Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
ae0740ce
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ae0740ce
编写于
2月 07, 2018
作者:
Q
qingqing01
提交者:
GitHub
2月 07, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #8193 from qingqing01/ssd_target_assign
Add target assigner operator for SSD detection.
上级
931375ff
53b6ee19
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
566 addition
and
13 deletion
+566
-13
paddle/framework/mixed_vector.h
paddle/framework/mixed_vector.h
+8
-0
paddle/operators/target_assign_op.cc
paddle/operators/target_assign_op.cc
+202
-0
paddle/operators/target_assign_op.cu
paddle/operators/target_assign_op.cu
+61
-0
paddle/operators/target_assign_op.h
paddle/operators/target_assign_op.h
+160
-0
paddle/platform/assert.h
paddle/platform/assert.h
+13
-13
python/paddle/v2/fluid/tests/test_target_assign_op.py
python/paddle/v2/fluid/tests/test_target_assign_op.py
+122
-0
未找到文件。
paddle/framework/mixed_vector.h
浏览文件 @
ae0740ce
...
...
@@ -60,6 +60,14 @@ class Vector : public std::vector<T> {
T
*
data
()
{
return
std
::
vector
<
T
>::
data
();
}
const
T
*
data
()
const
{
return
std
::
vector
<
T
>::
data
();
}
T
*
data
(
const
platform
::
Place
&
place
)
{
if
(
platform
::
is_cpu_place
(
place
))
{
return
data
();
}
else
{
return
cuda_data
();
}
}
/* Synchronize host vector to device vector */
void
CopyToCUDA
();
/* Synchronize device vector to host vector */
...
...
paddle/operators/target_assign_op.cc
0 → 100644
浏览文件 @
ae0740ce
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/target_assign_op.h"
namespace
paddle
{
namespace
operators
{
class
TargetAssignOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
// checkout inputs
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"EncodedGTBBox"
),
"Input(EncodedGTBBox) of TargetAssignOp should not be null"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"GTScoreLabel"
),
"Input(GTScoreLabel) of TargetAssignOp should not be null"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"MatchIndices"
),
"Input(MatchIndices) of TargetAssignOp should not be null"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"NegIndices"
),
"Input(NegIndices) of TargetAssignOp should not be null"
);
// checkout outputs
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"PredBBoxLabel"
),
"Output(PredBBoxLabel) of TargetAssignOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"PredBBoxWeight"
),
"Output(PredBBoxWeight) of TargetAssignOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"PredScoreLabel"
),
"Output(PredScoreLabel) of TargetAssignOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"PredScoreWeight"
),
"Output(PredScoreWeight) of TargetAssignOp should not be null."
);
auto
blabel_dims
=
ctx
->
GetInputDim
(
"EncodedGTBBox"
);
auto
slabel_dims
=
ctx
->
GetInputDim
(
"GTScoreLabel"
);
auto
mi_dims
=
ctx
->
GetInputDim
(
"MatchIndices"
);
auto
neg_dims
=
ctx
->
GetInputDim
(
"NegIndices"
);
PADDLE_ENFORCE_EQ
(
blabel_dims
.
size
(),
3UL
,
"The rank of Input(EncodedGTBBox) must be 3."
);
PADDLE_ENFORCE_EQ
(
slabel_dims
.
size
(),
2UL
,
"The rank of Input(GTScoreLabel) must be 2."
);
PADDLE_ENFORCE_EQ
(
mi_dims
.
size
(),
2UL
,
"The rank of Input(MatchIndices) must be 2."
);
PADDLE_ENFORCE_EQ
(
neg_dims
.
size
(),
2UL
,
"The rank of Input(NegIndices) must be 2."
);
PADDLE_ENFORCE_EQ
(
blabel_dims
[
0
],
slabel_dims
[
0
],
"The 1st dimension (means the total number of "
"ground-truth bounding boxes) of Input(EncodedGTBBox) "
"and Input(GTScoreLabel) must be the same."
);
PADDLE_ENFORCE_EQ
(
blabel_dims
[
1
],
mi_dims
[
1
],
"The 2nd dimension (means the number of priod boxes) "
"of Input(EncodedGTBBox) and "
"Input(MatchIndices) must be the same."
);
PADDLE_ENFORCE_EQ
(
blabel_dims
[
2
],
4
,
"The 3rd dimension of Input(EncodedGTBBox) must be 4."
);
auto
n
=
mi_dims
[
0
];
auto
np
=
mi_dims
[
1
];
ctx
->
SetOutputDim
(
"PredBBoxLabel"
,
{
n
,
np
,
4
});
ctx
->
SetOutputDim
(
"PredBBoxWeight"
,
{
n
,
np
,
1
});
ctx
->
SetOutputDim
(
"PredScoreLabel"
,
{
n
,
np
,
1
});
ctx
->
SetOutputDim
(
"PredScoreWeight"
,
{
n
,
np
,
1
});
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"EncodedGTBBox"
)
->
type
()),
ctx
.
device_context
());
}
};
class
TargetAssignOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
TargetAssignOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"EncodedGTBBox"
,
"(LoDTensor), The encoded ground-truth bounding boxes with shape "
"[Ng, Np, 4], where Ng is the total number of ground-truth boxes "
"in this mini-batch, Np the number of predictions, 4 is the "
"number of coordinate in [xmin, ymin, xmax, ymax] layout."
);
AddInput
(
"GTScoreLabel"
,
"(LoDTensor, default LoDTensor<int>), The input ground-truth "
"labels with shape [Ng, 1], where the Ng is the same as it in "
"the input of EncodedGTBBox."
);
AddInput
(
"MatchIndices"
,
"(Tensor, default Tensor<int>), The input matched indices "
"with shape [N, Np], where N is the batch size, Np is the same "
"as it in the input of EncodedGTBBox. If MatchIndices[i][j] "
"is -1, the j-th prior box is not matched to any ground-truh "
"box in i-th instance."
);
AddInput
(
"NegIndices"
,
"(LoDTensor, default LoDTensor<int>), The input negative example "
"indices with shape [Neg, 1], where is the total number of "
"negative example indices."
);
AddAttr
<
int
>
(
"background_label"
,
"(int, default 0), Label index of background class."
)
.
SetDefault
(
0
);
AddOutput
(
"PredBBoxLabel"
,
"(Tensor), The output encoded ground-truth labels "
"with shape [N, Np, 4], N is the batch size and Np, 4 is the "
"same as they in input of EncodedGTBBox. If MatchIndices[i][j] "
"is -1, the PredBBoxLabel[i][j][:] is the encoded ground-truth "
"box for background_label in i-th instance."
);
AddOutput
(
"PredBBoxWeight"
,
"(Tensor), The weight for PredBBoxLabel with the shape "
"of [N, Np, 1]"
);
AddOutput
(
"PredScoreLabel"
,
"(Tensor, default Tensor<int>), The output score labels for "
"each predictions with shape [N, Np, 1]. If MatchIndices[i][j] "
"is -1, PredScoreLabel[i][j] = background_label."
);
AddOutput
(
"PredScoreWeight"
,
"(Tensor), The weight for PredScoreLabel with the shape "
"of [N, Np, 1]"
);
AddComment
(
R"DOC(
This operator is, for given the encoded boxes between prior boxes and
ground-truth boxes and ground-truth class labels, to assign classification
and regression targets to each prior box as well as weights to each
prior box. The weights is used to specify which prior box would not contribute
to training loss.
For each instance, the output `PredBBoxLabel`, `PredBBoxWeight`,
`PredScoreLabel` and `PredScoreWeight` are assigned based on `MatchIndices`.
Assumed that the row offset for each instance in `EncodedGTBBox` is called lod,
this operato assigns classification/regression targets by performing the
following steps:
1. Assigning all outpts based on `MatchIndices`:
If id = MatchIndices[i][j] > 0,
PredBBoxLabel[i][j] = EncodedGTBBox[lod[i] + id][j]
PredBBoxWeight[i][j] = 1.
PredScoreLabel[i][j] = GTScoreLabel[lod[i] + id]
PredScoreWeight[i][j] = 1.
Otherwise,
PredBBoxLabel[j][j] = [0., 0., 0., 0.]
PredBBoxWeight[i][j] = 0.
PredScoreLabel[i][j] = background_label
PredScoreWeight[i][j] = 0.
2. Assigning PredScoreWeight based on `NegIndices`:
Assumed that the row offset for each instance in `NegIndices` is caleed neg_lod,
for i-th instance and all ids of NegIndices in this instance:
PredScoreLabel[i][id] = background_label
PredScoreWeight[i][id] = 1.0
)DOC"
);
}
};
template
<
typename
T
>
struct
NegTargetAssignFunctor
<
platform
::
CPUDeviceContext
,
T
>
{
void
operator
()(
const
platform
::
CPUDeviceContext
&
ctx
,
const
int
*
neg_indices
,
const
size_t
*
lod
,
const
int
num
,
const
int
num_prior_box
,
const
int
background_label
,
int
*
out_label
,
T
*
out_label_wt
)
{
for
(
int
i
=
0
;
i
<
num
;
++
i
)
{
for
(
size_t
j
=
lod
[
i
];
j
<
lod
[
i
+
1
];
++
j
)
{
int
id
=
neg_indices
[
j
];
out_label
[
i
*
num_prior_box
+
id
]
=
background_label
;
out_label_wt
[
i
*
num_prior_box
+
id
]
=
static_cast
<
T
>
(
1.0
);
}
}
}
};
template
struct
NegTargetAssignFunctor
<
platform
::
CPUDeviceContext
,
float
>;
template
struct
NegTargetAssignFunctor
<
platform
::
CPUDeviceContext
,
double
>;
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_WITHOUT_GRADIENT
(
target_assign
,
ops
::
TargetAssignOp
,
ops
::
TargetAssignOpMaker
);
REGISTER_OP_CPU_KERNEL
(
target_assign
,
ops
::
TargetAssignKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
TargetAssignKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
paddle/operators/target_assign_op.cu
0 → 100644
浏览文件 @
ae0740ce
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/target_assign_op.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
__global__
void
NegTargetAssignKernel
(
const
int
*
neg_indices
,
const
size_t
*
lod
,
const
int
num
,
const
int
num_prior_box
,
const
int
background_label
,
int
*
out_label
,
T
*
out_label_wt
)
{
int
bidx
=
blockIdx
.
x
;
int
st
=
lod
[
bidx
];
int
ed
=
lod
[
bidx
+
1
];
int
row_start
=
bidx
*
num_prior_box
;
for
(
int
i
=
st
+
threadIdx
.
x
;
i
<
ed
;
i
+=
blockDim
.
x
)
{
int
id
=
row_start
+
neg_indices
[
i
];
out_label
[
id
]
=
background_label
;
out_label_wt
[
id
]
=
1.
;
}
}
template
<
typename
T
>
struct
NegTargetAssignFunctor
<
platform
::
CUDADeviceContext
,
T
>
{
void
operator
()(
const
platform
::
CUDADeviceContext
&
ctx
,
const
int
*
neg_indices
,
const
size_t
*
lod
,
const
int
num
,
const
int
num_prior_box
,
const
int
background_label
,
int
*
out_label
,
T
*
out_label_wt
)
{
const
int
block_size
=
256
;
const
int
grid_size
=
num
;
NegTargetAssignKernel
<
T
><<<
grid_size
,
block_size
,
0
,
ctx
.
stream
()
>>>
(
neg_indices
,
lod
,
num
,
num_prior_box
,
background_label
,
out_label
,
out_label_wt
);
}
};
template
struct
NegTargetAssignFunctor
<
platform
::
CUDADeviceContext
,
float
>;
template
struct
NegTargetAssignFunctor
<
platform
::
CUDADeviceContext
,
double
>;
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
target_assign
,
ops
::
TargetAssignKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
TargetAssignKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
paddle/operators/target_assign_op.h
0 → 100644
浏览文件 @
ae0740ce
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/op_registry.h"
#include "paddle/platform/assert.h"
#include "paddle/platform/for_range.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
struct
TargetAssignFunctor
{
const
T
*
gt_box_
;
const
int
*
gt_label_
;
const
int
*
match_indices_
;
const
size_t
*
lod_
;
const
int
background_label_
;
const
int64_t
num_
;
const
int64_t
num_prior_box_
;
T
*
out_box_
;
T
*
out_box_wt_
;
int
*
out_label_
;
T
*
out_label_wt_
;
TargetAssignFunctor
(
const
T
*
gt_box
,
const
int
*
gt_label
,
const
int
*
match_indices
,
const
size_t
*
lod
,
const
int
background_label
,
const
int64_t
num
,
const
int64_t
np
,
T
*
out_box
,
T
*
out_box_wt
,
int
*
out_label
,
T
*
out_label_wt
)
:
gt_box_
(
gt_box
),
gt_label_
(
gt_label
),
match_indices_
(
match_indices
),
lod_
(
lod
),
background_label_
(
background_label
),
num_
(
num
),
num_prior_box_
(
np
),
out_box_
(
out_box
),
out_box_wt_
(
out_box_wt
),
out_label_
(
out_label
),
out_label_wt_
(
out_label_wt
)
{}
HOSTDEVICE
void
operator
()(
size_t
i
)
const
{
int
row
=
i
/
num_prior_box_
;
int
col
=
i
-
row
*
num_prior_box_
;
size_t
row_off
=
lod_
[
row
];
int
offset
=
row
*
num_prior_box_
+
col
;
int
id
=
match_indices_
[
offset
];
T
*
obox
=
out_box_
+
offset
*
4
;
int
*
olabel
=
out_label_
+
offset
;
T
*
obox_wt
=
out_box_wt_
+
offset
;
T
*
olabel_wt
=
out_label_wt_
+
offset
;
if
(
id
>
-
1
)
{
const
T
*
gtbox
=
gt_box_
+
((
row_off
+
id
)
*
num_prior_box_
+
col
)
*
4
;
obox
[
0
]
=
gtbox
[
0
];
obox
[
1
]
=
gtbox
[
1
];
obox
[
2
]
=
gtbox
[
2
];
obox
[
3
]
=
gtbox
[
3
];
olabel
[
0
]
=
gt_label_
[
row_off
+
id
];
obox_wt
[
0
]
=
static_cast
<
T
>
(
1.
);
olabel_wt
[
0
]
=
static_cast
<
T
>
(
1.
);
}
else
{
obox
[
0
]
=
static_cast
<
T
>
(
0.
);
obox
[
1
]
=
static_cast
<
T
>
(
0.
);
obox
[
2
]
=
static_cast
<
T
>
(
0.
);
obox
[
3
]
=
static_cast
<
T
>
(
0.
);
olabel
[
0
]
=
background_label_
;
obox_wt
[
0
]
=
static_cast
<
T
>
(
0.
);
olabel_wt
[
0
]
=
static_cast
<
T
>
(
0.
);
}
}
};
template
<
typename
DeviceContext
,
typename
T
>
struct
NegTargetAssignFunctor
{
void
operator
()(
const
platform
::
DeviceContext
&
ctx
,
const
int
*
neg_indices
,
const
size_t
*
lod
,
const
int
num
,
const
int
num_prior_box
,
const
int
background_label
,
int
*
out_label
,
T
*
out_label_wt
)
const
;
};
template
<
typename
DeviceContext
,
typename
T
>
class
TargetAssignKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
enc_gt_box
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"EncodedGTBBox"
);
auto
*
gt_label
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"GTScoreLabel"
);
auto
*
match_indices
=
ctx
.
Input
<
framework
::
Tensor
>
(
"MatchIndices"
);
auto
*
neg_indices
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"NegIndices"
);
auto
*
out_box
=
ctx
.
Output
<
framework
::
Tensor
>
(
"PredBBoxLabel"
);
auto
*
out_box_wt
=
ctx
.
Output
<
framework
::
Tensor
>
(
"PredBBoxWeight"
);
auto
*
out_label
=
ctx
.
Output
<
framework
::
Tensor
>
(
"PredScoreLabel"
);
auto
*
out_label_wt
=
ctx
.
Output
<
framework
::
Tensor
>
(
"PredScoreWeight"
);
PADDLE_ENFORCE_EQ
(
enc_gt_box
->
lod
().
size
(),
1UL
);
PADDLE_ENFORCE_EQ
(
gt_label
->
lod
().
size
(),
1UL
);
PADDLE_ENFORCE_EQ
(
neg_indices
->
lod
().
size
(),
1UL
);
int
background_label
=
ctx
.
Attr
<
int
>
(
"background_label"
);
const
T
*
box_data
=
enc_gt_box
->
data
<
T
>
();
const
int
*
label_data
=
gt_label
->
data
<
int
>
();
const
int
*
match_idx_data
=
match_indices
->
data
<
int
>
();
const
int
*
neg_idx_data
=
neg_indices
->
data
<
int
>
();
T
*
obox_data
=
out_box
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
obox_wt_data
=
out_box_wt
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
int
*
olabel_data
=
out_label
->
mutable_data
<
int
>
(
ctx
.
GetPlace
());
T
*
olabel_wt_data
=
out_label_wt
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
int64_t
num
=
match_indices
->
dims
()[
0
];
int64_t
num_prior_box
=
match_indices
->
dims
()[
1
];
auto
gt_lod
=
enc_gt_box
->
lod
().
back
();
auto
gt_label_lod
=
gt_label
->
lod
().
back
();
auto
neg_lod
=
neg_indices
->
lod
().
back
();
for
(
size_t
i
=
0
;
i
<
gt_lod
.
size
();
++
i
)
{
PADDLE_ENFORCE_EQ
(
gt_lod
.
data
()[
i
],
gt_label_lod
.
data
()[
i
]);
}
size_t
*
gt_lod_data
=
gt_lod
.
data
(
ctx
.
GetPlace
());
size_t
*
neg_lod_data
=
neg_lod
.
data
(
ctx
.
GetPlace
());
TargetAssignFunctor
<
T
>
functor
(
box_data
,
label_data
,
match_idx_data
,
gt_lod_data
,
background_label
,
num
,
num_prior_box
,
obox_data
,
obox_wt_data
,
olabel_data
,
olabel_wt_data
);
auto
&
device_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
platform
::
ForRange
<
DeviceContext
>
for_range
(
device_ctx
,
num
*
num_prior_box
);
for_range
(
functor
);
NegTargetAssignFunctor
<
DeviceContext
,
T
>
neg_trg_functor
;
neg_trg_functor
(
device_ctx
,
neg_idx_data
,
neg_lod_data
,
num
,
num_prior_box
,
background_label
,
olabel_data
,
olabel_wt_data
);
}
};
}
// namespace operators
}
// namespace paddle
paddle/platform/assert.h
浏览文件 @
ae0740ce
/
/
Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
//
//
Licensed under the Apache License, Version 2.0 (the "License");
//
you may not use this file except in compliance with the License.
//
You may obtain a copy of the License at
//
//
http://www.apache.org/licenses/LICENSE-2.0
//
//
Unless required by applicable law or agreed to in writing, software
//
distributed under the License is distributed on an "AS IS" BASIS,
//
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
//
See the License for the specific language governing permissions and
// limitations under the License.
/
*
Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
...
...
python/paddle/v2/fluid/tests/test_target_assign_op.py
0 → 100755
浏览文件 @
ae0740ce
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
import
random
from
op_test
import
OpTest
def
gen_match_and_neg_indices
(
num_prior
,
gt_lod
,
neg_lod
):
if
len
(
gt_lod
)
!=
len
(
neg_lod
):
raise
AssertionError
(
"The input arguments are illegal."
)
batch_size
=
len
(
gt_lod
)
-
1
match_indices
=
-
1
*
np
.
ones
((
batch_size
,
num_prior
)).
astype
(
'int32'
)
neg_indices
=
np
.
zeros
((
neg_lod
[
-
1
],
1
)).
astype
(
'int32'
)
for
n
in
range
(
batch_size
):
gt_num
=
gt_lod
[
n
+
1
]
-
gt_lod
[
n
]
ids
=
random
.
sample
([
i
for
i
in
range
(
num_prior
)],
gt_num
)
match_indices
[
n
,
ids
]
=
[
i
for
i
in
range
(
gt_num
)]
ret_ids
=
set
([
i
for
i
in
range
(
num_prior
)])
-
set
(
ids
)
s
=
neg_lod
[
n
]
e
=
neg_lod
[
n
+
1
]
l
=
e
-
s
neg_ids
=
random
.
sample
(
ret_ids
,
l
)
neg_indices
[
s
:
e
,
:]
=
np
.
array
(
neg_ids
).
astype
(
'int32'
).
reshape
(
l
,
1
)
return
match_indices
,
neg_indices
def
target_assign
(
encoded_box
,
gt_label
,
match_indices
,
neg_indices
,
gt_lod
,
neg_lod
,
background_label
):
batch_size
,
num_prior
=
match_indices
.
shape
# init target bbox
trg_box
=
np
.
zeros
((
batch_size
,
num_prior
,
4
)).
astype
(
'float32'
)
# init weight for target bbox
trg_box_wt
=
np
.
zeros
((
batch_size
,
num_prior
,
1
)).
astype
(
'float32'
)
# init target label
trg_label
=
np
.
ones
((
batch_size
,
num_prior
,
1
)).
astype
(
'int32'
)
trg_label
=
trg_label
*
background_label
# init weight for target label
trg_label_wt
=
np
.
zeros
((
batch_size
,
num_prior
,
1
)).
astype
(
'float32'
)
for
i
in
range
(
batch_size
):
cur_indices
=
match_indices
[
i
]
col_ids
=
np
.
where
(
cur_indices
>
-
1
)
col_val
=
cur_indices
[
col_ids
]
gt_start
=
gt_lod
[
i
]
# target bbox
for
v
,
c
in
zip
(
col_val
+
gt_start
,
col_ids
[
0
].
tolist
()):
trg_box
[
i
][
c
][:]
=
encoded_box
[
v
][
c
][:]
# weight for target bbox
trg_box_wt
[
i
][
col_ids
]
=
1.0
trg_label
[
i
][
col_ids
]
=
gt_label
[
col_val
+
gt_start
]
trg_label_wt
[
i
][
col_ids
]
=
1.0
# set target label weight to 1.0 for the negative samples
neg_ids
=
neg_indices
[
neg_lod
[
i
]:
neg_lod
[
i
+
1
]]
trg_label_wt
[
i
][
neg_ids
]
=
1.0
return
trg_box
,
trg_box_wt
,
trg_label
,
trg_label_wt
class
TestTargetAssginOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"target_assign"
num_prior
=
120
num_class
=
21
gt_lod
=
[
0
,
5
,
11
,
23
]
neg_lod
=
[
0
,
4
,
7
,
13
]
batch_size
=
len
(
gt_lod
)
-
1
num_gt
=
gt_lod
[
-
1
]
background_label
=
0
encoded_box
=
np
.
random
.
random
((
num_gt
,
num_prior
,
4
)).
astype
(
'float32'
)
gt_label
=
np
.
random
.
randint
(
num_class
,
size
=
(
num_gt
,
1
)).
astype
(
'int32'
)
match_indices
,
neg_indices
=
gen_match_and_neg_indices
(
num_prior
,
gt_lod
,
neg_lod
)
trg_box
,
trg_box_wt
,
trg_label
,
trg_label_wt
=
target_assign
(
encoded_box
,
gt_label
,
match_indices
,
neg_indices
,
gt_lod
,
neg_lod
,
background_label
)
self
.
inputs
=
{
'EncodedGTBBox'
:
(
encoded_box
,
[
gt_lod
]),
'GTScoreLabel'
:
(
gt_label
,
[
gt_lod
]),
'MatchIndices'
:
(
match_indices
),
'NegIndices'
:
(
neg_indices
,
[
neg_lod
]),
}
self
.
attrs
=
{
'background_label'
:
background_label
}
self
.
outputs
=
{
'PredBBoxLabel'
:
(
trg_box
),
'PredBBoxWeight'
:
(
trg_box_wt
),
'PredScoreLabel'
:
(
trg_label
),
'PredScoreWeight'
:
(
trg_label_wt
),
}
def
test_check_output
(
self
):
self
.
check_output
()
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录