Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
ba981604
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ba981604
编写于
1月 25, 2019
作者:
J
JiabinYang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix split
上级
3be8ffad
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
322 addition
and
22 deletion
+322
-22
paddle/fluid/framework/operator.cc
paddle/fluid/framework/operator.cc
+10
-11
python/paddle/fluid/imperative/nn.py
python/paddle/fluid/imperative/nn.py
+2
-10
python/paddle/fluid/tests/unittests/test_imperative.py
python/paddle/fluid/tests/unittests/test_imperative.py
+0
-1
python/paddle/fluid/tests/unittests/test_imperative_ptb_rnn.py
...n/paddle/fluid/tests/unittests/test_imperative_ptb_rnn.py
+265
-0
python/paddle/fluid/tests/unittests/test_imperative_split.py
python/paddle/fluid/tests/unittests/test_imperative_split.py
+45
-0
未找到文件。
paddle/fluid/framework/operator.cc
浏览文件 @
ba981604
...
@@ -555,18 +555,17 @@ Tensor* ExecutionContext::LegacyOutput<Tensor>(const std::string& name) const {
...
@@ -555,18 +555,17 @@ Tensor* ExecutionContext::LegacyOutput<Tensor>(const std::string& name) const {
template
<
>
template
<
>
std
::
vector
<
Tensor
*>
ExecutionContext
::
MultiOutput
<
Tensor
>
(
std
::
vector
<
Tensor
*>
ExecutionContext
::
MultiOutput
<
Tensor
>
(
const
std
::
string
&
name
)
const
{
const
std
::
string
&
name
)
const
{
auto
names
=
op
().
Outputs
(
name
);
auto
it
=
ctx_
.
outputs
.
find
(
name
);
if
(
it
==
ctx_
.
outputs
.
end
())
{
return
{};
}
const
std
::
vector
<
Variable
*>&
vars
=
it
->
second
;
std
::
vector
<
Tensor
*>
res
;
std
::
vector
<
Tensor
*>
res
;
res
.
reserve
(
names
.
size
());
res
.
reserve
(
vars
.
size
());
std
::
transform
(
names
.
begin
(),
names
.
end
(),
std
::
back_inserter
(
res
),
std
::
transform
(
vars
.
begin
(),
vars
.
end
(),
std
::
back_inserter
(
res
),
[
&
](
const
std
::
string
&
sub_name
)
->
Tensor
*
{
[
&
](
Variable
*
var
)
->
Tensor
*
{
auto
var
=
scope_
.
FindVar
(
sub_name
);
return
var
==
nullptr
?
nullptr
if
(
var
==
nullptr
)
return
nullptr
;
:
var
->
GetMutable
<
LoDTensor
>
();
PADDLE_ENFORCE
(
var
->
IsType
<
LoDTensor
>
(),
"%s should be LoDTensor, but the received type is %s"
,
sub_name
,
ToTypeName
(
var
->
Type
()));
return
var
->
GetMutable
<
LoDTensor
>
();
});
});
return
res
;
return
res
;
}
}
...
...
python/paddle/fluid/imperative/nn.py
浏览文件 @
ba981604
...
@@ -22,13 +22,7 @@ from . import layers
...
@@ -22,13 +22,7 @@ from . import layers
from
..framework
import
Variable
,
OpProtoHolder
from
..framework
import
Variable
,
OpProtoHolder
from
..param_attr
import
ParamAttr
from
..param_attr
import
ParamAttr
from
..initializer
import
Normal
,
Constant
from
..initializer
import
Normal
,
Constant
__all__
=
[
__all__
=
[
'Conv2D'
,
'Pool2D'
,
'FC'
,
'BatchNorm'
,
'EMBEDDING'
]
'Conv2D'
,
'Pool2D'
,
'FC'
,
'BatchNorm'
,
'EMBEDDING'
]
class
Conv2D
(
layers
.
Layer
):
class
Conv2D
(
layers
.
Layer
):
...
@@ -419,8 +413,6 @@ class BatchNorm(layers.Layer):
...
@@ -419,8 +413,6 @@ class BatchNorm(layers.Layer):
# Currently, we don't support inplace in imperative mode
# Currently, we don't support inplace in imperative mode
return
self
.
_helper
.
append_activation
(
batch_norm_out
)
return
self
.
_helper
.
append_activation
(
batch_norm_out
)
outputs
=
{
'Out'
:
[
bias_out
]},
class
EMBEDDING
(
layers
.
Layer
):
class
EMBEDDING
(
layers
.
Layer
):
...
...
python/paddle/fluid/tests/unittests/test_imperative.py
浏览文件 @
ba981604
...
@@ -338,7 +338,6 @@ class TestImperative(unittest.TestCase):
...
@@ -338,7 +338,6 @@ class TestImperative(unittest.TestCase):
dy_grad_i2h
=
simple_rnn
.
_cell
.
_i2h_w
.
_gradient
()
dy_grad_i2h
=
simple_rnn
.
_cell
.
_i2h_w
.
_gradient
()
with
new_program_scope
():
with
new_program_scope
():
print
(
"im here"
)
inp
=
fluid
.
layers
.
data
(
inp
=
fluid
.
layers
.
data
(
name
=
"inp"
,
shape
=
[
1
,
4
,
3
],
append_batch_size
=
False
)
name
=
"inp"
,
shape
=
[
1
,
4
,
3
],
append_batch_size
=
False
)
simple_rnn
=
SimpleRNN
()
simple_rnn
=
SimpleRNN
()
...
...
python/paddle/fluid/tests/unittests/test_imperative_ptb_rnn.py
0 → 100644
浏览文件 @
ba981604
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
paddle.fluid
as
fluid
from
paddle.fluid.imperative.nn
import
EMBEDDING
import
paddle.fluid.framework
as
framework
from
paddle.fluid.optimizer
import
SGDOptimizer
from
paddle.fluid.imperative.base
import
to_variable
import
numpy
as
np
from
paddle.fluid.backward
import
append_backward
class
SimpleLSTMRNN
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
,
hidden_size
,
num_steps
,
num_layers
=
2
,
init_scale
=
0.1
,
dropout
=
None
):
super
(
SimpleLSTMRNN
,
self
).
__init__
()
self
.
_hidden_size
=
hidden_size
self
.
_num_layers
=
num_layers
self
.
_init_scale
=
init_scale
self
.
_dropout
=
dropout
self
.
input
=
None
self
.
num_steps
=
num_steps
def
_build_once
(
self
,
input_embedding
,
init_hidden
=
None
,
init_cell
=
None
):
self
.
weight_1_arr
=
[]
self
.
weight_2_arr
=
[]
self
.
bias_arr
=
[]
self
.
hidden_array
=
[]
self
.
cell_array
=
[]
self
.
mask_array
=
[]
for
i
in
range
(
self
.
_num_layers
):
weight_1
=
fluid
.
layers
.
create_parameter
(
shape
=
[
self
.
_hidden_size
*
2
,
self
.
_hidden_size
*
4
],
dtype
=
"float32"
,
name
=
"fc_weight1_"
+
str
(
i
),
default_initializer
=
fluid
.
initializer
.
UniformInitializer
(
low
=-
self
.
_init_scale
,
high
=
self
.
_init_scale
))
self
.
weight_1_arr
.
append
(
weight_1
)
bias_1
=
fluid
.
layers
.
create_parameter
(
[
self
.
_hidden_size
*
4
],
dtype
=
"float32"
,
name
=
"fc_bias1_"
+
str
(
i
),
default_initializer
=
fluid
.
initializer
.
Constant
(
0.0
))
self
.
bias_arr
.
append
(
bias_1
)
pre_hidden
=
fluid
.
layers
.
slice
(
init_hidden
,
axes
=
[
0
],
starts
=
[
i
],
ends
=
[
i
+
1
])
pre_cell
=
fluid
.
layers
.
slice
(
init_cell
,
axes
=
[
0
],
starts
=
[
i
],
ends
=
[
i
+
1
])
pre_hidden
=
fluid
.
layers
.
reshape
(
pre_hidden
,
shape
=
[
-
1
,
self
.
_hidden_size
])
pre_cell
=
fluid
.
layers
.
reshape
(
pre_cell
,
shape
=
[
-
1
,
self
.
_hidden_size
])
self
.
hidden_array
.
append
(
pre_hidden
)
self
.
cell_array
.
append
(
pre_cell
)
def
forward
(
self
,
input_embedding
,
init_hidden
=
None
,
init_cell
=
None
):
res
=
[]
for
index
in
range
(
self
.
num_steps
):
self
.
input
=
fluid
.
layers
.
slice
(
input_embedding
,
axes
=
[
1
],
starts
=
[
index
],
ends
=
[
index
+
1
])
self
.
input
=
fluid
.
layers
.
reshape
(
self
.
input
,
shape
=
[
-
1
,
self
.
_hidden_size
])
for
k
in
range
(
self
.
_num_layers
):
pre_hidden
=
self
.
hidden_array
[
k
]
print
(
"pre_hidden shape is:{}"
.
format
(
pre_hidden
.
shape
))
print
(
"input shape is:{}"
.
format
(
self
.
input
.
shape
))
pre_cell
=
self
.
cell_array
[
k
]
weight_1
=
self
.
weight_1_arr
[
k
]
bias
=
self
.
bias_arr
[
k
]
nn
=
fluid
.
layers
.
concat
([
self
.
input
,
pre_hidden
],
1
)
gate_input
=
fluid
.
layers
.
matmul
(
x
=
nn
,
y
=
weight_1
)
gate_input
=
fluid
.
layers
.
elementwise_add
(
gate_input
,
bias
)
print
(
"gate_input shape is: {}"
.
format
(
gate_input
.
shape
))
print
(
"gate_input value is :{}"
.
format
(
gate_input
.
_numpy
()))
print
(
"gate_input desc is :{}"
.
format
(
gate_input
))
# i, j, f, o = fluid.layers.split(gate_input, num_or_sections=4, dim=-1)
# #
# # c = pre_cell * fluid.layers.sigmoid(f) + fluid.layers.sigmoid(
# # i) * fluid.layers.tanh(j)
# # m = fluid.layers.tanh(c) * fluid.layers.sigmoid(o)
# #
# # self.hidden_array[k] = m
# # self.cell_array[k] = c
# # self.input = m
# #
# # if self.dropout is not None and self.dropout > 0.0:
# # self.input = fluid.layers.dropout(
# # self.input,
# # dropout_prob=self.dropout,
# # dropout_implementation='upscale_in_train')
# #
# # res.append(
# # fluid.layers.reshape(
# # input, shape=[1, -1, self._hidden_size]))
# # real_res = fluid.layers.concat(res, 0)
# # real_res = fluid.layers.transpose(x=real_res, perm=[1, 0, 2])
# # last_hidden = fluid.layers.concat(self.hidden_array, 1)
# # last_hidden = fluid.layers.reshape(
# # last_hidden, shape=[-1, self._num_layers, self._hidden_size])
# # last_hidden = fluid.layers.transpose(x=last_hidden, perm=[1, 0, 2])
# # last_cell = fluid.layers.concat(self.cell_array, 1)
# # last_cell = fluid.layers.reshape(
# # last_cell, shape=[-1, self._num_layers, self._hidden_size])
# # last_cell = fluid.layers.transpose(x=last_cell, perm=[1, 0, 2])
# #
# return real_res, last_hidden, last_cell
return
[
1
],
[
2
],
[
3
]
class
PtbModel
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
,
hidden_size
,
vocab_size
,
num_layers
=
2
,
num_steps
=
20
,
init_scale
=
0.1
,
dropout
=
None
):
super
(
PtbModel
,
self
).
__init__
()
self
.
hidden_size
=
hidden_size
self
.
vocab_size
=
vocab_size
self
.
init_scale
=
init_scale
self
.
num_layers
=
num_layers
self
.
num_steps
=
num_steps
self
.
dropout
=
dropout
self
.
simple_lstm_rnn
=
SimpleLSTMRNN
(
hidden_size
,
num_steps
,
num_layers
=
num_layers
,
init_scale
=
init_scale
,
dropout
=
dropout
)
self
.
embedding
=
EMBEDDING
(
size
=
[
vocab_size
,
hidden_size
],
dtype
=
'float32'
,
is_sparse
=
False
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'embedding_para'
,
initializer
=
fluid
.
initializer
.
UniformInitializer
(
low
=-
init_scale
,
high
=
init_scale
)))
def
_build_once
(
self
,
input
,
label
,
init_hidden
,
init_cell
):
self
.
softmax_weight
=
fluid
.
layers
.
create_parameter
(
[
self
.
hidden_size
,
self
.
vocab_size
],
dtype
=
"float32"
,
name
=
"softmax_weight"
,
default_initializer
=
fluid
.
initializer
.
UniformInitializer
(
low
=-
self
.
init_scale
,
high
=
self
.
init_scale
))
self
.
softmax_bias
=
fluid
.
layers
.
create_parameter
(
[
self
.
vocab_size
],
dtype
=
"float32"
,
name
=
'softmax_bias'
,
default_initializer
=
fluid
.
initializer
.
UniformInitializer
(
low
=-
self
.
init_scale
,
high
=
self
.
init_scale
))
def
forward
(
self
,
input
,
label
,
init_hidden
,
init_cell
):
init_h
=
fluid
.
layers
.
reshape
(
init_hidden
,
shape
=
[
self
.
num_layers
,
-
1
,
self
.
hidden_size
])
init_c
=
fluid
.
layers
.
reshape
(
init_cell
,
shape
=
[
self
.
num_layers
,
-
1
,
self
.
hidden_size
])
x_emb
=
self
.
embedding
(
input
)
x_emb
=
fluid
.
layers
.
reshape
(
x_emb
,
shape
=
[
-
1
,
self
.
num_steps
,
self
.
hidden_size
])
if
self
.
dropout
is
not
None
and
self
.
dropout
>
0.0
:
x_emb
=
fluid
.
layers
.
dropout
(
x_emb
,
dropout_prob
=
self
.
drop_out
,
dropout_implementation
=
'upscale_in_train'
)
print
(
"init_c is {}"
.
format
(
init_c
))
rnn_out
,
last_hidden
,
last_cell
=
self
.
simple_lstm_rnn
(
x_emb
,
init_h
,
init_c
)
rnn_out
=
fluid
.
layers
.
reshape
(
rnn_out
,
shape
=
[
-
1
,
self
.
num_steps
,
self
.
hidden_size
])
projection
=
fluid
.
layers
.
reshape
(
rnn_out
,
self
.
softmax_weight
)
projection
=
fluid
.
layers
.
elementwise_add
(
projection
,
self
.
softmax_bias
)
projection
=
fluid
.
layers
.
reshape
(
projection
,
shape
=
[
-
1
,
self
.
vocab_size
])
projection
=
fluid
.
layers
.
reshape
(
projection
,
shape
=
[
-
1
,
self
.
vocab_size
])
loss
=
fluid
.
layers
.
softmax_with_cross_entropy
(
logits
=
projection
,
label
=
label
,
soft_label
=
False
)
loss
=
fluid
.
layers
.
reshape
(
loss
,
shape
=
[
-
1
,
self
.
num_steps
])
loss
=
fluid
.
layers
.
reduce_mean
(
loss
,
dim
=
[
0
])
loss
=
fluid
.
layers
.
reduce_sum
(
loss
)
loss
.
permissions
=
True
return
loss
,
last_hidden
,
last_cell
class
TestImperativePtbRnn
(
unittest
.
TestCase
):
def
test_mnist_cpu_float32
(
self
):
seed
=
90
hidden_size
=
10
vocab_size
=
1000
num_layers
=
1
num_steps
=
3
init_scale
=
0.1
batch_size
=
4
with
fluid
.
imperative
.
guard
():
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
# TODO: marsyang1993 Change seed to
ptb_model
=
PtbModel
(
hidden_size
=
hidden_size
,
vocab_size
=
vocab_size
,
num_layers
=
num_layers
,
num_steps
=
num_steps
,
init_scale
=
init_scale
)
sgd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
print
(
"q"
)
for
i
in
range
(
2
):
x_data
=
np
.
arange
(
12
).
reshape
(
4
,
3
).
astype
(
'int64'
)
y_data
=
np
.
arange
(
1
,
13
).
reshape
(
4
,
3
).
astype
(
'int64'
)
x_data
=
x_data
.
reshape
((
-
1
,
num_steps
,
1
))
y_data
=
y_data
.
reshape
((
-
1
,
1
))
init_hidden_data
=
np
.
zeros
(
(
num_layers
,
batch_size
,
hidden_size
),
dtype
=
'float32'
)
init_cell_data
=
np
.
zeros
(
(
num_layers
,
batch_size
,
hidden_size
),
dtype
=
'float32'
)
x
=
to_variable
(
x_data
)
y
=
to_variable
(
y_data
)
init_hidden
=
to_variable
(
init_hidden_data
)
init_cell
=
to_variable
(
init_cell_data
)
dy_loss
,
last_hidden
,
last_cell
=
ptb_model
(
x
,
y
,
init_hidden
,
init_cell
)
dy_param_init
=
dict
()
if
i
==
0
:
for
param
in
fluid
.
default_main_program
().
global_block
(
).
all_parameters
():
dy_param_init
[
param
.
name
]
=
param
.
_numpy
()
dy_loss
.
_backward
()
sgd
.
minimize
(
dy_loss
)
dy_param_updated
=
dict
()
for
param
in
fluid
.
default_main_program
().
global_block
(
).
all_parameters
():
dy_param_updated
[
param
.
name
]
=
param
.
_numpy
()
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_imperative_split.py
0 → 100644
浏览文件 @
ba981604
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
paddle.fluid
as
fluid
from
paddle.fluid.imperative.base
import
to_variable
import
numpy
as
np
class
Split_test
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
):
super
(
Split_test
,
self
).
__init__
()
def
_build_once
(
self
,
input
):
pass
def
forward
(
self
,
input
):
out
=
fluid
.
layers
.
split
(
input
,
num_or_sections
=
4
,
dim
=-
1
)
return
out
class
TestImperativePtbRnn
(
unittest
.
TestCase
):
def
test_spilt
(
self
):
with
fluid
.
imperative
.
guard
():
inp
=
to_variable
(
np
.
arange
(
160
).
reshape
(
4
,
40
).
astype
(
'float32'
))
st
=
Split_test
()
out
=
st
(
inp
)
print
(
out
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录