未验证 提交 b9e096ef 编写于 作者: W wangguanzhong 提交者: GitHub

update pphuman en doc, test=document_fix (#5506)

* update pphuman en doc, test=document_fix

* update doc
上级 0743e380
...@@ -92,20 +92,26 @@ ATTR: ...@@ -92,20 +92,26 @@ ATTR:
### 3. 预测部署 ### 3. 预测部署
``` ```
# 指定配置文件路径和测试图片 # 行人检测,指定配置文件路径和测试图片
python deploy/pphuman/pipeline.py --config deploy/pphuman/config/infer_cfg.yml --image_file=test_image.jpg --device=gpu python deploy/pphuman/pipeline.py --config deploy/pphuman/config/infer_cfg.yml --image_file=test_image.jpg --device=gpu
# 指定配置文件路径和测试视频,完成属性识别 # 行人跟踪,指定配置文件路径和测试视频
python deploy/pphuman/pipeline.py --config deploy/pphuman/config/infer_cfg.yml --video_file=test_video.mp4 --device=gpu
# 行人跟踪,指定配置文件路径,模型路径和测试视频
# 命令行中指定的模型路径优先级高于配置文件
python deploy/pphuman/pipeline.py --config deploy/pphuman/config/infer_cfg.yml --video_file=test_video.mp4 --device=gpu --model_dir det=ppyoloe/
# 行人属性识别,指定配置文件路径和测试视频
python deploy/pphuman/pipeline.py --config deploy/pphuman/config/infer_cfg.yml --video_file=test_video.mp4 --device=gpu --enable_attr=True python deploy/pphuman/pipeline.py --config deploy/pphuman/config/infer_cfg.yml --video_file=test_video.mp4 --device=gpu --enable_attr=True
# 指定配置文件路径和测试视频,完成行为识别 # 行为识别,指定配置文件路径和测试视频
python deploy/pphuman/pipeline.py --config deploy/pphuman/config/infer_cfg.yml --video_file=test_video.mp4 --device=gpu --enable_action=True python deploy/pphuman/pipeline.py --config deploy/pphuman/config/infer_cfg.yml --video_file=test_video.mp4 --device=gpu --enable_action=True
# 指定配置文件路径,模型路径和测试视频,完成多目标跟踪
# 命令行中指定的模型路径优先级高于配置文件
python deploy/pphuman/pipeline.py --config deploy/pphuman/config/infer_cfg.yml --video_file=test_video.mp4 --device=gpu --model_dir det=ppyoloe/
``` ```
其他用法请参考[子任务文档](./docs)
#### 3.1 参数说明 #### 3.1 参数说明
| 参数 | 是否必须|含义 | | 参数 | 是否必须|含义 |
...@@ -136,17 +142,17 @@ PP-Human整体方案如下图所示 ...@@ -136,17 +142,17 @@ PP-Human整体方案如下图所示
</div> </div>
### 1. 目标检测 ### 1. 行人检测
- 采用PP-YOLOE L 作为目标检测模型 - 采用PP-YOLOE L 作为目标检测模型
- 详细文档参考[PP-YOLOE](../../configs/ppyoloe/)[检测跟踪文档](docs/mot.md) - 详细文档参考[PP-YOLOE](../../configs/ppyoloe/)[检测跟踪文档](docs/mot.md)
### 2. 多目标跟踪 ### 2. 行人跟踪
- 采用SDE方案完成多目标跟踪 - 采用SDE方案完成行人跟踪
- 检测模型使用PP-YOLOE L - 检测模型使用PP-YOLOE L
- 跟踪模块采用Bytetrack方案 - 跟踪模块采用Bytetrack方案
- 详细文档参考[Bytetrack](../../configs/mot/bytetrack)[检测跟踪文档](docs/mot.md) - 详细文档参考[Bytetrack](../../configs/mot/bytetrack)[检测跟踪文档](docs/mot.md)
### 3. 跨镜跟踪 ### 3. 跨镜行人跟踪
- 使用PP-YOLOE + Bytetrack得到单镜头多目标跟踪轨迹 - 使用PP-YOLOE + Bytetrack得到单镜头多目标跟踪轨迹
- 使用ReID(centroid网络)对每一帧的检测结果提取特征 - 使用ReID(centroid网络)对每一帧的检测结果提取特征
- 多镜头轨迹特征进行匹配,得到跨镜头跟踪结果 - 多镜头轨迹特征进行匹配,得到跨镜头跟踪结果
......
...@@ -3,11 +3,11 @@ English | [简体中文](README.md) ...@@ -3,11 +3,11 @@ English | [简体中文](README.md)
# PP-Human— a Real-Time Pedestrian Analysis Tool # PP-Human— a Real-Time Pedestrian Analysis Tool
PP-Human serves as the first open-source tool of real-time pedestrian anaylsis relying on the PaddlePaddle deep learning framework. Versatile and efficient in deployment, it has been used in various senarios. PP-Human PP-Human serves as the first open-source tool of real-time pedestrian anaylsis relying on the PaddlePaddle deep learning framework. Versatile and efficient in deployment, it has been used in various senarios. PP-Human
offers many input options, including image/single-camera video/multi-camera video, and covers multi-object tracking, attribute recognition, and action recognition. PP-Human can be applied to intelligent traffic, the intelligent community, industiral patrol, and so on. It supports server-side deployment and TensorRT acceleration,and even can achieve real-time analysis on the T4 server. offers many input options, including image/single-camera video/multi-camera video, and covers multi-object tracking, attribute recognition, and action recognition. PP-Human can be applied to intelligent traffic, the intelligent community, industiral patrol, and so on. It supports server-side deployment and TensorRT acceleration,and achieves real-time analysis on the T4 server.
## I. Environment Preparation ## I. Environment Preparation
Requirement: PaddleDetection version >= release/2.4 Requirement: PaddleDetection version >= release/2.4 or develop
The installation of PaddlePaddle and PaddleDetection The installation of PaddlePaddle and PaddleDetection
...@@ -38,18 +38,19 @@ To make users have access to models of different scenarios, PP-Human provides pr ...@@ -38,18 +38,19 @@ To make users have access to models of different scenarios, PP-Human provides pr
| Task | Scenario | Precision | Inference Speed(FPS) | Model Inference and Deployment | | Task | Scenario | Precision | Inference Speed(FPS) | Model Inference and Deployment |
| :---------: |:---------: |:--------------- | :-------: | :------: | | :---------: |:---------: |:--------------- | :-------: | :------: |
| Object Detection | Image/Video Input | - | - | [Link](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip) | | Object Detection | Image/Video Input | mAP: 56.3 | 28.0ms | [Link](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip) |
| Attribute Recognition | Image/Video Input Attribute Recognition | - | - | [Link](https://bj.bcebos.com/v1/paddledet/models/pipeline/strongbaseline_r50_30e_pa100k.tar) | | Attribute Recognition | Image/Video Input Attribute Recognition | MOTA: 72.0 | 33.1ms | [Link](https://bj.bcebos.com/v1/paddledet/models/pipeline/strongbaseline_r50_30e_pa100k.zip) |
| Keypoint Detection | Video Input Action Recognition | - | - | [Link](https://bj.bcebos.com/v1/paddledet/models/pipeline/dark_hrnet_w32_256x192.zip) | Keypoint Detection | Video Input Action Recognition | mA: 94.86 | 2ms per person | [Link](https://bj.bcebos.com/v1/paddledet/models/pipeline/dark_hrnet_w32_256x192.zip)
| Behavior Recognition | Video Input Bheavior Recognition | - | - | [Link](https://bj.bcebos.com/v1/paddledet/models/pipeline/STGCN.zip) | | Behavior Recognition | Video Input Bheavior Recognition | Precision 96.43 | 2.7ms per person | [Link](https://bj.bcebos.com/v1/paddledet/models/pipeline/STGCN.zip) |
| ReID | Multi-Target Multi-Camera Tracking | - | - | [Link]() | | ReID | Multi-Target Multi-Camera Tracking | mAP: 99.7 | - | [Link](https://bj.bcebos.com/v1/paddledet/models/pipeline/reid_model.zip) |
Then, unzip the downloaded model to the folder `./output_inference`. Then, unzip the downloaded model to the folder `./output_inference`.
**Note: ** **Note: **
- The model precision is decided by the fusion of datasets which include open-source datasets and enterprise ones. - The model precision is decided by the fusion of datasets which include open-source datasets and enterprise ones.
- When the inference speed is T4, use TensorRT FP16. - The precision on ReID model is evaluated on Market1501.
- The inference speed is tested on T4, using TensorRT FP16. The pipeline of preprocess, prediction and postprocess is included.
### 2. Preparation of Configuration Files ### 2. Preparation of Configuration Files
...@@ -80,31 +81,44 @@ ATTR: ...@@ -80,31 +81,44 @@ ATTR:
batch_size: 8 batch_size: 8
``` ```
**Note: **
- For different tasks, users could add `--enable_attr=True` or `--enable_action=True` in command line and do not need to set config file.
- if only need to change the model path, users could add `--model_dir det=ppyoloe/` in command line and do not need to set config file. For details info please refer to doc below.
### 3. Inference and Deployment ### 3. Inference and Deployment
``` ```
# Specify the config file path and test images # Pedestrian detection. Specify the config file path and test images
python deploy/pphuman/pipeline.py --config deploy/pphuman/config/infer_cfg.yml --image_file=test_image.jpg --device=gpu python deploy/pphuman/pipeline.py --config deploy/pphuman/config/infer_cfg.yml --image_file=test_image.jpg --device=gpu
# Specify the config file path and test videos,and finish the attribute recognition # Pedestrian tracking. Specify the config file path and test videos
python deploy/pphuman/pipeline.py --config deploy/pphuman/config/infer_cfg.yml --video_file=test_video.mp4 --device=gpu
# Pedestrian tracking. Specify the config file path, the model path and test videos
# The model path specified on the command line prioritizes over the config file
python deploy/pphuman/pipeline.py --config deploy/pphuman/config/infer_cfg.yml --video_file=test_video.mp4 --device=gpu --model_dir det=ppyoloe/
# Attribute recognition. Specify the config file path and test videos
python deploy/pphuman/pipeline.py --config deploy/pphuman/config/infer_cfg.yml --video_file=test_video.mp4 --device=gpu --enable_attr=True python deploy/pphuman/pipeline.py --config deploy/pphuman/config/infer_cfg.yml --video_file=test_video.mp4 --device=gpu --enable_attr=True
# Specify the config file path and test videos,and finish the Action Recognition # Action Recognition. Specify the config file path and test videos
python deploy/pphuman/pipeline.py --config deploy/pphuman/config/infer_cfg.yml --video_file=test_video.mp4 --device=gpu --enable_action=True python deploy/pphuman/pipeline.py --config deploy/pphuman/config/infer_cfg.yml --video_file=test_video.mp4 --device=gpu --enable_action=True
# Specify the config file path, the model path and test videos,and finish the multi-object tracking # Multi-Camera pedestrian tracking. Specify the config file path and test videos
# The model path specified on the command line prioritizes over the config file python deploy/pphuman/pipeline.py --config deploy/pphuman/config/infer_cfg.yml --video_dir=test_video_dir/ --device=gpu
python deploy/pphuman/pipeline.py --config deploy/pphuman/config/infer_cfg.yml --video_file=test_video.mp4 --device=gpu --model_dir det=ppyoloe/
``` ```
Other usage please refer to [sub-task docs](./docs)
### 3.1 Description of Parameters ### 3.1 Description of Parameters
| Parameter | Optional or not| Meaning | | Parameter | Optional or not| Meaning |
|-------|-------|----------| |-------|-------|----------|
| --config | Yes | Config file path | | --config | Yes | Config file path |
| --model_dir | Option | the model paths of different tasks in PP-Human, with a priority higher than config files | | --model_dir | Option | the model paths of different tasks in PP-Human, with a priority higher than config files. For example, `--model_dir det=better_det/ attr=better_attr/` |
| --image_file | Option | Images to-be-predicted | | --image_file | Option | Images to-be-predicted |
| --image_dir | Option | The path of folders of to-be-predicted images | | --image_dir | Option | The path of folders of to-be-predicted images |
| --video_file | Option | Videos to-be-predicted | | --video_file | Option | Videos to-be-predicted |
...@@ -130,21 +144,21 @@ The overall solution of PP-Human is as follows: ...@@ -130,21 +144,21 @@ The overall solution of PP-Human is as follows:
### 1. Object Detection ### 1. Object Detection
- Use PP-YOLOE L as the model of object detection - Use PP-YOLOE L as the model of object detection
- For details, please refer to [PP-YOLOE](../../configs/ppyoloe/) - For details, please refer to [PP-YOLOE](../../configs/ppyoloe/) and [Detection and Tracking](docs/mot_en.md)
### 2. Multi-Object Tracking ### 2. Multi-Object Tracking
- Conduct multi-object tracking with the SDE solution - Conduct multi-object tracking with the SDE solution
- Use PP-YOLOE L as the detection model - Use PP-YOLOE L as the detection model
- Use the Bytetrack solution to track modules - Use the Bytetrack solution to track modules
- For details, refer to [Bytetrack](configs/mot/bytetrack) - For details, refer to [Bytetrack](configs/mot/bytetrack) and [Detection and Tracking](docs/mot_en.md)
### 3. Cross-Camera Tracking ### 3. Multi-Camera Tracking
- Use PP-YOLOE + Bytetrack to obtain the tracks of single-camera multi-object tracking - Use PP-YOLOE + Bytetrack to obtain the tracks of single-camera multi-object tracking
- Use ReID(centroid network)to extract features of the detection result of each frame - Use ReID(centroid network)to extract features of the detection result of each frame
- Match the features of multi-camera tracks to get the cross-camera tracking result - Match the features of multi-camera tracks to get the cross-camera tracking result
- For details, please refer to [Cross-Camera Tracking](docs/mtmct_en.md) - For details, please refer to [Multi-Camera Tracking](docs/mtmct_en.md)
### 4. Multi-Target Multi-Camera Tracking ### 4. Attribute Recognition
- Use PP-YOLOE + Bytetrack to track humans - Use PP-YOLOE + Bytetrack to track humans
- Use StrongBaseline(a multi-class model)to conduct attribute recognition, and the main attributes include age, gender, hats, eyes, clothing, and backpacks. - Use StrongBaseline(a multi-class model)to conduct attribute recognition, and the main attributes include age, gender, hats, eyes, clothing, and backpacks.
- For details, please refer to [Attribute Recognition](docs/attribute_en.md) - For details, please refer to [Attribute Recognition](docs/attribute_en.md)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册