diff --git a/README.md b/README.md
index 9880bf77e7bbd7eff9f84a35cc419cbd9c6b0925..4d22578cb4ee96fc8968d7540f393d4fbcebd6b7 100644
--- a/README.md
+++ b/README.md
@@ -100,6 +100,7 @@
- [YOLOv3增强模型](docs/featured_model/YOLOv3_ENHANCEMENT.md) 改进原始YOLOv3,精度达到43.6%,原论文精度为33.0%,同时预测速度也得到提升
- [Objects365 2019 Challenge夺冠模型](docs/featured_model/CACascadeRCNN.md) Objects365 Full Track任务中最好的单模型之一,精度达到31.7%
- [Open Images V5和Objects365数据集模型](docs/featured_model/OIDV5_BASELINE_MODEL.md)
+- [移动端模型](configs/mobile/README.md)
## 许可证书
diff --git a/README_en.md b/README_en.md
index bb3b8876fa9c6a71719156df6b6119a846094ec2..05b65062fcd5bacc2d19acf48b93d4cd95d362d3 100644
--- a/README_en.md
+++ b/README_en.md
@@ -114,6 +114,7 @@ Advanced Features:
- [YOLOv3 enhanced model](docs/YOLOv3_ENHANCEMENT.md) Compared to MAP of 33.0% in paper, enhanced YOLOv3 reaches the MAP of 43.6% and inference speed is improved as well
- [Objects365 2019 Challenge champion model](docs/CACascadeRCNN.md) One of the best single models in Objects365 Full Track of which MAP reaches 31.7%.
- [Open Images Dataset V5 and Objects365 Dataset models](docs/OIDV5_BASELINE_MODEL.md)
+- [Mobile models](configs/mobile/README.md)
## License
diff --git a/configs/mobile/README.md b/configs/mobile/README.md
new file mode 100755
index 0000000000000000000000000000000000000000..ff967105bb696e96e574ae6b57a22288db226cf1
--- /dev/null
+++ b/configs/mobile/README.md
@@ -0,0 +1,80 @@
+# Mobile Model Zoo
+
+
+## Models
+
+This directory contains models optimized for mobile applications, at present the following models included:
+
+| Backbone | Architecture | Input | Image/gpu 1 | Lr schd | Box AP | Download 2 |
+|--------------------------|---------------------------|-------|------------------------|---------------|--------|-----------------------|
+| MobileNetV3 Small | SSDLite | 320 | 64 | 400K (cosine) | 16.6 | [Link](https://paddlemodels.bj.bcebos.com/object_detection/ssdlite_mobilenet_v3_small.tar.gz) |
+| MobileNetV3 Large | SSDLite | 320 | 64 | 400K (cosine) | 22.8 | [Link](https://paddlemodels.bj.bcebos.com/object_detection/ssdlite_mobilenet_v3_large.tar.gz) |
+| MobileNetV3 Large w/ FPN | Cascade RCNN | 320 | 2 | 500k (cosine) | 25.0 | [Link](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_mobilenetv3_fpn_320.tar.gz) |
+| MobileNetV3 Large w/ FPN | Cascade RCNN | 640 | 2 | 500k (cosine) | 30.2 | [Link](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_mobilenetv3_fpn_640.tar.gz) |
+| MobileNetV3 Large | YOLOv3 | 320 | 8 | 500K | 27.1 | [Link](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v3.tar.gz) |
+| MobileNetV3 Large | YOLOv3 Prune 3 | 320 | 8 | - | 24.6 | [Link](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v3_prune86_FPGM_320.tar.gz) |
+
+**Notes**:
+
+- [1] All models are trained on 8 GPUs.
+- [2] Each tarball contains the following files
+ - model weight file (`.pdparams` or `.tar`)
+ - inference model files (`__model__` and `__params__`)
+ - Paddle-Lite model file (`.nb`)
+- [3] See the note section on how YOLO head is pruned
+
+
+## Benchmarks Results
+
+- Models are benched on following chipsets with [Paddle-Lite](https://github.com/PaddlePaddle/Paddle-Lite) 2.6 (to be released)
+ - Qualcomm Snapdragon 625
+ - Qualcomm Snapdragon 835
+ - Qualcomm Snapdragon 845
+ - Qualcomm Snapdragon 855
+ - HiSilicon Kirin 970
+ - HiSilicon Kirin 980
+- With 1 CPU thread (latency numbers are in ms)
+
+ | | SD625 | SD835 | SD845 | SD855 | Kirin 970 | Kirin 980 |
+ |------------------|---------|---------|---------|---------|-----------|-----------|
+ | SSDLite Large | 289.071 | 134.408 | 91.933 | 48.2206 | 144.914 | 55.1186 |
+ | SSDLite Small | 122.932 | 57.1914 | 41.003 | 22.0694 | 61.5468 | 25.2106 |
+ | YOLOv3 baseline | 1082.5 | 435.77 | 317.189 | 155.948 | 536.987 | 178.999 |
+ | YOLOv3 prune | 253.98 | 131.279 | 89.4124 | 48.2856 | 122.732 | 55.8626 |
+ | Cascade RCNN 320 | 286.526 | 125.635 | 87.404 | 46.184 | 149.179 | 52.9994 |
+ | Cascade RCNN 640 | 1115.66 | 495.926 | 351.361 | 189.722 | 573.558 | 207.917 |
+- With 4 CPU threads (latency numbers are in ms)
+
+ | | SD625 | SD835 | SD845 | SD855 | Kirin 970 | Kirin 980 |
+ |------------------|---------|---------|---------|---------|-----------|-----------|
+ | SSDLite Large | 107.535 | 51.1382 | 34.6392 | 20.4978 | 50.5598 | 24.5318 |
+ | SSDLite Small | 51.5704 | 24.5156 | 18.5486 | 11.4218 | 24.9946 | 16.7158 |
+ | YOLOv3 baseline | 413.486 | 184.248 | 133.624 | 75.7354 | 202.263 | 126.435 |
+ | YOLOv3 prune | 98.5472 | 53.6228 | 34.4306 | 21.3112 | 44.0722 | 31.201 |
+ | Cascade RCNN 320 | 131.515 | 59.6026 | 39.4338 | 23.5802 | 58.5046 | 36.9486 |
+ | Cascade RCNN 640 | 473.083 | 224.543 | 156.205 | 100.686 | 231.108 | 138.391 |
+
+
+## Notes on YOLOv3 pruning
+
+We pruned the YOLO-head and distill the pruned model with YOLOv3-ResNet34 as the teacher, which has a higher mAP on COCO (31.4 with 320\*320 input).
+
+The following configurations can be used for pruning:
+
+- Prune with fixed ratio, overall prune ratios is 86%
+
+ ```shell
+ --pruned_params="yolo_block.0.0.0.conv.weights,yolo_block.0.0.1.conv.weights,yolo_block.0.1.0.conv.weights,yolo_block.0.1.1.conv.weights,yolo_block.0.2.conv.weights,yolo_block.0.tip.conv.weights,yolo_block.1.0.0.conv.weights,yolo_block.1.0.1.conv.weights,yolo_block.1.1.0.conv.weights,yolo_block.1.1.1.conv.weights,yolo_block.1.2.conv.weights,yolo_block.1.tip.conv.weights,yolo_block.2.0.0.conv.weights,yolo_block.2.0.1.conv.weights,yolo_block.2.1.0.conv.weights,yolo_block.2.1.1.conv.weights,yolo_block.2.2.conv.weights,yolo_block.2.tip.conv.weights" \
+ --pruned_ratios="0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.875,0.875,0.875,0.875,0.875,0.875"
+ ```
+- Prune filters using [FPGM](https://arxiv.org/abs/1811.00250) algorithm:
+
+ ```shell
+ --prune_criterion=geometry_median
+ ```
+
+
+## Upcoming
+
+- [ ] More models configurations
+- [ ] Quantized models
diff --git a/configs/mobile_side/cascade_rcnn_mobilenetv3_fpn_320.yml b/configs/mobile/cascade_rcnn_mobilenetv3_fpn_320.yml
similarity index 100%
rename from configs/mobile_side/cascade_rcnn_mobilenetv3_fpn_320.yml
rename to configs/mobile/cascade_rcnn_mobilenetv3_fpn_320.yml
diff --git a/configs/mobile_side/cascade_rcnn_mobilenetv3_fpn_640.yml b/configs/mobile/cascade_rcnn_mobilenetv3_fpn_640.yml
similarity index 100%
rename from configs/mobile_side/cascade_rcnn_mobilenetv3_fpn_640.yml
rename to configs/mobile/cascade_rcnn_mobilenetv3_fpn_640.yml
diff --git a/configs/mobile/ssdlite_mobilenet_v3_large.yml b/configs/mobile/ssdlite_mobilenet_v3_large.yml
new file mode 120000
index 0000000000000000000000000000000000000000..345d8f12b405262ca0d6bfb6d4110632b0335d5a
--- /dev/null
+++ b/configs/mobile/ssdlite_mobilenet_v3_large.yml
@@ -0,0 +1 @@
+../ssd/ssdlite_mobilenet_v3_large.yml
\ No newline at end of file
diff --git a/configs/mobile/ssdlite_mobilenet_v3_small.yml b/configs/mobile/ssdlite_mobilenet_v3_small.yml
new file mode 120000
index 0000000000000000000000000000000000000000..63fb2a9f353e6791b8007346cfd06541711d0541
--- /dev/null
+++ b/configs/mobile/ssdlite_mobilenet_v3_small.yml
@@ -0,0 +1 @@
+../ssd/ssdlite_mobilenet_v3_small.yml
\ No newline at end of file
diff --git a/configs/mobile/yolov3_mobilenet_v3.yml b/configs/mobile/yolov3_mobilenet_v3.yml
new file mode 120000
index 0000000000000000000000000000000000000000..ea0525a3eca88cd99d3e09df1f665a7271957e1d
--- /dev/null
+++ b/configs/mobile/yolov3_mobilenet_v3.yml
@@ -0,0 +1 @@
+../yolov3_mobilenet_v3.yml
\ No newline at end of file
diff --git a/configs/mobile_side/README.md b/configs/mobile_side/README.md
deleted file mode 100755
index 88ffe10a8ffa3eb751e44b8575d8f891c18c54bd..0000000000000000000000000000000000000000
--- a/configs/mobile_side/README.md
+++ /dev/null
@@ -1,17 +0,0 @@
-# Practical Mobile-side detection method base on RCNN
-
-## Introduction
-
-* This is developed by PaddleDetection. Many useful tricks are utilized for the model training process. More details can be seen in the configuration file.
-* The inerence is tested on Qualcomm Snapdragon 845 Mobile Platform.
-
-
-## Model Zoo
-
-| Backbone | Type | Image/gpu | Lr schd | Inf time on SD845 (fps) | Box AP | Mask AP | Download |
-| :---------------------- | :-------------: | :-------: | :-----: | :------------: | :----: | :-----: | :----------------------------------------------------------: |
-| MobileNetV3-vd-FPN | Cascade Faster | 2 | 5.6x(CosineDecay) | 8.13 | 25.0 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_mobilenetv3_fpn_320.tar) |
-| MobileNetV3-vd-FPN | Cascade Faster | 2 | 5.6x(CosineDecay) | 2.66 | 30.2 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_mobilenetv3_fpn_640.tar) |
-
-**note**
-* `5.6x` means the model is trained with `50000` minibatches 8 GPU cards(batch size=2 for each card).