未验证 提交 a3364163 编写于 作者: W wangguanzhong 提交者: GitHub

add generate_proposals (#1636)

上级 36fac289
......@@ -29,7 +29,7 @@ __all__ = [
'roi_align',
'prior_box',
'anchor_generator',
#'generate_proposals',
'generate_proposals',
'iou_similarity',
'box_coder',
'yolo_box',
......@@ -1031,7 +1031,6 @@ def multiclass_nms(bboxes,
helper = LayerHelper('multiclass_nms3', **locals())
if in_dygraph_mode():
assert rois_num is not None, "rois_num should not be None in dygraph mode."
attrs = ('background_label', background_label, 'score_threshold',
score_threshold, 'nms_top_k', nms_top_k, 'nms_threshold',
nms_threshold, 'keep_top_k', keep_top_k, 'nms_eta', nms_eta,
......@@ -1368,3 +1367,144 @@ def box_coder(prior_box,
attrs=attrs,
outputs={"OutputBox": output_box})
return output_box
def generate_proposals(scores,
bbox_deltas,
im_shape,
anchors,
variances,
pre_nms_top_n=6000,
post_nms_top_n=1000,
nms_thresh=0.5,
min_size=0.1,
eta=1.0,
return_rois_num=False,
name=None):
"""
**Generate proposal Faster-RCNN**
This operation proposes RoIs according to each box with their
probability to be a foreground object and
the box can be calculated by anchors. Bbox_deltais and scores
to be an object are the output of RPN. Final proposals
could be used to train detection net.
For generating proposals, this operation performs following steps:
1. Transposes and resizes scores and bbox_deltas in size of
(H*W*A, 1) and (H*W*A, 4)
2. Calculate box locations as proposals candidates.
3. Clip boxes to image
4. Remove predicted boxes with small area.
5. Apply NMS to get final proposals as output.
Args:
scores(Tensor): A 4-D Tensor with shape [N, A, H, W] represents
the probability for each box to be an object.
N is batch size, A is number of anchors, H and W are height and
width of the feature map. The data type must be float32.
bbox_deltas(Tensor): A 4-D Tensor with shape [N, 4*A, H, W]
represents the difference between predicted box location and
anchor location. The data type must be float32.
im_shape(Tensor): A 2-D Tensor with shape [N, 2] represents H, W, the
origin image size or input size. The data type can be float32 or
float64.
anchors(Tensor): A 4-D Tensor represents the anchors with a layout
of [H, W, A, 4]. H and W are height and width of the feature map,
num_anchors is the box count of each position. Each anchor is
in (xmin, ymin, xmax, ymax) format an unnormalized. The data type must be float32.
variances(Tensor): A 4-D Tensor. The expanded variances of anchors with a layout of
[H, W, num_priors, 4]. Each variance is in
(xcenter, ycenter, w, h) format. The data type must be float32.
pre_nms_top_n(float): Number of total bboxes to be kept per
image before NMS. The data type must be float32. `6000` by default.
post_nms_top_n(float): Number of total bboxes to be kept per
image after NMS. The data type must be float32. `1000` by default.
nms_thresh(float): Threshold in NMS. The data type must be float32. `0.5` by default.
min_size(float): Remove predicted boxes with either height or
width < min_size. The data type must be float32. `0.1` by default.
eta(float): Apply in adaptive NMS, if adaptive `threshold > 0.5`,
`adaptive_threshold = adaptive_threshold * eta` in each iteration.
return_rois_num(bool): When setting True, it will return a 1D Tensor with shape [N, ] that includes Rois's
num of each image in one batch. The N is the image's num. For example, the tensor has values [4,5] that represents
the first image has 4 Rois, the second image has 5 Rois. It only used in rcnn model.
'False' by default.
name(str, optional): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and
None by default.
Returns:
tuple:
A tuple with format ``(rpn_rois, rpn_roi_probs)``.
- **rpn_rois**: The generated RoIs. 2-D Tensor with shape ``[N, 4]`` while ``N`` is the number of RoIs. The data type is the same as ``scores``.
- **rpn_roi_probs**: The scores of generated RoIs. 2-D Tensor with shape ``[N, 1]`` while ``N`` is the number of RoIs. The data type is the same as ``scores``.
Examples:
.. code-block:: python
import paddle
from ppdet.modeling import ops
paddle.enable_static()
scores = paddle.static.data(name='scores', shape=[None, 4, 5, 5], dtype='float32')
bbox_deltas = paddle.static.data(name='bbox_deltas', shape=[None, 16, 5, 5], dtype='float32')
im_shape = paddle.static.data(name='im_shape', shape=[None, 2], dtype='float32')
anchors = paddle.static.data(name='anchors', shape=[None, 5, 4, 4], dtype='float32')
variances = paddle.static.data(name='variances', shape=[None, 5, 10, 4], dtype='float32')
rois, roi_probs = ops.generate_proposals(scores, bbox_deltas,
im_shape, anchors, variances)
"""
if in_dygraph_mode():
assert return_rois_num, "return_rois_num should be True in dygraph mode."
attrs = ('pre_nms_topN', pre_nms_top_n, 'post_nms_topN', post_nms_top_n,
'nms_thresh', nms_thresh, 'min_size', min_size, 'eta', eta)
rpn_rois, rpn_roi_probs, rpn_rois_num = core.ops.generate_proposals_v2(
scores, bbox_deltas, im_shape, anchors, variances, *attrs)
return rpn_rois, rpn_roi_probs, rpn_rois_num
helper = LayerHelper('generate_proposals_v2', **locals())
check_variable_and_dtype(scores, 'scores', ['float32'],
'generate_proposals_v2')
check_variable_and_dtype(bbox_deltas, 'bbox_deltas', ['float32'],
'generate_proposals_v2')
check_variable_and_dtype(im_shape, 'im_shape', ['float32', 'float64'],
'generate_proposals_v2')
check_variable_and_dtype(anchors, 'anchors', ['float32'],
'generate_proposals_v2')
check_variable_and_dtype(variances, 'variances', ['float32'],
'generate_proposals_v2')
rpn_rois = helper.create_variable_for_type_inference(
dtype=bbox_deltas.dtype)
rpn_roi_probs = helper.create_variable_for_type_inference(
dtype=scores.dtype)
outputs = {
'RpnRois': rpn_rois,
'RpnRoiProbs': rpn_roi_probs,
}
if return_rois_num:
rpn_rois_num = helper.create_variable_for_type_inference(dtype='int32')
rpn_rois_num.stop_gradient = True
outputs['RpnRoisNum'] = rpn_rois_num
helper.append_op(
type="generate_proposals_v2",
inputs={
'Scores': scores,
'BboxDeltas': bbox_deltas,
'ImShape': im_shape,
'Anchors': anchors,
'Variances': variances
},
attrs={
'pre_nms_topN': pre_nms_top_n,
'post_nms_topN': post_nms_top_n,
'nms_thresh': nms_thresh,
'min_size': min_size,
'eta': eta
},
outputs=outputs)
rpn_rois.stop_gradient = True
rpn_roi_probs.stop_gradient = True
if return_rois_num:
return rpn_rois, rpn_roi_probs, rpn_rois_num
else:
return rpn_rois, rpn_roi_probs
......@@ -764,5 +764,69 @@ class TestBoxCoder(LayerTest):
prior_box_var, target_box)
class TestGenerateProposals(LayerTest):
def test_generate_proposals(self):
scores_np = np.random.rand(2, 3, 4, 4).astype('float32')
bbox_deltas_np = np.random.rand(2, 12, 4, 4).astype('float32')
im_shape_np = np.array([[8, 8], [6, 6]]).astype('float32')
anchors_np = np.reshape(np.arange(4 * 4 * 3 * 4),
[4, 4, 3, 4]).astype('float32')
variances_np = np.ones((4, 4, 3, 4)).astype('float32')
with self.static_graph():
scores = paddle.static.data(
name='scores', shape=[2, 3, 4, 4], dtype='float32')
bbox_deltas = paddle.static.data(
name='bbox_deltas', shape=[2, 12, 4, 4], dtype='float32')
im_shape = paddle.static.data(
name='im_shape', shape=[2, 2], dtype='float32')
anchors = paddle.static.data(
name='anchors', shape=[4, 4, 3, 4], dtype='float32')
variances = paddle.static.data(
name='var', shape=[4, 4, 3, 4], dtype='float32')
rois, roi_probs, rois_num = ops.generate_proposals(
scores,
bbox_deltas,
im_shape,
anchors,
variances,
pre_nms_top_n=10,
post_nms_top_n=5,
return_rois_num=True)
rois_stat, roi_probs_stat, rois_num_stat = self.get_static_graph_result(
feed={
'scores': scores_np,
'bbox_deltas': bbox_deltas_np,
'im_shape': im_shape_np,
'anchors': anchors_np,
'var': variances_np
},
fetch_list=[rois, roi_probs, rois_num],
with_lod=True)
with self.dynamic_graph():
scores_dy = base.to_variable(scores_np)
bbox_deltas_dy = base.to_variable(bbox_deltas_np)
im_shape_dy = base.to_variable(im_shape_np)
anchors_dy = base.to_variable(anchors_np)
variances_dy = base.to_variable(variances_np)
rois, roi_probs, rois_num = ops.generate_proposals(
scores_dy,
bbox_deltas_dy,
im_shape_dy,
anchors_dy,
variances_dy,
pre_nms_top_n=10,
post_nms_top_n=5,
return_rois_num=True)
rois_dy = rois.numpy()
roi_probs_dy = roi_probs.numpy()
rois_num_dy = rois_num.numpy()
self.assertTrue(np.array_equal(np.array(rois_stat), rois_dy))
self.assertTrue(np.array_equal(np.array(roi_probs_stat), roi_probs_dy))
self.assertTrue(np.array_equal(np.array(rois_num_stat), rois_num_dy))
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册