提交 a4df3f5b 编写于 作者: Y yangyaming

Finish framework of squared_l2_distance_op.

上级 75e16bd3
......@@ -73,3 +73,5 @@ op_library(uniform_random_op SRCS uniform_random_op.cc uniform_random_op.cu)
op_library(lookup_table_op SRCS lookup_table_op.cc lookup_table_op.cu)
op_library(scale_op SRCS scale_op.cc scale_op.cu DEPS net_op)
op_library(minus_op SRCS minus_op.cc minus_op.cu DEPS scale_op)
op_library(squared_l2_distance_op SRCS squared_l2_distance_op.cc squared_l2_distance_op.cu)
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/squared_l2_distance_op.h"
namespace paddle {
namespace operators {
class SquaredL2DistanceOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
"Input of SquaredL2DistanceOp "
"must be initialized.");
PADDLE_ENFORCE_EQ(ctx.Input<Tensor>("X")->dims(),
ctx.Input<Tensor>("Y")->dims(),
"Dimensions of SquaredL2DistanceOp's two inputs "
"must be same.")
framework::DDim dims = ctx.Input<Tensor>("X")->dims();
ctx.Output<Tensor>("sub_result")->Resize(dims);
ctx.Output<Tensor>("Out")->Resize(framework::make_ddim({dims[0], 1}));
}
};
class SquaredL2DistanceOpMaker : public framework::OpProtoAndCheckerMaker {
public:
SquaredL2DistanceOpMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "Input value.");
AddInput("Y", "Target value.");
AddOutput("sub_result",
"Buffering substraction result which "
"will be reused in backward.")
.AsIntermediate();
AddOutput("Out", "Squared l2 distance between input and target.");
AddComment(R"DOC(
SquaredL2DistanceOp will cacluate the squared L2 distances for
input and target. Number of distance value equals to the
first dimension of input.
)DOC");
}
};
class SquaredL2DistanceGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
ctx.Output<Tensor>(framework::GradVarName("X"))
->Resize(ctx.Input<Tensor>("X")->dims());
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(squared_l2_distance, ops::SquaredL2DistanceOp,
ops::SquaredL2DistanceOpMaker, squared_l2_distance_grad,
ops::SquaredL2DistanceGradOp);
REGISTER_OP_CPU_KERNEL(
squared_l2_distance,
ops::SquaredL2DistanceKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
squared_l2_distance_grad,
ops::SquaredL2DistanceGradKernel<paddle::platform::CPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/operators/squared_l2_distance_op.h"
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(
squared_l2_distance,
ops::SquaredL2DistanceKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(
squared_l2_distance_grad,
ops::SquaredL2DistanceGradKernel<paddle::platform::GPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
template <typename Place, typename T>
class SquaredL2DistanceKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* input0 = context.Input<Tensor>("X");
auto* input1 = context.Input<Tensor>("Y");
auto* output0 = context.Output<Tensor>("sub_result");
auto* output1 = context.Output<Tensor>("Out");
output0->mutable_data<T>(context.GetPlace());
output1->mutable_data<T>(context.GetPlace());
auto X = EigenMatrix<T>::From(*input0);
auto Y = EigenMatrix<T>::From(*input1);
auto subResult = EigenMatrix<T>::From(*output0);
auto Z = EigenMatrix<T>::From(*output1);
auto place = context.GetEigenDevice<Place>();
// buffer the substraction result
subResult.device(place) = X - Y;
const auto& inDims = X.dimensions();
const auto& subResMat = subResult.reshape(Eigen::array<int, 2>(
{static_cast<int>(inDims[0]), static_cast<int>(X.size() / inDims[0])}));
Z.device(place) = subResMat.pow(2).sum(Eigen::array<int, 1>({1}));
}
};
template <typename Place, typename T>
class SquaredL2DistanceGradKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* input0 = context.Input<Tensor>("sub_result");
auto* OG = context.Input<Tensor>(framework::GradVarName("Out"));
auto* IG = context.Output<Tensor>(framework::GradVarName("X"));
IG->mutable_data<T>(context.GetPlace());
auto subResult = EigenMatrix<T>::From(*input0);
auto outGrad = EigenMatrix<T>::From(*OG);
auto inGrad = EigenMatrix<T>::From(*IG);
const auto& subResDims = subResult.dimensions();
int firstDim = static_cast<int>(subResDims[0]);
int cols = subResult.size() / firstDim;
const auto subResMat =
subResult.reshape(Eigen::array<int, 2>({firstDim, cols}));
// create a matrix view for input gradient tensor
auto inGradMat = inGrad.reshape(Eigen::array<int, 2>({firstDim, cols}));
inGradMat.device(context.GetEigenDevice<Place>()) =
2 * (outGrad.broadcast(Eigen::array<int, 2>({1, cols}))) * subResMat;
}
};
} // namespace operators
} // namespace paddle
......@@ -18,5 +18,6 @@ cc_library(paddle_pybind SHARED
fill_zeros_like_op
lookup_table_op
scale_op
minus_op)
minus_op
squared_l2_distance_op)
endif(WITH_PYTHON)
......@@ -48,6 +48,7 @@ USE_OP_ITSELF(identity);
USE_OP(minus);
USE_CPU_ONLY_OP(gather);
USE_CPU_ONLY_OP(scatter);
USE_OP(squared_l2_distance);
namespace paddle {
namespace framework {
......
......@@ -32,3 +32,4 @@ py_test(test_gradient_checker SRCS test_gradient_checker.py)
py_test(test_lookup_table SRCS test_lookup_table.py)
py_test(test_scale_and_identity_op SRCS test_scale_and_identity_op.py)
py_test(mnist SRCS mnist.py)
py_test(test_squared_l2_distance_op SRCS test_squared_l2_distance_op.py)
......@@ -66,7 +66,7 @@ class OpTestMeta(type):
self.assertTrue(
numpy.allclose(
actual, expect, atol=1e-05),
"output name: " + out_name + "has diff")
"output name: " + out_name + " has diff")
obj.test_all = test_all
return obj
import unittest
from op_test_util import OpTestMeta
from gradient_checker import GradientChecker, create_op
import numpy as np
class TestSquaredL2DistanceOp(unittest.TestCase):
__metaclass__ = OpTestMeta
def setUp(self):
self.type = 'squared_l2_distance'
self.inputs = {
'X': np.random.uniform(0.1, 1., (2, 3)).astype('float32'),
'Y': np.random.uniform(0.1, 1., (2, 3)).astype('float32')
}
subRes = self.inputs['X'] - self.inputs['Y']
output = subRes * subRes
self.outputs = {
'sub_result': subRes,
'Out': np.expand_dims(output.sum(1), 1)
}
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册