,
W
,
C
])
# pad feature maps to multiples of window size
pad_l
=
pad_t
=
0
pad_r
=
(
self
.
window_size
-
W
%
self
.
window_size
)
%
self
.
window_size
pad_b
=
(
self
.
window_size
-
H
%
self
.
window_size
)
%
self
.
window_size
x
=
F
.
pad
(
x
,
[
0
,
pad_l
,
0
,
pad_b
,
0
,
pad_r
,
0
,
pad_t
])
_
,
Hp
,
Wp
,
_
=
x
.
shape
# cyclic shift
if
self
.
shift_size
>
0
:
shifted_x
=
paddle
.
roll
(
x
,
shifts
=
(
-
self
.
shift_size
,
-
self
.
shift_size
),
axis
=
(
1
,
2
))
attn_mask
=
mask_matrix
else
:
shifted_x
=
x
attn_mask
=
None
# partition windows
x_windows
=
window_partition
(
shifted_x
,
self
.
window_size
)
# nW*B, window_size, window_size, C
x_windows
=
x_windows
.
reshape
(
[
-
1
,
self
.
window_size
*
self
.
window_size
,
C
])
# nW*B, window_size*window_size, C
# W-MSA/SW-MSA
attn_windows
=
self
.
attn
(
x_windows
,
mask
=
attn_mask
)
# nW*B, window_size*window_size, C
# merge windows
attn_windows
=
attn_windows
.
reshape
(
[
-
1
,
self
.
window_size
,
self
.
window_size
,
C
])
shifted_x
=
window_reverse
(
attn_windows
,
self
.
window_size
,
Hp
,
Wp
)
# B H' W' C
# reverse cyclic shift
if
self
.
shift_size
>
0
:
x
=
paddle
.
roll
(
shifted_x
,
shifts
=
(
self
.
shift_size
,
self
.
shift_size
),
axis
=
(
1
,
2
))
else
:
x
=
shifted_x
if
pad_r
>
0
or
pad_b
>
0
:
x
=
x
[:,
:
H
,
:
W
,
:]
x
=
x
.
reshape
([
B
,
H
*
W
,
C
])
# FFN
x
=
shortcut
+
self
.
drop_path
(
x
)
x
=
x
+
self
.
drop_path
(
self
.
mlp
(
self
.
norm2
(
x
)))
return
x
class
PatchMerging
(
nn
.
Layer
):
r
""" Patch Merging Layer.
Args:
dim (int): Number of input channels.
norm_layer (nn.Layer, optional): Normalization layer. Default: nn.LayerNorm
"""
def
__init__
(
self
,
dim
,
norm_layer
=
nn
.
LayerNorm
):
super
().
__init__
()
self
.
dim
=
dim
self
.
reduction
=
nn
.
Linear
(
4
*
dim
,
2
*
dim
,
bias_attr
=
False
)
self
.
norm
=
norm_layer
(
4
*
dim
)
def
forward
(
self
,
x
,
H
,
W
):
""" Forward function.
Args:
x: Input feature, tensor size (B, H*W, C).
H, W: Spatial resolution of the input feature.
"""
B
,
L
,
C
=
x
.
shape
assert
L
==
H
*
W
,
"input feature has wrong size"
x
=
x
.
reshape
([
B
,
H
,
W
,
C
])
# padding
pad_input
=
(
H
%
2
==
1
)
or
(
W
%
2
==
1
)
if
pad_input
:
x
=
F
.
pad
(
x
,
[
0
,
0
,
0
,
W
%
2
,
0
,
H
%
2
])
x0
=
x
[:,
0
::
2
,
0
::
2
,
:]
# B H/2 W/2 C
x1
=
x
[:,
1
::
2
,
0
::
2
,
:]
# B H/2 W/2 C
x2
=
x
[:,
0
::
2
,
1
::
2
,
:]
# B H/2 W/2 C
x3
=
x
[:,
1
::
2
,
1
::
2
,
:]
# B H/2 W/2 C
x
=
paddle
.
concat
([
x0
,
x1
,
x2
,
x3
],
-
1
)
# B H/2 W/2 4*C
x
=
x
.
reshape
([
B
,
H
*
W
//
4
,
4
*
C
])
# B H/2*W/2 4*C
x
=
self
.
norm
(
x
)
x
=
self
.
reduction
(
x
)
return
x
class
BasicLayer
(
nn
.
Layer
):
""" A basic Swin Transformer layer for one stage.
Args:
dim (int): Number of input channels.
input_resolution (tuple[int]): Input resolution.
depth (int): Number of blocks.
num_heads (int): Number of attention heads.
window_size (int): Local window size.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
drop (float, optional): Dropout rate. Default: 0.0
attn_drop (float, optional): Attention dropout rate. Default: 0.0
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
norm_layer (nn.Layer, optional): Normalization layer. Default: nn.LayerNorm
downsample (nn.Layer | None, optional): Downsample layer at the end of the layer. Default: None
"""
def
__init__
(
self
,
dim
,
depth
,
num_heads
,
window_size
=
7
,
mlp_ratio
=
4.
,
qkv_bias
=
True
,
qk_scale
=
None
,
drop
=
0.
,
attn_drop
=
0.
,
drop_path
=
0.
,
norm_layer
=
nn
.
LayerNorm
,
downsample
=
None
):
super
().
__init__
()
self
.
window_size
=
window_size
self
.
shift_size
=
window_size
//
2
self
.
depth
=
depth
# build blocks
self
.
blocks
=
nn
.
LayerList
([
SwinTransformerBlock
(
dim
=
dim
,
num_heads
=
num_heads
,
window_size
=
window_size
,
shift_size
=
0
if
(
i
%
2
==
0
)
else
window_size
//
2
,
mlp_ratio
=
mlp_ratio
,
qkv_bias
=
qkv_bias
,
qk_scale
=
qk_scale
,
drop
=
drop
,
attn_drop
=
attn_drop
,
drop_path
=
drop_path
[
i
]
if
isinstance
(
drop_path
,
np
.
ndarray
)
else
drop_path
,
norm_layer
=
norm_layer
)
for
i
in
range
(
depth
)
])
# patch merging layer
if
downsample
is
not
None
:
self
.
downsample
=
downsample
(
dim
=
dim
,
norm_layer
=
norm_layer
)
else
:
self
.
downsample
=
None
def
forward
(
self
,
x
,
H
,
W
):
""" Forward function.
Args:
x: Input feature, tensor size (B, H*W, C).
H, W: Spatial resolution of the input feature.
"""
# calculate attention mask for SW-MSA
Hp
=
int
(
np
.
ceil
(
H
/
self
.
window_size
))
*
self
.
window_size
Wp
=
int
(
np
.
ceil
(
W
/
self
.
window_size
))
*
self
.
window_size
img_mask
=
paddle
.
fluid
.
layers
.
zeros
(
[
1
,
Hp
,
Wp
,
1
],
dtype
=
'float32'
)
# 1 Hp Wp 1
h_slices
=
(
slice
(
0
,
-
self
.
window_size
),
slice
(
-
self
.
window_size
,
-
self
.
shift_size
),
slice
(
-
self
.
shift_size
,
None
))
w_slices
=
(
slice
(
0
,
-
self
.
window_size
),
slice
(
-
self
.
window_size
,
-
self
.
shift_size
),
slice
(
-
self
.
shift_size
,
None
))
cnt
=
0
for
h
in
h_slices
:
for
w
in
w_slices
:
img_mask
[:,
h
,
w
,
:]
=
cnt
cnt
+=
1
mask_windows
=
window_partition
(
img_mask
,
self
.
window_size
)
# nW, window_size, window_size, 1
mask_windows
=
mask_windows
.
reshape
(
[
-
1
,
self
.
window_size
*
self
.
window_size
])
attn_mask
=
mask_windows
.
unsqueeze
(
1
)
-
mask_windows
.
unsqueeze
(
2
)
huns
=
-
100.0
*
paddle
.
ones_like
(
attn_mask
)
attn_mask
=
huns
*
(
attn_mask
!=
0
).
astype
(
"float32"
)
for
blk
in
self
.
blocks
:
blk
.
H
,
blk
.
W
=
H
,
W
x
=
blk
(
x
,
attn_mask
)
if
self
.
downsample
is
not
None
:
x_down
=
self
.
downsample
(
x
,
H
,
W
)
Wh
,
Ww
=
(
H
+
1
)
//
2
,
(
W
+
1
)
//
2
return
x
,
H
,
W
,
x_down
,
Wh
,
Ww
else
:
return
x
,
H
,
W
,
x
,
H
,
W
class
PatchEmbed
(
nn
.
Layer
):
""" Image to Patch Embedding
Args:
patch_size (int): Patch token size. Default: 4.
in_chans (int): Number of input image channels. Default: 3.
embed_dim (int): Number of linear projection output channels. Default: 96.
norm_layer (nn.Layer, optional): Normalization layer. Default: None
"""
def
__init__
(
self
,
patch_size
=
4
,
in_chans
=
3
,
embed_dim
=
96
,
norm_layer
=
None
):
super
().
__init__
()
patch_size
=
to_2tuple
(
patch_size
)
self
.
patch_size
=
patch_size
self
.
in_chans
=
in_chans
self
.
embed_dim
=
embed_dim
self
.
proj
=
nn
.
Conv2D
(
in_chans
,
embed_dim
,
kernel_size
=
patch_size
,
stride
=
patch_size
)
if
norm_layer
is
not
None
:
self
.
norm
=
norm_layer
(
embed_dim
)
else
:
self
.
norm
=
None
def
forward
(
self
,
x
):
B
,
C
,
H
,
W
=
x
.
shape
# assert [H, W] == self.img_size[:2], "Input image size ({H}*{W}) doesn't match model ({}*{}).".format(H, W, self.img_size[0], self.img_size[1])
if
W
%
self
.
patch_size
[
1
]
!=
0
:
x
=
F
.
pad
(
x
,
[
0
,
self
.
patch_size
[
1
]
-
W
%
self
.
patch_size
[
1
]])
if
H
%
self
.
patch_size
[
0
]
!=
0
:
x
=
F
.
pad
(
x
,
[
0
,
0
,
0
,
self
.
patch_size
[
0
]
-
H
%
self
.
patch_size
[
0
]])
x
=
self
.
proj
(
x
)
if
self
.
norm
is
not
None
:
_
,
_
,
Wh
,
Ww
=
x
.
shape
x
=
x
.
flatten
(
2
).
transpose
([
0
,
2
,
1
])
x
=
self
.
norm
(
x
)
x
=
x
.
transpose
([
0
,
2
,
1
]).
reshape
([
-
1
,
self
.
embed_dim
,
Wh
,
Ww
])
return
x
@
register
@
serializable
class
SwinTransformer
(
nn
.
Layer
):
""" Swin Transformer
A PaddlePaddle impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
https://arxiv.org/pdf/2103.14030
Args:
img_size (int | tuple(int)): Input image size. Default 224
patch_size (int | tuple(int)): Patch size. Default: 4
in_chans (int): Number of input image channels. Default: 3
num_classes (int): Number of classes for classification head. Default: 1000
embed_dim (int): Patch embedding dimension. Default: 96
depths (tuple(int)): Depth of each Swin Transformer layer.
num_heads (tuple(int)): Number of attention heads in different layers.
window_size (int): Window size. Default: 7
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None
drop_rate (float): Dropout rate. Default: 0
attn_drop_rate (float): Attention dropout rate. Default: 0
drop_path_rate (float): Stochastic depth rate. Default: 0.1
norm_layer (nn.Layer): Normalization layer. Default: nn.LayerNorm.
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
patch_norm (bool): If True, add normalization after patch embedding. Default: True
"""
def
__init__
(
self
,
pretrain_img_size
=
224
,
patch_size
=
4
,
in_chans
=
3
,
embed_dim
=
96
,
depths
=
[
2
,
2
,
6
,
2
],
num_heads
=
[
3
,
6
,
12
,
24
],
window_size
=
7
,
mlp_ratio
=
4.
,
qkv_bias
=
True
,
qk_scale
=
None
,
drop_rate
=
0.
,
attn_drop_rate
=
0.
,
drop_path_rate
=
0.2
,
norm_layer
=
nn
.
LayerNorm
,
ape
=
False
,
patch_norm
=
True
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=-
1
,
pretrained
=
None
):
super
(
SwinTransformer
,
self
).
__init__
()
self
.
pretrain_img_size
=
pretrain_img_size
self
.
num_layers
=
len
(
depths
)
self
.
embed_dim
=
embed_dim
self
.
ape
=
ape
self
.
patch_norm
=
patch_norm
self
.
out_indices
=
out_indices
self
.
frozen_stages
=
frozen_stages
# split image into non-overlapping patches
self
.
patch_embed
=
PatchEmbed
(
patch_size
=
patch_size
,
in_chans
=
in_chans
,
embed_dim
=
embed_dim
,
norm_layer
=
norm_layer
if
self
.
patch_norm
else
None
)
# absolute position embedding
if
self
.
ape
:
pretrain_img_size
=
to_2tuple
(
pretrain_img_size
)
patch_size
=
to_2tuple
(
patch_size
)
patches_resolution
=
[
pretrain_img_size
[
0
]
//
patch_size
[
0
],
pretrain_img_size
[
1
]
//
patch_size
[
1
]
]
self
.
absolute_pos_embed
=
add_parameter
(
self
,
paddle
.
zeros
((
1
,
embed_dim
,
patches_resolution
[
0
],
patches_resolution
[
1
])))
trunc_normal_
(
self
.
absolute_pos_embed
)
self
.
pos_drop
=
nn
.
Dropout
(
p
=
drop_rate
)
# stochastic depth
dpr
=
np
.
linspace
(
0
,
drop_path_rate
,
sum
(
depths
))
# stochastic depth decay rule
# build layers
self
.
layers
=
nn
.
LayerList
()
for
i_layer
in
range
(
self
.
num_layers
):
layer
=
BasicLayer
(
dim
=
int
(
embed_dim
*
2
**
i_layer
),
depth
=
depths
[
i_layer
],
num_heads
=
num_heads
[
i_layer
],
window_size
=
window_size
,
mlp_ratio
=
mlp_ratio
,
qkv_bias
=
qkv_bias
,
qk_scale
=
qk_scale
,
drop
=
drop_rate
,
attn_drop
=
attn_drop_rate
,
drop_path
=
dpr
[
sum
(
depths
[:
i_layer
]):
sum
(
depths
[:
i_layer
+
1
])],
norm_layer
=
norm_layer
,
downsample
=
PatchMerging
if
(
i_layer
<
self
.
num_layers
-
1
)
else
None
)
self
.
layers
.
append
(
layer
)
num_features
=
[
int
(
embed_dim
*
2
**
i
)
for
i
in
range
(
self
.
num_layers
)]
self
.
num_features
=
num_features
# add a norm layer for each output
for
i_layer
in
out_indices
:
layer
=
norm_layer
(
num_features
[
i_layer
])
layer_name
=
f
'norm
{
i_layer
}
'
self
.
add_sublayer
(
layer_name
,
layer
)
self
.
apply
(
self
.
_init_weights
)
self
.
_freeze_stages
()
if
pretrained
:
if
'http'
in
pretrained
:
#URL
path
=
paddle
.
utils
.
download
.
get_weights_path_from_url
(
pretrained
)
else
:
#model in local path
path
=
pretrained
self
.
set_state_dict
(
paddle
.
load
(
path
))
print
(
'###################################################'
)
print
(
'###############Success load the mode###############'
)
print
(
'###################################################'
)
def
_freeze_stages
(
self
):
if
self
.
frozen_stages
>=
0
:
self
.
patch_embed
.
eval
()
for
param
in
self
.
patch_embed
.
parameters
():
param
.
requires_grad
=
False
if
self
.
frozen_stages
>=
1
and
self
.
ape
:
self
.
absolute_pos_embed
.
requires_grad
=
False
if
self
.
frozen_stages
>=
2
:
self
.
pos_drop
.
eval
()
for
i
in
range
(
0
,
self
.
frozen_stages
-
1
):
m
=
self
.
layers
[
i
]
m
.
eval
()
for
param
in
m
.
parameters
():
param
.
requires_grad
=
False
def
_init_weights
(
self
,
m
):
if
isinstance
(
m
,
nn
.
Linear
):
trunc_normal_
(
m
.
weight
)
if
isinstance
(
m
,
nn
.
Linear
)
and
m
.
bias
is
not
None
:
zeros_
(
m
.
bias
)
elif
isinstance
(
m
,
nn
.
LayerNorm
):
zeros_
(
m
.
bias
)
ones_
(
m
.
weight
)
def
forward
(
self
,
x
):
"""Forward function."""
x
=
self
.
patch_embed
(
x
[
'image'
])
_
,
_
,
Wh
,
Ww
=
x
.
shape
if
self
.
ape
:
# interpolate the position embedding to the corresponding size
absolute_pos_embed
=
F
.
interpolate
(
self
.
absolute_pos_embed
,
size
=
(
Wh
,
Ww
),
mode
=
'bicubic'
)
x
=
(
x
+
absolute_pos_embed
).
flatten
(
2
).
transpose
([
0
,
2
,
1
])
else
:
x
=
x
.
flatten
(
2
).
transpose
([
0
,
2
,
1
])
x
=
self
.
pos_drop
(
x
)
outs
=
[]
for
i
in
range
(
self
.
num_layers
):
layer
=
self
.
layers
[
i
]
x_out
,
H
,
W
,
x
,
Wh
,
Ww
=
layer
(
x
,
Wh
,
Ww
)
if
i
in
self
.
out_indices
:
norm_layer
=
getattr
(
self
,
f
'norm
{
i
}
'
)
x_out
=
norm_layer
(
x_out
)
out
=
x_out
.
reshape
((
-
1
,
H
,
W
,
self
.
num_features
[
i
])).
transpose
(
(
0
,
3
,
1
,
2
))
outs
.
append
(
out
)
return
tuple
(
outs
)
@
property
def
out_shape
(
self
):
out_strides
=
[
4
,
8
,
16
,
32
]
return
[
ShapeSpec
(
channels
=
self
.
num_features
[
i
],
stride
=
out_strides
[
i
])
for
i
in
self
.
out_indices
]
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录