Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
ab6b3c48
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ab6b3c48
编写于
8月 24, 2017
作者:
C
Cao Ying
提交者:
GitHub
8月 24, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #3367 from lcy-seso/add_sequence_slice_layer
Add a sequence slice layer.
上级
6bbc9a5c
377401fb
变更
14
显示空白变更内容
内联
并排
Showing
14 changed file
with
718 addition
and
40 deletion
+718
-40
doc/api/v2/config/layer.rst
doc/api/v2/config/layer.rst
+5
-0
paddle/gserver/layers/KmaxSeqScoreLayer.cpp
paddle/gserver/layers/KmaxSeqScoreLayer.cpp
+14
-5
paddle/gserver/layers/SequenceSliceLayer.cpp
paddle/gserver/layers/SequenceSliceLayer.cpp
+220
-0
paddle/gserver/layers/SubNestedSequenceLayer.cpp
paddle/gserver/layers/SubNestedSequenceLayer.cpp
+21
-10
paddle/gserver/tests/CMakeLists.txt
paddle/gserver/tests/CMakeLists.txt
+6
-0
paddle/gserver/tests/test_SeqSliceLayerGrad.cpp
paddle/gserver/tests/test_SeqSliceLayerGrad.cpp
+223
-0
paddle/parameter/Argument.cpp
paddle/parameter/Argument.cpp
+18
-9
python/paddle/trainer/config_parser.py
python/paddle/trainer/config_parser.py
+43
-0
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+68
-0
python/paddle/trainer_config_helpers/tests/configs/file_list.sh
.../paddle/trainer_config_helpers/tests/configs/file_list.sh
+2
-1
python/paddle/trainer_config_helpers/tests/configs/protostr/test_kmax_seq_socre_layer.protostr
...tests/configs/protostr/test_kmax_seq_socre_layer.protostr
+5
-12
python/paddle/trainer_config_helpers/tests/configs/protostr/test_seq_slice_layer.protostr
...pers/tests/configs/protostr/test_seq_slice_layer.protostr
+79
-0
python/paddle/trainer_config_helpers/tests/configs/test_kmax_seq_socre_layer.py
...config_helpers/tests/configs/test_kmax_seq_socre_layer.py
+1
-3
python/paddle/trainer_config_helpers/tests/configs/test_seq_slice_layer.py
...iner_config_helpers/tests/configs/test_seq_slice_layer.py
+13
-0
未找到文件。
doc/api/v2/config/layer.rst
浏览文件 @
ab6b3c48
...
...
@@ -257,6 +257,11 @@ seq_concat
.. autoclass:: paddle.v2.layer.seq_concat
:noindex:
seq_slice
---------
.. autoclass:: paddle.v2.layer.seq_slice
:noindex:
kmax_sequence_score
-------------------
.. autoclass:: paddle.v2.layer.kmax_sequence_score
...
...
paddle/gserver/layers/KmaxSeqScoreLayer.cpp
浏览文件 @
ab6b3c48
...
...
@@ -80,13 +80,14 @@ void KmaxSeqScoreLayer::forward(PassType passType) {
<<
"input of "
<<
getName
()
<<
" must be a sequence or a nested sequence."
;
CHECK_EQ
(
input
.
value
->
getWidth
(),
1UL
)
<<
"input of "
<<
getName
()
<<
" is score over a sequence or a nested sequence, so its width "
<<
" must be 1."
;
<<
"input of "
<<
getName
()
<<
" are scores over a sequence or "
<<
"a nested sequence, so its width must be 1."
;
if
(
useGpu_
)
{
// this Layer runs only in CPU, if the model is runing on GPU,
// then copy the input to this layer from GPU to CPU.
/*
* currently, this Layer only runs in CPU, if the other part of the model is
* runing on GPU, then copy the input to this layer from GPU to CPU.
*/
Matrix
::
resizeOrCreate
(
scores_
,
inputScore
->
getHeight
(),
1
,
...
...
@@ -97,6 +98,14 @@ void KmaxSeqScoreLayer::forward(PassType passType) {
scores_
=
inputScore
;
}
/*
* TODO(caoying)
* In PaddePaddle, currently all matrices are real number types,
* but output of this layer which is some selected indices of the give
* sequence are actually filled with int types so that storing int types
* information in a real number matrix is dangerous, since real numbers will
* be convered to int types.
*/
Matrix
::
resizeOrCreate
(
output_
.
value
,
input
.
hasSubseq
()
?
input
.
getNumSubSequences
()
:
input
.
getNumSequences
(),
...
...
paddle/gserver/layers/SequenceSliceLayer.cpp
0 → 100644
浏览文件 @
ab6b3c48
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "Layer.h"
#include "paddle/math/Matrix.h"
#include "paddle/math/Vector.h"
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"
namespace
paddle
{
class
SequenceSliceLayer
:
public
Layer
{
public:
explicit
SequenceSliceLayer
(
const
LayerConfig
&
config
)
:
Layer
(
config
)
{}
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
override
;
void
forward
(
PassType
passType
)
override
;
void
backward
(
const
UpdateCallback
&
callback
=
nullptr
)
override
;
private:
/*
* TODO(caoying)
* In PaddePaddle, currently all matrices are real number types,
* but the second and the (optional) third input which are some
* selected indices of the give sequence to trim the sequence, are actually
* filled with int types so that storing int types information in real number
* matrices is very dangerous, since real numbers will be convered to int
* types. If a user fills this matrix himself, invalid data may occor.
*/
MatrixPtr
startIdsOnCpu_
;
MatrixPtr
endIdsOnCpu_
;
std
::
vector
<
int
>
selectedRows_
;
IVectorPtr
rowIndice_
;
std
::
vector
<
std
::
vector
<
int
>>
inputSeqInfoVec_
;
std
::
vector
<
int
>
outSubSeqStartPos_
;
std
::
vector
<
int
>
outSeqStartPos_
;
void
checkInputs
();
void
copySliceIdsToCpu
();
void
calSelectedRows
(
const
MatrixPtr
starts
,
const
MatrixPtr
ends
);
};
REGISTER_LAYER
(
seq_slice
,
SequenceSliceLayer
);
bool
SequenceSliceLayer
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
/* Initialize the basic parent class */
Layer
::
init
(
layerMap
,
parameterMap
);
CHECK_GE
(
inputLayers_
.
size
(),
2U
);
CHECK_LE
(
inputLayers_
.
size
(),
3U
);
setNeedSequenceInfo
(
false
);
return
true
;
}
void
SequenceSliceLayer
::
checkInputs
()
{
const
Argument
&
inputSeq
=
getInput
(
0
);
CHECK
(
inputSeq
.
hasSeq
())
<<
"The first input of sequence slice layer "
<<
"must be a sequence."
;
const
MatrixPtr
indices1
=
getInputValue
(
1
);
CHECK_EQ
(
static_cast
<
size_t
>
(
indices1
->
getHeight
()),
inputSeq
.
hasSubseq
()
?
inputSeq
.
getNumSubSequences
()
:
inputSeq
.
getNumSequences
())
<<
"Height of the second input should be equal to number of sequence "
<<
"in the first input."
;
if
(
inputLayers_
.
size
()
==
3
)
{
const
MatrixPtr
indices2
=
getInputValue
(
2
);
CHECK_EQ
(
indices2
->
getHeight
(),
indices1
->
getHeight
())
<<
"start indices and end indices should have the same height."
;
CHECK_EQ
(
indices2
->
getWidth
(),
indices1
->
getWidth
())
<<
"start indices and end indices should have the same Width."
;
}
}
void
SequenceSliceLayer
::
copySliceIdsToCpu
()
{
const
MatrixPtr
indices1
=
getInputValue
(
1
);
if
(
inputLayers_
.
size
()
==
2U
)
{
if
(
config_
.
select_first
())
{
Matrix
::
resizeOrCreate
(
startIdsOnCpu_
,
indices1
->
getHeight
(),
indices1
->
getWidth
(),
false
/* trans */
,
false
/* useGpu */
);
startIdsOnCpu_
->
copyFrom
(
*
indices1
);
endIdsOnCpu_
=
nullptr
;
}
else
{
Matrix
::
resizeOrCreate
(
endIdsOnCpu_
,
indices1
->
getHeight
(),
indices1
->
getWidth
(),
false
/* trans */
,
false
/* useGpu */
);
endIdsOnCpu_
->
copyFrom
(
*
indices1
);
startIdsOnCpu_
=
nullptr
;
}
}
else
if
(
inputLayers_
.
size
()
==
3U
)
{
Matrix
::
resizeOrCreate
(
startIdsOnCpu_
,
indices1
->
getHeight
(),
indices1
->
getWidth
(),
false
/* trans */
,
false
/* useGpu */
);
startIdsOnCpu_
->
copyFrom
(
*
indices1
);
const
MatrixPtr
indices2
=
getInputValue
(
2
);
Matrix
::
resizeOrCreate
(
endIdsOnCpu_
,
indices2
->
getHeight
(),
indices2
->
getWidth
(),
false
/* trans */
,
false
/* useGpu */
);
endIdsOnCpu_
->
copyFrom
(
*
indices2
);
}
}
void
SequenceSliceLayer
::
calSelectedRows
(
const
MatrixPtr
starts
,
const
MatrixPtr
ends
)
{
CHECK
(
starts
||
ends
)
<<
"At least one of the start or end indices "
<<
"should be given."
;
outSeqStartPos_
.
resize
(
1
,
0
);
outSubSeqStartPos_
.
resize
(
1
,
0
);
selectedRows_
.
clear
();
size_t
beamSize
=
starts
?
starts
->
getWidth
()
:
ends
->
getWidth
();
size_t
rowIdx
=
0
;
for
(
size_t
i
=
0
;
i
<
inputSeqInfoVec_
.
size
();
++
i
)
{
for
(
size_t
j
=
0
;
j
<
inputSeqInfoVec_
[
i
].
size
()
-
1
;
++
j
)
{
for
(
size_t
k
=
0
;
k
<
beamSize
;
++
k
)
{
if
(
starts
&&
starts
->
getElement
(
rowIdx
,
k
)
==
-
1.
)
break
;
if
(
ends
&&
ends
->
getElement
(
rowIdx
,
k
)
==
-
1.
)
break
;
int
begPos
=
inputSeqInfoVec_
[
i
][
j
];
if
(
starts
)
begPos
+=
starts
->
getElement
(
rowIdx
,
k
);
int
endPos
=
inputSeqInfoVec_
[
i
][
j
+
1
]
-
1
;
if
(
ends
)
endPos
=
inputSeqInfoVec_
[
i
][
j
]
+
ends
->
getElement
(
rowIdx
,
k
);
int
seqLen
=
endPos
-
begPos
+
1
;
CHECK_GT
(
seqLen
,
0U
);
for
(
int
m
=
begPos
;
m
<=
endPos
;
++
m
)
selectedRows_
.
push_back
(
m
);
inputSeqInfoVec_
.
size
()
>
1
?
outSubSeqStartPos_
.
push_back
(
outSubSeqStartPos_
.
back
()
+
seqLen
)
:
outSeqStartPos_
.
push_back
(
outSeqStartPos_
.
back
()
+
seqLen
);
}
rowIdx
++
;
}
if
(
inputSeqInfoVec_
.
size
()
>
1
)
outSeqStartPos_
.
push_back
(
outSubSeqStartPos_
.
back
());
}
if
(
useGpu_
)
{
rowIndice_
=
IVector
::
create
(
selectedRows_
.
size
(),
useGpu_
);
rowIndice_
->
copyFrom
(
selectedRows_
.
data
(),
selectedRows_
.
size
());
}
else
{
rowIndice_
=
IVector
::
create
(
selectedRows_
.
data
(),
selectedRows_
.
size
(),
useGpu_
);
}
// create the sequence information for the output.
ICpuGpuVector
::
resizeOrCreate
(
output_
.
sequenceStartPositions
,
outSeqStartPos_
.
size
(),
false
);
output_
.
sequenceStartPositions
->
copyFrom
(
outSeqStartPos_
.
data
(),
outSeqStartPos_
.
size
(),
false
);
if
(
inputSeqInfoVec_
.
size
()
>
1
)
{
ICpuGpuVector
::
resizeOrCreate
(
output_
.
subSequenceStartPositions
,
outSubSeqStartPos_
.
size
(),
false
);
output_
.
subSequenceStartPositions
->
copyFrom
(
outSubSeqStartPos_
.
data
(),
outSubSeqStartPos_
.
size
(),
false
);
}
}
void
SequenceSliceLayer
::
forward
(
PassType
passType
)
{
Layer
::
forward
(
passType
);
checkInputs
();
const
Argument
&
inputSeq
=
getInput
(
0
);
inputSeqInfoVec_
.
clear
();
Argument
::
reorganizeSeqInfo
(
inputSeq
.
sequenceStartPositions
,
inputSeq
.
subSequenceStartPositions
,
inputSeqInfoVec_
);
if
(
!
useGpu_
)
{
if
(
inputLayers_
.
size
()
==
2U
)
{
startIdsOnCpu_
=
config_
.
select_first
()
?
getInputValue
(
1
)
:
nullptr
;
endIdsOnCpu_
=
config_
.
select_first
()
?
nullptr
:
getInputValue
(
1
);
}
else
if
(
inputLayers_
.
size
()
==
3U
)
{
startIdsOnCpu_
=
getInputValue
(
1
);
endIdsOnCpu_
=
getInputValue
(
2
);
}
}
else
copySliceIdsToCpu
();
// calculate the selected row indices in a batch,
// and build the output sequence information.
calSelectedRows
(
startIdsOnCpu_
?
startIdsOnCpu_
:
nullptr
,
endIdsOnCpu_
?
endIdsOnCpu_
:
nullptr
);
resetOutput
(
selectedRows_
.
size
(),
getSize
());
getOutputValue
()
->
selectRows
(
*
getInputValue
(
0
),
*
rowIndice_
);
}
void
SequenceSliceLayer
::
backward
(
const
UpdateCallback
&
callback
)
{
getOutputGrad
()
->
addToRows
(
*
getInputGrad
(
0
),
*
rowIndice_
);
}
}
// namespace paddle
paddle/gserver/layers/SubNestedSequenceLayer.cpp
浏览文件 @
ab6b3c48
...
...
@@ -52,23 +52,34 @@ private:
* ]
*
* ths output is saved to private member rowIndice_;
* [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
* 16,17,18,19,20,21,22,23,24,25,26,27]
* [0,1,2,3,4,5,6,7,8,9,15,16,17,18,19,20,21,23,24,25,26,27]
*/
void
calSelected
Col
s
(
const
MatrixPtr
selectedIndices
,
void
calSelected
Row
s
(
const
MatrixPtr
selectedIndices
,
const
std
::
vector
<
std
::
vector
<
int
>>&
inputSeqInfo
);
// if the second input of this layer is on GPU memory, copy it to CPU memory.
/*
* TODO(caoying)
* In PaddePaddle, currently all matrices are real number types,
* but the second is some selected indices of the give sequence to trim
* the nested sequence, are actually filled with int types so that storing
* int types information in real number matrices is very dangerous, since
* real numbers will be convered to int types. If a user fills this matrix
* himself, invalid data may occor.
*
* if the second input of this layer is on GPU memory, copy it to CPU memory.
*/
MatrixPtr
selIdsCpu_
;
// reorganized sequenceStartPositions and subSequenceStartPositions
// into a 2d vector to facilitate the sequence selection process.
/*
* reorganize sequenceStartPositions and subSequenceStartPositions
* into a 2d vector to facilitate the sequence selection process.
*/
std
::
vector
<
std
::
vector
<
int
>>
inputSeqInfoVec_
;
// the final selected row indices in a batch,
// rowIdx_ and selectedRows_ actually share a same memory.
/* store the final selected row indices in a batch */
IVectorPtr
rowIndice_
;
/* rowIndice_ and selectedRows_ actually share a same memory. */
std
::
vector
<
int
>
selectedRows_
;
};
...
...
@@ -83,7 +94,7 @@ bool SubNestedSequenceLayer::init(const LayerMap& layerMap,
return
true
;
}
void
SubNestedSequenceLayer
::
calSelected
Col
s
(
void
SubNestedSequenceLayer
::
calSelected
Row
s
(
const
MatrixPtr
selectedIndices
,
const
std
::
vector
<
std
::
vector
<
int
>>&
inputSeqInfo
)
{
selectedRows_
.
clear
();
...
...
@@ -160,7 +171,7 @@ void SubNestedSequenceLayer::forward(PassType passType) {
Argument
::
reorganizeSeqInfo
(
inputSeq
.
sequenceStartPositions
,
inputSeq
.
subSequenceStartPositions
,
inputSeqInfoVec_
);
calSelected
Col
s
(
selIdsCpu_
,
inputSeqInfoVec_
);
calSelected
Row
s
(
selIdsCpu_
,
inputSeqInfoVec_
);
resetOutput
(
selectedRows_
.
size
(),
getSize
());
getOutputValue
()
->
selectRows
(
*
getInputValue
(
0
),
*
rowIndice_
);
...
...
paddle/gserver/tests/CMakeLists.txt
浏览文件 @
ab6b3c48
...
...
@@ -34,6 +34,12 @@ add_unittest_without_exec(test_CRFLayerGrad
add_test
(
NAME test_CRFLayerGrad
COMMAND test_CRFLayerGrad
)
################ test_SeqSliceLayerGrad ####################
add_unittest_without_exec
(
test_SeqSliceLayerGrad
test_SeqSliceLayerGrad.cpp
LayerGradUtil.cpp
)
add_test
(
NAME test_SeqSliceLayerGrad
COMMAND test_SeqSliceLayerGrad
)
add_unittest_without_exec
(
test_ActivationGrad
test_ActivationGrad.cpp
...
...
paddle/gserver/tests/test_SeqSliceLayerGrad.cpp
0 → 100644
浏览文件 @
ab6b3c48
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include "ModelConfig.pb.h"
#include "paddle/gserver/layers/DataLayer.h"
#include "paddle/trainer/Trainer.h"
#include "LayerGradUtil.h"
#include "paddle/testing/TestUtil.h"
using
namespace
paddle
;
// NOLINT
using
namespace
std
;
// NOLINT
DECLARE_int32
(
gpu_id
);
DECLARE_bool
(
thread_local_rand_use_global_seed
);
const
int
MAX_SEQ_NUM
=
17
;
const
int
MAX_SEQ_LEN
=
23
;
const
int
MAX_BEAM_SIZE
=
13
;
vector
<
real
>
randSampling
(
real
range
,
int
n
)
{
CHECK_GE
(
range
,
n
);
vector
<
real
>
num
(
range
);
iota
(
begin
(
num
),
end
(
num
),
0.
);
if
(
range
==
n
)
return
num
;
random_shuffle
(
begin
(
num
),
end
(
num
));
num
.
resize
(
n
);
sort
(
begin
(
num
),
end
(
num
));
return
num
;
}
void
genSeqInfo
(
vector
<
int
>&
seqStartPos
,
vector
<
int
>&
subSeqStartPos
)
{
seqStartPos
.
resize
(
1
,
0
);
subSeqStartPos
.
resize
(
1
,
0
);
srand
((
size_t
)(
time
(
NULL
)));
int
seqNum
=
1
+
(
rand
()
%
MAX_SEQ_NUM
);
for
(
int
i
=
0
;
i
<
seqNum
;
++
i
)
{
int
subSeqNum
=
1
+
(
rand
()
%
MAX_SEQ_NUM
);
for
(
int
j
=
0
;
j
<
subSeqNum
;
++
j
)
subSeqStartPos
.
push_back
(
subSeqStartPos
.
back
()
+
(
1
+
(
rand
()
%
MAX_SEQ_LEN
)));
seqStartPos
.
push_back
(
subSeqStartPos
.
back
());
}
}
/*
generate start indices according to sequence start positions.
*/
void
genStarts
(
vector
<
int
>&
seqStartPos
,
vector
<
vector
<
real
>>&
starts
,
size_t
beamSize
)
{
starts
.
clear
();
starts
.
resize
(
seqStartPos
.
size
()
-
1
,
vector
<
real
>
(
beamSize
,
-
1.
));
for
(
size_t
i
=
0
;
i
<
seqStartPos
.
size
()
-
1
;
++
i
)
{
int
seqLen
=
seqStartPos
[
i
+
1
]
-
seqStartPos
[
i
];
vector
<
real
>
randStarts
=
randSampling
(
seqLen
,
min
(
seqLen
,
static_cast
<
int
>
(
beamSize
)));
copy
(
begin
(
randStarts
),
end
(
randStarts
),
begin
(
starts
[
i
]));
}
}
/*
generate end indices according to sequence start positions and start indices.
*/
void
genEnds
(
vector
<
int
>&
seqStartPos
,
vector
<
vector
<
real
>>&
starts
,
vector
<
vector
<
real
>>&
ends
,
size_t
beamSize
)
{
CHECK_EQ
(
seqStartPos
.
size
()
-
1
,
starts
.
size
());
ends
.
clear
();
ends
.
resize
(
seqStartPos
.
size
()
-
1
,
vector
<
real
>
(
beamSize
,
-
1.
));
for
(
size_t
i
=
0
;
i
<
starts
.
size
();
++
i
)
{
for
(
size_t
j
=
0
;
j
<
starts
[
i
].
size
();
++
j
)
{
int
seqLen
=
seqStartPos
[
i
+
1
]
-
seqStartPos
[
i
];
CHECK_GE
(
seqLen
-
1
,
starts
[
i
][
j
]);
if
(
starts
[
i
][
j
]
==
-
1.
)
break
;
if
(
starts
[
i
][
j
]
==
(
seqLen
-
1
))
{
ends
[
i
][
j
]
=
starts
[
i
][
j
];
}
else
{
ends
[
i
][
j
]
=
starts
[
i
][
j
]
+
randSampling
(
seqLen
-
starts
[
i
][
j
],
1
)[
0
];
}
}
}
}
void
genTestData
(
vector
<
int
>&
seqStartPos
,
vector
<
int
>&
subSeqStartPos
,
vector
<
vector
<
real
>>&
starts
,
vector
<
vector
<
real
>>&
ends
,
bool
hasSubseq
)
{
size_t
beamSize
=
1
+
(
rand
()
%
MAX_BEAM_SIZE
);
genSeqInfo
(
seqStartPos
,
subSeqStartPos
);
genStarts
(
hasSubseq
?
subSeqStartPos
:
seqStartPos
,
starts
,
beamSize
);
genEnds
(
hasSubseq
?
subSeqStartPos
:
seqStartPos
,
starts
,
ends
,
beamSize
);
}
template
<
typename
T
>
void
flatten2dVector
(
vector
<
vector
<
T
>>&
inVec
,
vector
<
T
>&
outVec
)
{
size_t
totalSize
{
0
};
for
(
auto
const
&
items
:
inVec
)
totalSize
+=
items
.
size
();
outVec
.
reserve
(
totalSize
);
for
(
auto
&
items
:
inVec
)
move
(
items
.
begin
(),
items
.
end
(),
back_inserter
(
outVec
));
}
void
testSeqSliceLayer
(
bool
hasSubseq
,
bool
useGpu
,
vector
<
int
>&
seqStartPos
,
vector
<
int
>&
subSeqStartPos
,
vector
<
vector
<
real
>>&
starts
,
vector
<
vector
<
real
>>&
ends
)
{
// layer size is not crutial for this layer,
// so here use a small layer size in the unittest.
const
size_t
layerSize
{
4
};
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"seq_slice"
);
config
.
layerConfig
.
set_size
(
layerSize
);
// add the first input
MatrixPtr
seqInputPtr
=
Matrix
::
create
(
hasSubseq
?
subSeqStartPos
.
back
()
:
seqStartPos
.
back
(),
layerSize
,
false
,
false
);
seqInputPtr
->
randomizeUniform
();
if
(
hasSubseq
)
{
config
.
inputDefs
.
push_back
({
INPUT_SELF_DEFINE_DATA
,
"seq_input"
,
seqInputPtr
,
seqStartPos
,
subSeqStartPos
});
}
else
{
config
.
inputDefs
.
push_back
(
{
INPUT_SELF_DEFINE_DATA
,
"seq_input"
,
seqInputPtr
,
seqStartPos
});
}
config
.
layerConfig
.
add_inputs
();
// add start indices
if
(
starts
.
size
())
{
vector
<
real
>
startsToVec
;
flatten2dVector
(
starts
,
startsToVec
);
MatrixPtr
startMatrixPtr
=
Matrix
::
create
(
starts
.
size
(),
starts
[
0
].
size
(),
false
,
false
);
startMatrixPtr
->
copyFrom
(
startsToVec
.
data
(),
startsToVec
.
size
());
config
.
inputDefs
.
push_back
(
{
INPUT_SELF_DEFINE_DATA
,
"starts"
,
startMatrixPtr
});
config
.
layerConfig
.
add_inputs
();
config
.
layerConfig
.
set_select_first
(
true
);
}
// add end indices
if
(
ends
.
size
())
{
vector
<
real
>
endsToVec
;
flatten2dVector
(
ends
,
endsToVec
);
MatrixPtr
endMatrixPtr
=
Matrix
::
create
(
ends
.
size
(),
ends
[
0
].
size
(),
false
,
false
);
endMatrixPtr
->
copyFrom
(
endsToVec
.
data
(),
endsToVec
.
size
());
config
.
inputDefs
.
push_back
({
INPUT_SELF_DEFINE_DATA
,
"ends"
,
endMatrixPtr
});
config
.
layerConfig
.
add_inputs
();
config
.
layerConfig
.
set_select_first
(
false
);
}
testLayerGrad
(
config
,
"seq_slice"
,
/*batchSize*/
100
,
false
,
useGpu
,
false
);
}
TEST
(
Layer
,
SeqSliceLayer
)
{
vector
<
int
>
seqStartPos
;
vector
<
int
>
subSeqStartPos
;
vector
<
vector
<
real
>>
starts
;
vector
<
vector
<
real
>>
ends
;
std
::
vector
<
bool
>
mode
=
{
false
};
#ifndef PADDLE_ONLY_CPU
mode
.
push_back
(
true
);
#endif
genSeqInfo
(
seqStartPos
,
subSeqStartPos
);
for
(
bool
hasSubseq
:
{
true
,
false
})
{
LOG
(
INFO
)
<<
"hasSubSeq : "
<<
hasSubseq
;
genTestData
(
seqStartPos
,
subSeqStartPos
,
starts
,
ends
,
hasSubseq
);
for
(
bool
useGpu
:
mode
)
{
vector
<
vector
<
real
>>
tmp
;
testSeqSliceLayer
(
hasSubseq
,
useGpu
,
seqStartPos
,
subSeqStartPos
,
tmp
,
ends
);
testSeqSliceLayer
(
hasSubseq
,
useGpu
,
seqStartPos
,
subSeqStartPos
,
starts
,
tmp
);
testSeqSliceLayer
(
hasSubseq
,
useGpu
,
seqStartPos
,
subSeqStartPos
,
starts
,
ends
);
}
}
}
int
main
(
int
argc
,
char
**
argv
)
{
initMain
(
argc
,
argv
);
hl_start
();
hl_init
(
FLAGS_gpu_id
);
FLAGS_thread_local_rand_use_global_seed
=
true
;
srand
(
1
);
testing
::
InitGoogleTest
(
&
argc
,
argv
);
return
RUN_ALL_TESTS
();
}
paddle/parameter/Argument.cpp
浏览文件 @
ab6b3c48
...
...
@@ -676,10 +676,13 @@ void Argument::reorganizeSeqInfo(
const
ICpuGpuVectorPtr
seqStartPos
,
const
ICpuGpuVectorPtr
subSeqStartPos
,
std
::
vector
<
std
::
vector
<
int
>>&
reorganizedSeqInfo
)
{
int
*
seqStarts
=
seqStartPos
->
getMutableData
(
false
);
int
*
subSeqStarts
=
subSeqStartPos
->
getMutableData
(
false
);
CHECK
(
seqStartPos
);
int
seqNum
=
seqStartPos
->
getSize
()
-
1
;
int
*
seqStarts
=
seqStartPos
->
getMutableData
(
false
);
if
(
subSeqStartPos
)
{
int
*
subSeqStarts
=
subSeqStartPos
->
getMutableData
(
false
);
reorganizedSeqInfo
.
resize
(
seqNum
,
std
::
vector
<
int
>
());
int
seqIdx
=
0
;
for
(
size_t
i
=
0
;
i
<
subSeqStartPos
->
getSize
();
++
i
)
{
...
...
@@ -690,6 +693,12 @@ void Argument::reorganizeSeqInfo(
reorganizedSeqInfo
[
seqIdx
].
push_back
(
subSeqStarts
[
i
]);
}
}
}
else
{
reorganizedSeqInfo
.
resize
(
1
,
std
::
vector
<
int
>
(
seqNum
+
1
,
0
));
memcpy
(
reorganizedSeqInfo
[
0
].
data
(),
seqStarts
,
sizeof
(
int
)
*
seqStartPos
->
getSize
());
}
}
}
// namespace paddle
python/paddle/trainer/config_parser.py
浏览文件 @
ab6b3c48
...
...
@@ -2694,6 +2694,49 @@ class SubSequenceLayer(LayerBase):
self
.
create_bias_parameter
(
bias
,
size
)
@
config_layer
(
'seq_slice'
)
class
SeqSliceLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
starts
,
ends
,
bias
=
False
,
**
xargs
):
if
isinstance
(
inputs
,
list
):
assert
len
(
inputs
)
==
1
,
(
'the first input of sequence slice layer '
'is a single sequence input.'
)
else
:
inputs
=
[
inputs
]
if
starts
is
not
None
:
if
isinstance
(
starts
,
list
):
assert
len
(
starts
)
==
1
,
(
'the start indices for sequence slice layer cannot '
'be a list having more than one element.'
)
starts
=
starts
[
0
]
inputs
.
append
(
starts
)
if
ends
is
not
None
:
if
isinstance
(
ends
,
list
):
assert
len
(
ends
)
==
1
,
(
'the end indices for sequence slice layer cannot '
'be a list having more than one element.'
)
ends
=
ends
[
0
]
inputs
.
append
(
ends
)
assert
len
(
inputs
)
>=
2
,
(
'the sequence slice layer has at least two inputs.'
)
super
(
SeqSliceLayer
,
self
).
__init__
(
name
,
'seq_slice'
,
0
,
inputs
=
inputs
,
**
xargs
)
input_layer0
=
self
.
get_input_layer
(
0
)
size
=
input_layer0
.
size
self
.
set_layer_size
(
size
)
if
len
(
inputs
)
==
3
:
assert
(
self
.
get_input_layer
(
1
).
size
==
self
.
get_input_layer
(
2
).
size
),
(
'If start and end indices are both given to'
'sequence slice layer, they should have the same width.'
)
elif
len
(
inputs
)
==
2
:
self
.
config
.
select_first
=
(
starts
is
not
None
)
@
config_layer
(
'sub_nested_seq'
)
class
SubNestedSequenceLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
selected_indices
,
bias
=
False
,
**
xargs
):
...
...
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
ab6b3c48
...
...
@@ -134,6 +134,7 @@ __all__ = [
'sub_nested_seq_layer'
,
'clip_layer'
,
'slice_projection'
,
'seq_slice_layer'
,
'kmax_sequence_score_layer'
,
'scale_shift_layer'
,
]
...
...
@@ -231,6 +232,7 @@ class LayerType(object):
CROP_LAYER
=
'crop'
SUB_NESTED_SEQ
=
'sub_nested_seq'
CLIP_LAYER
=
'clip'
SEQ_SLICE
=
'seq_slice'
KMAX_SEQ_SCORE
=
'kmax_seq_score'
SCALE_SHIFT_LAYER
=
'scale_shift'
...
...
@@ -6193,6 +6195,72 @@ def clip_layer(input, min, max, name=None):
name
,
LayerType
.
CLIP_LAYER
,
parents
=
[
input
],
size
=
input
.
size
)
@
wrap_name_default
()
def
seq_slice_layer
(
input
,
starts
,
ends
,
name
=
None
):
"""
seq_slice_layer will return one or several sub-sequences from the
input sequence layer given start and end indices.
- If only start indices are given, and end indices are set to None,
this layer slices the input sequence from the given start indices
to its end.
- If only end indices are given, and start indices are set to None,
this layer slices the input sequence from its beginning to the
given end indices.
- If start and end indices are both given, they should have the same
number of elements.
If start or end indices contains more than one elements, the input sequence
will be sliced for multiple times.
.. code-block:: python
seq_silce = seq_slice_layer(input=input_seq,
starts=start_pos, ends=end_pos)
:param name: name of this layer.
:type name: basestring
:param input: input for this layer, it should be a sequence.
:type input: LayerOutput
:param starts: start indices to slice the input sequence.
:type starts: LayerOutput|None
:param ends: end indices to slice the input sequence.
:type ends: LayerOutput|None
:return: LayerOutput object.
:rtype: LayerOutput
"""
assert
isinstance
(
input
,
LayerOutput
),
(
'The first input of seq_slice layer must be a PaddlePaddle layer.'
)
if
starts
is
not
None
:
assert
isinstance
(
starts
,
LayerOutput
),
(
'The start indices for seq_slice layer '
'must be a PaddlePaddle layer.'
)
if
ends
is
not
None
:
assert
isinstance
(
ends
,
LayerOutput
),
(
'The end indices for seq_slice layer must be a PaddlePaddle layer.'
)
assert
starts
is
not
None
or
ends
is
not
None
,
(
'start and end indices '
'cannot be set to None at the same time, at least one of '
'them should be given.'
)
if
starts
is
not
None
and
ends
is
not
None
:
assert
starts
.
size
==
ends
.
size
,
(
'If start and end indices are both given to seq_slice_layer, '
'they should have the same width.'
)
Layer
(
name
=
name
,
type
=
LayerType
.
SEQ_SLICE
,
inputs
=
input
.
name
,
starts
=
starts
.
name
if
starts
is
not
None
else
None
,
ends
=
ends
.
name
if
ends
is
not
None
else
None
)
return
LayerOutput
(
name
,
LayerType
.
SEQ_SLICE
,
parents
=
[
input
],
size
=
input
.
size
)
@
wrap_name_default
()
@
layer_support
()
def
kmax_sequence_score_layer
(
input
,
name
=
None
,
beam_size
=
1
):
...
...
python/paddle/trainer_config_helpers/tests/configs/file_list.sh
浏览文件 @
ab6b3c48
...
...
@@ -8,6 +8,7 @@ test_spp_layer test_bilinear_interp test_maxout test_bi_grumemory math_ops
test_seq_concat_reshape test_pad test_smooth_l1 test_multiplex_layer
test_prelu_layer test_row_conv test_detection_output_layer test_multibox_loss_layer
test_recursive_topology test_gated_unit_layer test_clip_layer test_row_l2_norm_layer
test_kmax_seq_socre_layer test_seq_select_layers test_scale_shift_layer
)
test_kmax_seq_socre_layer test_seq_select_layers test_scale_shift_layer
test_seq_slice_layer
)
export
whole_configs
=(
test_split_datasource
)
python/paddle/trainer_config_helpers/tests/configs/protostr/test_kmax_seq_socre_layer.protostr
浏览文件 @
ab6b3c48
type: "nn"
layers {
name: "input"
type: "data"
size: 300
active_type: ""
}
layers {
name: "data"
name: "input_seq"
type: "data"
size: 128
active_type: ""
...
...
@@ -17,7 +11,7 @@ layers {
size: 1
active_type: "exponential"
inputs {
input_layer_name: "
data
"
input_layer_name: "
input_seq
"
input_parameter_name: "___fc_layer_0__.w0"
}
bias_parameter_name: "___fc_layer_0__.wbias"
...
...
@@ -51,15 +45,14 @@ parameters {
initial_strategy: 0
initial_smart: false
}
input_layer_names: "
data
"
input_layer_names: "
input_seq
"
output_layer_names: "__kmax_sequence_score_layer_0__"
sub_models {
name: "root"
layer_names: "input"
layer_names: "data"
layer_names: "input_seq"
layer_names: "__fc_layer_0__"
layer_names: "__kmax_sequence_score_layer_0__"
input_layer_names: "
data
"
input_layer_names: "
input_seq
"
output_layer_names: "__kmax_sequence_score_layer_0__"
is_recurrent_layer_group: false
}
...
...
python/paddle/trainer_config_helpers/tests/configs/protostr/test_seq_slice_layer.protostr
0 → 100644
浏览文件 @
ab6b3c48
type: "nn"
layers {
name: "word"
type: "data"
size: 128
active_type: ""
}
layers {
name: "starts"
type: "data"
size: 5
active_type: ""
}
layers {
name: "ends"
type: "data"
size: 5
active_type: ""
}
layers {
name: "__seq_slice_layer_0__"
type: "seq_slice"
size: 128
active_type: ""
inputs {
input_layer_name: "word"
}
inputs {
input_layer_name: "starts"
}
inputs {
input_layer_name: "ends"
}
}
layers {
name: "__seq_slice_layer_1__"
type: "seq_slice"
size: 128
active_type: ""
inputs {
input_layer_name: "word"
}
inputs {
input_layer_name: "starts"
}
select_first: true
}
layers {
name: "__seq_slice_layer_2__"
type: "seq_slice"
size: 128
active_type: ""
inputs {
input_layer_name: "word"
}
inputs {
input_layer_name: "ends"
}
select_first: false
}
input_layer_names: "word"
output_layer_names: "__seq_slice_layer_0__"
output_layer_names: "__seq_slice_layer_1__"
output_layer_names: "__seq_slice_layer_2__"
sub_models {
name: "root"
layer_names: "word"
layer_names: "starts"
layer_names: "ends"
layer_names: "__seq_slice_layer_0__"
layer_names: "__seq_slice_layer_1__"
layer_names: "__seq_slice_layer_2__"
input_layer_names: "word"
output_layer_names: "__seq_slice_layer_0__"
output_layer_names: "__seq_slice_layer_1__"
output_layer_names: "__seq_slice_layer_2__"
is_recurrent_layer_group: false
}
python/paddle/trainer_config_helpers/tests/configs/test_kmax_seq_socre_layer.py
浏览文件 @
ab6b3c48
...
...
@@ -2,9 +2,7 @@
#coding=utf-8
from
paddle.trainer_config_helpers
import
*
data
=
data_layer
(
name
=
'input'
,
size
=
300
)
data
=
data_layer
(
name
=
"data"
,
size
=
128
)
data
=
data_layer
(
name
=
"input_seq"
,
size
=
128
)
scores
=
fc_layer
(
input
=
data
,
size
=
1
,
act
=
ExpActivation
())
kmax_seq_id
=
kmax_sequence_score_layer
(
input
=
scores
,
beam_size
=
5
)
...
...
python/paddle/trainer_config_helpers/tests/configs/test_seq_slice_layer.py
0 → 100644
浏览文件 @
ab6b3c48
#!/usr/bin/env python
#coding=utf-8
from
paddle.trainer_config_helpers
import
*
input_seq
=
data_layer
(
"word"
,
size
=
128
)
starts
=
data_layer
(
"starts"
,
size
=
5
)
ends
=
data_layer
(
"ends"
,
size
=
5
)
seq_slice1
=
seq_slice_layer
(
input
=
input_seq
,
starts
=
starts
,
ends
=
ends
)
seq_slice2
=
seq_slice_layer
(
input
=
input_seq
,
starts
=
starts
,
ends
=
None
)
seq_slice3
=
seq_slice_layer
(
input
=
input_seq
,
starts
=
None
,
ends
=
ends
)
outputs
(
seq_slice1
,
seq_slice2
,
seq_slice3
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录