Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
b1448ded
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b1448ded
编写于
9月 25, 2018
作者:
M
minqiyang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Port clip and clip_by_norm op to nn and change API.sepc
上级
0ff5d8b0
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
98 addition
and
121 deletion
+98
-121
paddle/fluid/API.spec
paddle/fluid/API.spec
+6
-6
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+92
-113
python/paddle/fluid/layers/ops.py
python/paddle/fluid/layers/ops.py
+0
-2
未找到文件。
paddle/fluid/API.spec
浏览文件 @
b1448ded
...
@@ -170,6 +170,12 @@ paddle.fluid.layers.elementwise_mul ArgSpec(args=['x', 'y', 'out', 'axis', 'use_
...
@@ -170,6 +170,12 @@ paddle.fluid.layers.elementwise_mul ArgSpec(args=['x', 'y', 'out', 'axis', 'use_
paddle.fluid.layers.elementwise_max ArgSpec(args=['x', 'y', 'out', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, -1, False, None, None))
paddle.fluid.layers.elementwise_max ArgSpec(args=['x', 'y', 'out', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, -1, False, None, None))
paddle.fluid.layers.elementwise_min ArgSpec(args=['x', 'y', 'out', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, -1, False, None, None))
paddle.fluid.layers.elementwise_min ArgSpec(args=['x', 'y', 'out', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, -1, False, None, None))
paddle.fluid.layers.elementwise_pow ArgSpec(args=['x', 'y', 'out', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, -1, False, None, None))
paddle.fluid.layers.elementwise_pow ArgSpec(args=['x', 'y', 'out', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, -1, False, None, None))
paddle.fluid.layers.logical_and ArgSpec(args=['x', 'y', 'out', 'name'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.layers.logical_or ArgSpec(args=['x', 'y', 'out', 'name'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.layers.logical_xor ArgSpec(args=['x', 'y', 'out', 'name'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.layers.logical_not ArgSpec(args=['x', 'out', 'name'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.layers.clip ArgSpec(args=['x', 'min', 'max', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.clip_by_norm ArgSpec(args=['x', 'max_norm', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.data ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True))
paddle.fluid.layers.data ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True))
paddle.fluid.layers.open_files ArgSpec(args=['filenames', 'shapes', 'lod_levels', 'dtypes', 'thread_num', 'buffer_size', 'pass_num', 'is_test'], varargs=None, keywords=None, defaults=(None, None, 1, None))
paddle.fluid.layers.open_files ArgSpec(args=['filenames', 'shapes', 'lod_levels', 'dtypes', 'thread_num', 'buffer_size', 'pass_num', 'is_test'], varargs=None, keywords=None, defaults=(None, None, 1, None))
paddle.fluid.layers.read_file ArgSpec(args=['reader'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.read_file ArgSpec(args=['reader'], varargs=None, keywords=None, defaults=None)
...
@@ -235,12 +241,6 @@ paddle.fluid.layers.is_empty ArgSpec(args=['x', 'cond'], varargs=None, keywords=
...
@@ -235,12 +241,6 @@ paddle.fluid.layers.is_empty ArgSpec(args=['x', 'cond'], varargs=None, keywords=
paddle.fluid.layers.mean ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.mean ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.mul ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.mul ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.sigmoid_cross_entropy_with_logits ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.sigmoid_cross_entropy_with_logits ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.clip ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.clip_by_norm ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.logical_and ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.logical_or ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.logical_xor ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.logical_not ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.uniform_random_batch_size_like ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.uniform_random_batch_size_like ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.gaussian_random ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.gaussian_random ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.sampling_id ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.sampling_id ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
b1448ded
...
@@ -29,114 +29,29 @@ from .. import unique_name
...
@@ -29,114 +29,29 @@ from .. import unique_name
from
functools
import
reduce
from
functools
import
reduce
__all__
=
[
__all__
=
[
'fc'
,
'fc'
,
'embedding'
,
'dynamic_lstm'
,
'dynamic_lstmp'
,
'dynamic_gru'
,
'embedding'
,
'gru_unit'
,
'linear_chain_crf'
,
'crf_decoding'
,
'cos_sim'
,
'cross_entropy'
,
'dynamic_lstm'
,
'square_error_cost'
,
'chunk_eval'
,
'sequence_conv'
,
'conv2d'
,
'conv3d'
,
'dynamic_lstmp'
,
'sequence_pool'
,
'sequence_softmax'
,
'softmax'
,
'pool2d'
,
'pool3d'
,
'dynamic_gru'
,
'batch_norm'
,
'beam_search_decode'
,
'conv2d_transpose'
,
'conv3d_transpose'
,
'gru_unit'
,
'sequence_expand'
,
'sequence_expand_as'
,
'sequence_pad'
,
'lstm_unit'
,
'linear_chain_crf'
,
'reduce_sum'
,
'reduce_mean'
,
'reduce_max'
,
'reduce_min'
,
'reduce_prod'
,
'crf_decoding'
,
'sequence_first_step'
,
'sequence_last_step'
,
'dropout'
,
'split'
,
'cos_sim'
,
'ctc_greedy_decoder'
,
'edit_distance'
,
'l2_normalize'
,
'matmul'
,
'topk'
,
'cross_entropy'
,
'warpctc'
,
'sequence_reshape'
,
'transpose'
,
'im2sequence'
,
'nce'
,
'square_error_cost'
,
'hsigmoid'
,
'beam_search'
,
'row_conv'
,
'multiplex'
,
'layer_norm'
,
'chunk_eval'
,
'softmax_with_cross_entropy'
,
'smooth_l1'
,
'one_hot'
,
'sequence_conv'
,
'autoincreased_step_counter'
,
'reshape'
,
'squeeze'
,
'unsqueeze'
,
'conv2d'
,
'lod_reset'
,
'lrn'
,
'pad'
,
'pad_constant_like'
,
'label_smooth'
,
'roi_pool'
,
'conv3d'
,
'dice_loss'
,
'image_resize'
,
'image_resize_short'
,
'resize_bilinear'
,
'sequence_pool'
,
'gather'
,
'scatter'
,
'sequence_scatter'
,
'random_crop'
,
'mean_iou'
,
'relu'
,
'sequence_softmax'
,
'log'
,
'crop'
,
'rank_loss'
,
'elu'
,
'relu6'
,
'pow'
,
'stanh'
,
'hard_sigmoid'
,
'softmax'
,
'swish'
,
'prelu'
,
'brelu'
,
'leaky_relu'
,
'soft_relu'
,
'flatten'
,
'pool2d'
,
'sequence_mask'
,
'stack'
,
'pad2d'
,
'unstack'
,
'sequence_enumerate'
,
'pool3d'
,
'expand'
,
'sequence_concat'
,
'scale'
,
'elementwise_add'
,
'elementwise_div'
,
'batch_norm'
,
'elementwise_sub'
,
'elementwise_mul'
,
'elementwise_max'
,
'elementwise_min'
,
'beam_search_decode'
,
'elementwise_pow'
,
'logical_and'
,
'logical_or'
,
'logical_xor'
,
'conv2d_transpose'
,
'logical_not'
,
'clip'
,
'clip_by_norm'
'conv3d_transpose'
,
'sequence_expand'
,
'sequence_expand_as'
,
'sequence_pad'
,
'lstm_unit'
,
'reduce_sum'
,
'reduce_mean'
,
'reduce_max'
,
'reduce_min'
,
'reduce_prod'
,
'sequence_first_step'
,
'sequence_last_step'
,
'dropout'
,
'split'
,
'ctc_greedy_decoder'
,
'edit_distance'
,
'l2_normalize'
,
'matmul'
,
'topk'
,
'warpctc'
,
'sequence_reshape'
,
'transpose'
,
'im2sequence'
,
'nce'
,
'hsigmoid'
,
'beam_search'
,
'row_conv'
,
'multiplex'
,
'layer_norm'
,
'softmax_with_cross_entropy'
,
'smooth_l1'
,
'one_hot'
,
'autoincreased_step_counter'
,
'reshape'
,
'squeeze'
,
'unsqueeze'
,
'lod_reset'
,
'lrn'
,
'pad'
,
'pad_constant_like'
,
'label_smooth'
,
'roi_pool'
,
'dice_loss'
,
'image_resize'
,
'image_resize_short'
,
'resize_bilinear'
,
'gather'
,
'scatter'
,
'sequence_scatter'
,
'random_crop'
,
'mean_iou'
,
'relu'
,
'log'
,
'crop'
,
'rank_loss'
,
'elu'
,
'relu6'
,
'pow'
,
'stanh'
,
'hard_sigmoid'
,
'swish'
,
'prelu'
,
'brelu'
,
'leaky_relu'
,
'soft_relu'
,
'flatten'
,
'sequence_mask'
,
'stack'
,
'pad2d'
,
'unstack'
,
'sequence_enumerate'
,
'expand'
,
'sequence_concat'
,
'scale'
,
'elementwise_add'
,
'elementwise_div'
,
'elementwise_sub'
,
'elementwise_mul'
,
'elementwise_max'
,
'elementwise_min'
,
'elementwise_pow'
,
'logical_and'
,
'logical_or'
,
'logical_xor'
,
'logical_not'
,
]
]
...
@@ -6622,7 +6537,7 @@ for func in [
...
@@ -6622,7 +6537,7 @@ for func in [
])
])
def
_logical_op
(
op_name
,
x
,
y
,
name
=
None
,
out
=
None
,
binary_op
=
True
):
def
_logical_op
(
op_name
,
x
,
y
,
out
=
None
,
name
=
None
,
binary_op
=
True
):
helper
=
LayerHelper
(
op_name
,
**
locals
())
helper
=
LayerHelper
(
op_name
,
**
locals
())
assert
x
.
dtype
==
y
.
dtype
assert
x
.
dtype
==
y
.
dtype
...
@@ -6645,7 +6560,7 @@ def _logical_op(op_name, x, y, name=None, out=None, binary_op=True):
...
@@ -6645,7 +6560,7 @@ def _logical_op(op_name, x, y, name=None, out=None, binary_op=True):
@
templatedoc
()
@
templatedoc
()
def
logical_and
(
x
,
y
,
name
=
None
,
out
=
None
):
def
logical_and
(
x
,
y
,
out
=
None
,
name
=
None
):
"""
"""
${comment}
${comment}
...
@@ -6664,7 +6579,7 @@ def logical_and(x, y, name=None, out=None):
...
@@ -6664,7 +6579,7 @@ def logical_and(x, y, name=None, out=None):
@
templatedoc
()
@
templatedoc
()
def
logical_or
(
x
,
y
,
name
=
None
,
out
=
None
):
def
logical_or
(
x
,
y
,
out
=
None
,
name
=
None
):
"""
"""
${comment}
${comment}
...
@@ -6683,7 +6598,7 @@ def logical_or(x, y, name=None, out=None):
...
@@ -6683,7 +6598,7 @@ def logical_or(x, y, name=None, out=None):
@
templatedoc
()
@
templatedoc
()
def
logical_xor
(
x
,
y
,
name
=
None
,
out
=
None
):
def
logical_xor
(
x
,
y
,
out
=
None
,
name
=
None
):
"""
"""
${comment}
${comment}
...
@@ -6702,7 +6617,7 @@ def logical_xor(x, y, name=None, out=None):
...
@@ -6702,7 +6617,7 @@ def logical_xor(x, y, name=None, out=None):
@
templatedoc
()
@
templatedoc
()
def
logical_not
(
x
,
name
=
None
,
out
=
None
):
def
logical_not
(
x
,
out
=
None
,
name
=
None
):
"""
"""
${comment}
${comment}
...
@@ -6717,3 +6632,67 @@ def logical_not(x, name=None, out=None):
...
@@ -6717,3 +6632,67 @@ def logical_not(x, name=None, out=None):
return
_logical_op
(
return
_logical_op
(
op_name
=
"logical_not"
,
x
=
x
,
y
=
None
,
name
=
name
,
out
=
out
,
binary_op
=
False
)
op_name
=
"logical_not"
,
x
=
x
,
y
=
None
,
name
=
name
,
out
=
out
,
binary_op
=
False
)
@
templatedoc
()
def
clip
(
x
,
min
,
max
,
name
=
None
):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
min(${min_type}): ${min_comment}
max(${max_type}): ${max_comment}
name(basestring|None): Name of the output.
Returns:
out(${out_type}): ${out_comment}
"""
helper
=
LayerHelper
(
"clip"
,
**
locals
())
if
name
is
None
:
out
=
helper
.
create_tmp_variable
(
dtype
=
x
.
dtype
)
else
:
out
=
helper
.
create_variable
(
name
=
name
,
dtype
=
x
.
dtype
,
persistable
=
False
)
helper
.
append_op
(
type
=
"clip"
,
inputs
=
{
"X"
:
x
},
attrs
=
{
"min"
:
min
,
"max"
:
max
},
outputs
=
{
"Out"
:
out
})
return
out
@
templatedoc
()
def
clip_by_norm
(
x
,
max_norm
,
name
=
None
):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
max_norm(${max_norm_type}): ${max_norm_comment}
name(basestring|None): Name of the output.
Returns:
out(${out_type}): ${out_comment}
"""
helper
=
LayerHelper
(
"clip_by_norm"
,
**
locals
())
if
name
is
None
:
out
=
helper
.
create_tmp_variable
(
dtype
=
x
.
dtype
)
else
:
out
=
helper
.
create_variable
(
name
=
name
,
dtype
=
x
.
dtype
,
persistable
=
False
)
helper
.
append_op
(
type
=
"clip_by_norm"
,
inputs
=
{
"X"
:
x
},
attrs
=
{
"max_norm"
:
max_norm
},
outputs
=
{
"Out"
:
out
})
return
out
python/paddle/fluid/layers/ops.py
浏览文件 @
b1448ded
...
@@ -39,8 +39,6 @@ __all__ = [
...
@@ -39,8 +39,6 @@ __all__ = [
'mean'
,
'mean'
,
'mul'
,
'mul'
,
'sigmoid_cross_entropy_with_logits'
,
'sigmoid_cross_entropy_with_logits'
,
'clip'
,
'clip_by_norm'
,
'uniform_random_batch_size_like'
,
'uniform_random_batch_size_like'
,
'gaussian_random'
,
'gaussian_random'
,
'sampling_id'
,
'sampling_id'
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录