提交 acf37ad6 编写于 作者: F fengjiayi

Complete elementwise_max_op

上级 76a74f1f
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/operators/elementwise_max_op.h"
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
elementwise_max,
ops::ElementwiseMaxKernel<paddle::platform::CUDADeviceContext, float>,
ops::ElementwiseMaxKernel<paddle::platform::CUDADeviceContext, double>,
ops::ElementwiseMaxKernel<paddle::platform::CUDADeviceContext, int>,
ops::ElementwiseMaxKernel<paddle::platform::CUDADeviceContext, int64_t>);
REGISTER_OP_CUDA_KERNEL(
elementwise_max_grad,
ops::ElementwiseMaxGradKernel<paddle::platform::CUDADeviceContext, float>,
ops::ElementwiseMaxGradKernel<paddle::platform::CUDADeviceContext, double>,
ops::ElementwiseMaxGradKernel<paddle::platform::CUDADeviceContext, int>,
ops::ElementwiseMaxGradKernel<paddle::platform::CUDADeviceContext,
int64_t>);
...@@ -65,41 +65,86 @@ class ElementwiseMaxKernel : public framework::OpKernel<T> { ...@@ -65,41 +65,86 @@ class ElementwiseMaxKernel : public framework::OpKernel<T> {
}; };
template <typename T> template <typename T>
struct ElementwiseSubGradFunctor { struct ElementwiseMaxGradFunctor {
template <typename Device, typename X, typename Y, typename Z, typename dX, template <typename Device, typename X, typename Y, typename Z, typename dX,
typename dY, typename dZ> typename dY, typename dZ>
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz) { void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz) {
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
auto x_e = framework::EigenVector<T>::Flatten(*x); auto x_e = framework::EigenVector<T>::Flatten(*x);
auto y_e = framework::EigenVector<T>::Flatten(*y); auto y_e = framework::EigenVector<T>::Flatten(*y);
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
if (dx) { if (dx) {
auto dx_e = framework::EigenVector<T>::Flatten(*dx); auto dx_e = framework::EigenVector<T>::Flatten(*dx);
dx_e.device(d) = (x_e > y_e) * dz_e; dx_e.device(d) = (x_e > y_e).template cast<T>() * dz_e;
} }
if (dy) { if (dy) {
auto dy_e = framework::EigenVector<T>::Flatten(*dy); auto dy_e = framework::EigenVector<T>::Flatten(*dy);
dy_e.device(d) = (y_e >= x_e) * dz_e; dy_e.device(d) = (y_e >= x_e).template cast<T>() * dz_e;
} }
} }
}; };
template <typename T> template <typename T>
struct ElementwiseSubOneGradFunctor { struct ElementwiseMaxBroadCastGradFunctor {
template <typename Device, typename X, typename Y, typename Z, typename dX, template <typename Device, typename X, typename Y, typename Z, typename dX,
typename dY, typename dZ> typename dY, typename dZ, typename Pre, typename N>
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz) { void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n) {
auto x_e = framework::EigenVector<T>::Flatten(*x);
auto y_e = framework::EigenVector<T>::Flatten(*y);
auto dz_e = framework::EigenVector<T>::Flatten(*dz); auto dz_e = framework::EigenVector<T>::Flatten(*dz);
auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 2>(1, n))
.broadcast(Eigen::DSizes<int, 2>(pre, 1))
.reshape(Eigen::DSizes<int, 1>(x_e.size()));
if (dx) {
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
dx_e.device(d) = (x_e > y_e_bcast).template cast<T>() * dz_e;
}
if (dy) {
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
dy_e.device(d) = ((y_e_bcast >= x_e).template cast<T>() * dz_e)
.reshape(Eigen::DSizes<int, 2>(pre, n))
.sum(Eigen::array<int, 1>{{0}});
}
}
};
template <typename T>
struct ElementwiseMaxBroadCast2GradFunctor {
template <typename Device, typename X, typename Y, typename Z, typename dX,
typename dY, typename dZ, typename Pre, typename N, typename Post>
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n,
Post post) {
auto x_e = framework::EigenVector<T>::Flatten(*x); auto x_e = framework::EigenVector<T>::Flatten(*x);
auto y_e = framework::EigenVector<T>::Flatten(*y); auto y_e = framework::EigenVector<T>::Flatten(*y);
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 3>(1, n, 1))
.broadcast(Eigen::DSizes<int, 3>(pre, 1, post))
.reshape(Eigen::DSizes<int, 1>(x_e.size()));
if (dx) { if (dx) {
auto dx_e = framework::EigenVector<T>::Flatten(*dx); auto dx_e = framework::EigenVector<T>::Flatten(*dx);
dx_e.device(d) = dz_e; dx_e.device(d) = (x_e > y_e_bcast).template cast<T>() * dz_e;
} }
if (dy) { if (dy) {
auto dy_e = framework::EigenVector<T>::Flatten(*dy); auto dy_e = framework::EigenVector<T>::Flatten(*dy);
dy_e.device(d) = (-1.0) * dz_e.sum(); dy_e.device(d) = ((y_e_bcast >= x_e).template cast<T>() * dz_e)
.reshape(Eigen::DSizes<int, 3>(pre, n, post))
.sum(Eigen::array<int, 2>{{0, 2}});
}
} }
};
template <typename DeviceContext, typename T>
class ElementwiseMaxGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
ElementwiseGradCompute<DeviceContext, T, ElementwiseMaxGradFunctor<T>,
ElementwiseMaxBroadCastGradFunctor<T>,
ElementwiseMaxBroadCast2GradFunctor<T>>(ctx);
} }
}; };
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册