diff --git a/deploy/pphuman/README.md b/deploy/pphuman/README.md index dbe3491c8934eac06acb20edff80ec3537f599f6..f5aa67b1b3dc04508ea856fc5ad6fbdbf8aab2b5 100644 --- a/deploy/pphuman/README.md +++ b/deploy/pphuman/README.md @@ -7,6 +7,8 @@ PP-Human是基于飞桨深度学习框架的业界首个开源的实时行人分 PP-Human赋能社区智能精细化管理, AIStudio快速上手教程[链接](https://aistudio.baidu.com/aistudio/projectdetail/3679564) +实时行人分析全流程实战, 覆盖训练、部署、动作类型扩展等内容,AIStudio项目请见[链接](https://aistudio.baidu.com/aistudio/projectdetail/3842982) + ## 一、环境准备 环境要求: PaddleDetection版本 >= release/2.4 或 develop版本 diff --git a/deploy/pphuman/README_en.md b/deploy/pphuman/README_en.md index 984a602999f81f48ed3a03a48b571313e811187b..3a196002da1d26c92671e7acdf687a1b9d4448b9 100644 --- a/deploy/pphuman/README_en.md +++ b/deploy/pphuman/README_en.md @@ -5,6 +5,10 @@ English | [简体中文](README.md) PP-Human serves as the first open-source tool of real-time pedestrian anaylsis relying on the PaddlePaddle deep learning framework. Versatile and efficient in deployment, it has been used in various senarios. PP-Human offers many input options, including image/single-camera video/multi-camera video, and covers multi-object tracking, attribute recognition, and action recognition. PP-Human can be applied to intelligent traffic, the intelligent community, industiral patrol, and so on. It supports server-side deployment and TensorRT acceleration,and achieves real-time analysis on the T4 server. +Community intelligent management supportted by PP-Human, please refer to this [AI Studio project](https://aistudio.baidu.com/aistudio/projectdetail/3679564) for quick start tutorial. + +Full-process operation tutorial of PP-Human, covering training, deployment, action expansion, please refer to this [AI Studio project](https://aistudio.baidu.com/aistudio/projectdetail/3842982). + ## I. Environment Preparation Requirement: PaddleDetection version >= release/2.4 or develop diff --git a/deploy/pphuman/docs/action.md b/deploy/pphuman/docs/action.md index 320252eae6a8a40b0ec915919bd0160d1e0405f4..5d89dfc60f7f697db2bf359bb9361972f87bd38a 100644 --- a/deploy/pphuman/docs/action.md +++ b/deploy/pphuman/docs/action.md @@ -18,9 +18,9 @@ 注: -1. 检测/跟踪模型精度为MOT17,CrowdHuman,HIEVE和部分业务数据融合训练测试得到。 -2. 关键点模型使用COCO,UAVHuman和部分业务数据融合训练, 精度在业务数据测试集上得到。 -3. 行为识别模型使用NTU-RGB+D,UR Fall Detection Dataset和部分业务数据融合训练,精度在业务数据测试集上得到。 +1. 检测/跟踪模型精度为[MOT17](https://motchallenge.net/),[CrowdHuman](http://www.crowdhuman.org/),[HIEVE](http://humaninevents.org/)和部分业务数据融合训练测试得到。 +2. 关键点模型使用[COCO](https://cocodataset.org/),[UAV-Human](https://github.com/SUTDCV/UAV-Human)和部分业务数据融合训练, 精度在业务数据测试集上得到。 +3. 行为识别模型使用[NTU-RGB+D](https://rose1.ntu.edu.sg/dataset/actionRecognition/),[UR Fall Detection Dataset](http://fenix.univ.rzeszow.pl/~mkepski/ds/uf.html)和部分业务数据融合训练,精度在业务数据测试集上得到。 4. 预测速度为NVIDIA T4 机器上使用TensorRT FP16时的速度, 速度包含数据预处理、模型预测、后处理全流程。 ## 配置说明