提交 b57a2b98 编写于 作者: C chengduoZH

remove test_seq_concat_op

上级 28451956
......@@ -174,6 +174,7 @@ paddle.fluid.layers.stack ArgSpec(args=['x', 'axis'], varargs=None, keywords=Non
paddle.fluid.layers.pad2d ArgSpec(args=['input', 'paddings', 'mode', 'pad_value', 'data_format', 'name'], varargs=None, keywords=None, defaults=([0, 0, 0, 0], 'constant', 0.0, 'NCHW', None))
paddle.fluid.layers.unstack ArgSpec(args=['x', 'axis', 'num'], varargs=None, keywords=None, defaults=(0, None))
paddle.fluid.layers.sequence_enumerate ArgSpec(args=['input', 'win_size', 'pad_value', 'name'], varargs=None, keywords=None, defaults=(0, None))
paddle.fluid.layers.sequence_concat ArgSpec(args=['input', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.data ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True))
paddle.fluid.layers.open_recordio_file ArgSpec(args=['filename', 'shapes', 'lod_levels', 'dtypes', 'pass_num', 'for_parallel'], varargs=None, keywords=None, defaults=(1, True))
paddle.fluid.layers.open_files ArgSpec(args=['filenames', 'shapes', 'lod_levels', 'dtypes', 'thread_num', 'buffer_size', 'pass_num', 'is_test'], varargs=None, keywords=None, defaults=(None, None, 1, None))
......
......@@ -37,13 +37,12 @@ class SeqConcatOpMaker : public framework::OpProtoAndCheckerMaker {
class SeqConcatShapeInferer : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext *context) const override {
try {
PADDLE_ENFORCE(context->HasInputs("X"),
"Input(X) of Sequence Concat Op should not be null.");
PADDLE_ENFORCE(context->HasOutput("Out"),
"Output(Out) of Sequence Concat Op should not be null.");
PADDLE_ENFORCE_GT(context->HasInputs("X"), 1,
PADDLE_ENFORCE_GT(context->Inputs("X").size(), 1,
"The number of input sequences is at least two.");
auto x_dims = context->GetInputsDim("X");
int64_t batch_size = 0;
......@@ -71,9 +70,6 @@ class SeqConcatShapeInferer : public framework::InferShapeBase {
// in Kernel.
context->ShareLoD("X", "Out");
}
} catch (...) {
PADDLE_THROW("Unknown error");
}
}
};
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import sys
from op_test import OpTest
def to_abs_offset_lod(lod):
offset_lod = [[0] for i in lod]
for i, level in enumerate(lod):
for seq_len in level:
offset_lod[i].append(offset_lod[i][-1] + seq_len)
if len(offset_lod) == 0 or len(offset_lod) == 1:
return offset_lod
import copy
new_offset_lod = copy.deepcopy(offset_lod)
for idx, val in enumerate(offset_lod[0]):
new_offset_lod[0][idx] = offset_lod[1][val]
return new_offset_lod
def seq_concat(inputs, level):
lod0 = inputs['X'][0][1][1]
lod1 = inputs['X'][1][1][1]
x0 = inputs['X'][0][1][0]
x1 = inputs['X'][1][1][0]
level_idx = len(lod0) - level - 1
outs = []
for i in range(len(lod0[level_idx])):
sub_x0 = x0[to_abs_offset_lod(lod0)[level_idx][i]:to_abs_offset_lod(
lod0)[level_idx][i + 1], :]
sub_x1 = x1[to_abs_offset_lod(lod1)[level_idx][i]:to_abs_offset_lod(
lod1)[level_idx][i + 1], :]
outs.append(np.concatenate((sub_x0, sub_x1), axis=0))
return np.concatenate(outs, axis=0)
class TestSeqConcatOp(OpTest):
def set_data(self):
# two level, batch size is 3
x0 = np.random.random((4, 6, 3)).astype('float32')
lod0 = [[2, 2], [1, 1, 1, 1]]
x1 = np.random.random((4, 8, 3)).astype('float32')
lod1 = [[2, 2], [1, 1, 1, 1]]
axis = 1
level = 1
self.inputs = {'X': [('x0', (x0, lod0)), ('x1', (x1, lod1))]}
self.attrs = {'axis': axis, 'level': level}
self.outputs = {'Out': (np.concatenate([x0, x1], axis=1), lod0)}
def setUp(self):
self.op_type = "sequence_concat"
self.set_data()
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['x0'], 'Out')
class TestSeqConcatOpLevelZeroNestedSequence(TestSeqConcatOp):
def set_data(self):
# two level, batch size is 3
x0 = np.random.random((4, 6, 3)).astype('float32')
lod0 = [[2, 2], [1, 1, 1, 1]]
x1 = np.random.random((7, 6, 3)).astype('float32')
lod1 = [[2, 2], [1, 2, 2, 2]]
axis = 0
level = 0
self.inputs = {'X': [('x0', (x0, lod0)), ('x1', (x1, lod1))]}
self.attrs = {'axis': axis, 'level': level}
out_lod = [[2, 2], [2, 3, 3, 3]]
self.outputs = {'Out': (seq_concat(self.inputs, level), out_lod)}
class TestSeqConcatOplevelOneNestedSequence(TestSeqConcatOp):
def set_data(self):
# two level, batch size is 3
x0 = np.random.random((4, 6, 3)).astype('float32')
lod0 = [[2, 2], [1, 1, 1, 1]]
x1 = np.random.random((7, 6, 3)).astype('float32')
lod1 = [[3, 1], [1, 2, 2, 2]]
axis = 0
level = 1
self.inputs = {'X': [('x0', (x0, lod0)), ('x1', (x1, lod1))]}
self.attrs = {'axis': axis, 'level': level}
out_lod = [[5, 3], [1, 1, 1, 2, 2, 1, 1, 2]]
self.outputs = {'Out': (seq_concat(self.inputs, level), out_lod)}
class TestSeqConcatOpLevelZeroSequence(TestSeqConcatOp):
def set_data(self):
# two level, batch size is 3
x0 = np.random.random((4, 3, 4)).astype('float32')
lod0 = [[1, 1, 1, 1]]
x1 = np.random.random((7, 3, 4)).astype('float32')
lod1 = [[1, 2, 2, 2]]
axis = 0
level = 0
self.inputs = {'X': [('x0', (x0, lod0)), ('x1', (x1, lod1))]}
self.attrs = {'axis': axis, 'level': level}
out_lod = [[2, 3, 3, 3]]
self.outputs = {'Out': (seq_concat(self.inputs, level), out_lod)}
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册