Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
9f7b027d
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
接近 2 年 前同步成功
通知
706
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
9f7b027d
编写于
4月 09, 2019
作者:
Z
Zeng Jinle
提交者:
GitHub
4月 09, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix activation grad op desc maker (#16715)
test=develop
上级
9bd44b94
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
240 addition
and
172 deletion
+240
-172
paddle/fluid/framework/details/op_registry.h
paddle/fluid/framework/details/op_registry.h
+6
-0
paddle/fluid/op_use_default_grad_op_maker.spec
paddle/fluid/op_use_default_grad_op_maker.spec
+0
-23
paddle/fluid/operators/activation_cudnn_op.cu.cc
paddle/fluid/operators/activation_cudnn_op.cu.cc
+15
-1
paddle/fluid/operators/activation_op.cc
paddle/fluid/operators/activation_op.cc
+68
-93
paddle/fluid/operators/activation_op.cu
paddle/fluid/operators/activation_op.cu
+3
-2
paddle/fluid/operators/activation_op.h
paddle/fluid/operators/activation_op.h
+148
-53
未找到文件。
paddle/fluid/framework/details/op_registry.h
浏览文件 @
9f7b027d
...
@@ -233,6 +233,12 @@ struct OpInfoFiller<T, kNoNeedBufferVarsInference> {
...
@@ -233,6 +233,12 @@ struct OpInfoFiller<T, kNoNeedBufferVarsInference> {
}
}
};
};
// A fake OpInfoFiller of void
template
<
>
struct
OpInfoFiller
<
void
,
kUnknown
>
{
void
operator
()(
const
char
*
op_type
,
OpInfo
*
info
)
const
{}
};
}
// namespace details
}
// namespace details
}
// namespace framework
}
// namespace framework
...
...
paddle/fluid/op_use_default_grad_op_maker.spec
浏览文件 @
9f7b027d
abs
acos
asin
atan
attention_lstm
attention_lstm
brelu
conv_shift
conv_shift
cos
cos_sim
cos_sim
dequantize
dequantize
elu
fc
fc
flatten
flatten
fsp
fsp
...
@@ -21,13 +14,8 @@ fusion_seqconv_eltadd_relu
...
@@ -21,13 +14,8 @@ fusion_seqconv_eltadd_relu
fusion_seqexpand_concat_fc
fusion_seqexpand_concat_fc
fusion_seqpool_concat
fusion_seqpool_concat
fusion_squared_mat_sub
fusion_squared_mat_sub
gelu
gru
gru
hard_shrink
hierarchical_sigmoid
hierarchical_sigmoid
leaky_relu
log
logsigmoid
lrn
lrn
lstm_unit
lstm_unit
lstmp
lstmp
...
@@ -38,7 +26,6 @@ modified_huber_loss
...
@@ -38,7 +26,6 @@ modified_huber_loss
nce
nce
pool2d
pool2d
pool3d
pool3d
pow
prelu
prelu
quantize
quantize
rank_loss
rank_loss
...
@@ -50,20 +37,10 @@ reduce_sum
...
@@ -50,20 +37,10 @@ reduce_sum
requantize
requantize
reshape
reshape
rnn_memory_helper
rnn_memory_helper
round
sequence_softmax
sequence_softmax
sin
softplus
softshrink
softsign
spp
spp
square
squeeze
squeeze
stanh
swish
tanh_shrink
tensor_array_to_tensor
tensor_array_to_tensor
thresholded_relu
transpose
transpose
unpool
unpool
unsqueeze
unsqueeze
paddle/fluid/operators/activation_cudnn_op.cu.cc
浏览文件 @
9f7b027d
...
@@ -12,6 +12,9 @@
...
@@ -12,6 +12,9 @@
// See the License for the specific language governing permissions and
// See the License for the specific language governing permissions and
// limitations under the License.
// limitations under the License.
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/activation_op.h"
#include "paddle/fluid/operators/activation_op.h"
#include "paddle/fluid/platform/cudnn_desc.h"
#include "paddle/fluid/platform/cudnn_desc.h"
...
@@ -82,6 +85,8 @@ template <typename T>
...
@@ -82,6 +85,8 @@ template <typename T>
struct
CudnnReluGradFunctor
:
public
CudnnActivationGradFunctor
<
T
>
{
struct
CudnnReluGradFunctor
:
public
CudnnActivationGradFunctor
<
T
>
{
explicit
CudnnReluGradFunctor
(
const
CUDADeviceContext
&
ctx
)
explicit
CudnnReluGradFunctor
(
const
CUDADeviceContext
&
ctx
)
:
CudnnActivationGradFunctor
<
T
>
(
ctx
,
0.0
,
CUDNN_ACTIVATION_RELU
)
{}
:
CudnnActivationGradFunctor
<
T
>
(
ctx
,
0.0
,
CUDNN_ACTIVATION_RELU
)
{}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
kDepOut
;
}
};
};
template
<
typename
T
>
template
<
typename
T
>
...
@@ -94,6 +99,8 @@ struct CudnnRelu6GradFunctor : public CudnnActivationGradFunctor<T> {
...
@@ -94,6 +99,8 @@ struct CudnnRelu6GradFunctor : public CudnnActivationGradFunctor<T> {
explicit
CudnnRelu6GradFunctor
(
const
CUDADeviceContext
&
ctx
)
explicit
CudnnRelu6GradFunctor
(
const
CUDADeviceContext
&
ctx
)
:
CudnnActivationGradFunctor
<
T
>
(
ctx
,
6.0
,
CUDNN_ACTIVATION_CLIPPED_RELU
)
{
:
CudnnActivationGradFunctor
<
T
>
(
ctx
,
6.0
,
CUDNN_ACTIVATION_CLIPPED_RELU
)
{
}
}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
kDepOut
;
}
};
};
template
<
typename
T
>
template
<
typename
T
>
...
@@ -105,6 +112,8 @@ template <typename T>
...
@@ -105,6 +112,8 @@ template <typename T>
struct
CudnnSigmoidGradFunctor
:
public
CudnnActivationGradFunctor
<
T
>
{
struct
CudnnSigmoidGradFunctor
:
public
CudnnActivationGradFunctor
<
T
>
{
explicit
CudnnSigmoidGradFunctor
(
const
CUDADeviceContext
&
ctx
)
explicit
CudnnSigmoidGradFunctor
(
const
CUDADeviceContext
&
ctx
)
:
CudnnActivationGradFunctor
<
T
>
(
ctx
,
0.0
,
CUDNN_ACTIVATION_SIGMOID
)
{}
:
CudnnActivationGradFunctor
<
T
>
(
ctx
,
0.0
,
CUDNN_ACTIVATION_SIGMOID
)
{}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
kDepOut
;
}
};
};
template
<
typename
T
>
template
<
typename
T
>
...
@@ -116,6 +125,8 @@ template <typename T>
...
@@ -116,6 +125,8 @@ template <typename T>
struct
CudnnTanhGradFunctor
:
public
CudnnActivationGradFunctor
<
T
>
{
struct
CudnnTanhGradFunctor
:
public
CudnnActivationGradFunctor
<
T
>
{
explicit
CudnnTanhGradFunctor
(
const
CUDADeviceContext
&
ctx
)
explicit
CudnnTanhGradFunctor
(
const
CUDADeviceContext
&
ctx
)
:
CudnnActivationGradFunctor
<
T
>
(
ctx
,
0.0
,
CUDNN_ACTIVATION_TANH
)
{}
:
CudnnActivationGradFunctor
<
T
>
(
ctx
,
0.0
,
CUDNN_ACTIVATION_TANH
)
{}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
kDepOut
;
}
};
};
template
<
typename
Functor
>
template
<
typename
Functor
>
...
@@ -140,10 +151,13 @@ class CudnnActivationGradKernel
...
@@ -140,10 +151,13 @@ class CudnnActivationGradKernel
public:
public:
using
T
=
typename
Functor
::
ELEMENT_TYPE
;
using
T
=
typename
Functor
::
ELEMENT_TYPE
;
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
static_assert
(
Functor
::
FwdDeps
()
==
kDepOut
,
"Forward deps must be Out."
);
const
framework
::
Tensor
*
X
,
*
Out
,
*
dOut
;
const
framework
::
Tensor
*
X
,
*
Out
,
*
dOut
;
X
=
Out
=
dOut
=
nullptr
;
X
=
Out
=
dOut
=
nullptr
;
framework
::
Tensor
*
dX
=
nullptr
;
framework
::
Tensor
*
dX
=
nullptr
;
ExtractActivationGradTensor
(
context
,
&
X
,
&
Out
,
&
dOut
,
&
dX
);
ExtractActivationGradTensor
<
Functor
::
FwdDeps
()
>
(
context
,
&
X
,
&
Out
,
&
dOut
,
&
dX
);
dX
->
mutable_data
<
T
>
(
context
.
GetPlace
());
dX
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
&
dev_ctx
=
context
.
template
device_context
<
CUDADeviceContext
>();
auto
&
dev_ctx
=
context
.
template
device_context
<
CUDADeviceContext
>();
Functor
functor
(
dev_ctx
);
Functor
functor
(
dev_ctx
);
...
...
paddle/fluid/operators/activation_op.cc
浏览文件 @
9f7b027d
...
@@ -15,7 +15,9 @@ limitations under the License. */
...
@@ -15,7 +15,9 @@ limitations under the License. */
#include "paddle/fluid/operators/activation_op.h"
#include "paddle/fluid/operators/activation_op.h"
#include <memory>
#include <memory>
#include <string>
#include <string>
#include <type_traits>
#include <unordered_map>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/operators/mkldnn/mkldnn_activation_op.h"
#include "paddle/fluid/operators/mkldnn/mkldnn_activation_op.h"
#include "paddle/fluid/platform/port.h"
#include "paddle/fluid/platform/port.h"
#ifdef PADDLE_WITH_CUDA
#ifdef PADDLE_WITH_CUDA
...
@@ -27,6 +29,25 @@ namespace operators {
...
@@ -27,6 +29,25 @@ namespace operators {
using
paddle
::
framework
::
Tensor
;
using
paddle
::
framework
::
Tensor
;
template
<
typename
GradFunctor
>
static
constexpr
bool
CanInplaceAct
()
{
return
GradFunctor
::
FwdDeps
()
==
kDepOut
||
GradFunctor
::
FwdDeps
()
==
kNoDeps
;
}
std
::
unique_ptr
<
std
::
unordered_set
<
std
::
string
>>
GetInplaceOpSet
()
{
std
::
unique_ptr
<
std
::
unordered_set
<
std
::
string
>>
ret
(
new
std
::
unordered_set
<
std
::
string
>
());
#define INSERT_INTO_INPLACE_OP_SET(op_type, __omitted, fwd_functor, \
bwd_functor) \
if (CanInplaceAct<bwd_functor<float>>()) { \
ret->insert(#op_type); \
}
FOR_EACH_ACTIVATION_OP
(
INSERT_INTO_INPLACE_OP_SET
);
#undef INSERT_INTO_INPLACE_OP_SET
return
ret
;
}
#define REGISTER_ACTIVATION_OP_MAKER(OP_NAME, OP_COMMENT) \
#define REGISTER_ACTIVATION_OP_MAKER(OP_NAME, OP_COMMENT) \
class OP_NAME##OpMaker \
class OP_NAME##OpMaker \
: public ::paddle::framework::OpProtoAndCheckerMaker { \
: public ::paddle::framework::OpProtoAndCheckerMaker { \
...
@@ -50,26 +71,32 @@ using paddle::framework::Tensor;
...
@@ -50,26 +71,32 @@ using paddle::framework::Tensor;
} \
} \
}
}
#define REGISTER_ACTIVATION_OP_GRAD_MAKER(OP_NAME, KERNEL_TYPE) \
template
<
ActBwdOpFwdDeps
kDepValue
>
class OP_NAME##GradMaker \
class
ActivationGradOpDescMaker
:
public
framework
::
SingleGradOpDescMaker
{
: public ::paddle::framework::SingleGradOpDescMaker { \
public:
public: \
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
using ::paddle::framework::SingleGradOpDescMaker::SingleGradOpDescMaker; \
\
protected:
protected: \
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
std::unique_ptr<::paddle::framework::OpDesc> Apply() const override { \
std
::
unique_ptr
<
framework
::
OpDesc
>
op
(
new
framework
::
OpDesc
());
auto* op = new ::paddle::framework::OpDesc(); \
op
->
SetType
(
ForwardOpType
()
+
"_grad"
);
op->SetType(#KERNEL_TYPE "_grad"); \
op
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
OutputGrad
(
"Out"
));
op->SetInput("Out", Output("Out")); \
op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
InputGrad
(
"X"
));
op->SetInput(::paddle::framework::GradVarName("Out"), \
op
->
SetAttrMap
(
Attrs
());
OutputGrad("Out")); \
\
if
(
static_cast
<
int
>
(
kDepValue
)
&
op->SetAttrMap(Attrs()); \
static_cast
<
int
>
(
ActBwdOpFwdDeps
::
kDepX
))
{
\
op
->
SetInput
(
"X"
,
Input
(
"X"
));
op->SetOutput(::paddle::framework::GradVarName("X"), InputGrad("X")); \
}
return std::unique_ptr<::paddle::framework::OpDesc>(op); \
} \
if
(
static_cast
<
int
>
(
kDepValue
)
&
static_cast
<
int
>
(
ActBwdOpFwdDeps
::
kDepOut
))
{
op
->
SetInput
(
"Out"
,
Output
(
"Out"
));
}
return
op
;
}
}
};
framework
::
OpKernelType
GetKernelType
(
const
framework
::
ExecutionContext
&
ctx
,
framework
::
OpKernelType
GetKernelType
(
const
framework
::
ExecutionContext
&
ctx
,
const
framework
::
OperatorWithKernel
&
oper
,
const
framework
::
OperatorWithKernel
&
oper
,
...
@@ -129,14 +156,15 @@ class ActivationOpGrad : public framework::OperatorWithKernel {
...
@@ -129,14 +156,15 @@ class ActivationOpGrad : public framework::OperatorWithKernel {
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
ctx
->
ShareDim
(
"Out"
,
framework
::
GradVarName
(
"X"
));
auto
out_grad_name
=
framework
::
GradVarName
(
"Out"
);
ctx
->
ShareLoD
(
"Out"
,
framework
::
GradVarName
(
"X"
));
ctx
->
ShareDim
(
out_grad_name
,
framework
::
GradVarName
(
"X"
));
ctx
->
ShareLoD
(
out_grad_name
,
framework
::
GradVarName
(
"X"
));
}
}
protected:
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
GetKernelType
(
ctx
,
*
this
,
"Out"
);
return
GetKernelType
(
ctx
,
*
this
,
framework
::
GradVarName
(
"Out"
)
);
}
}
};
};
...
@@ -558,79 +586,27 @@ REGISTER_ACTIVATION_OP_MAKER(Log, LogDoc);
...
@@ -558,79 +586,27 @@ REGISTER_ACTIVATION_OP_MAKER(Log, LogDoc);
REGISTER_ACTIVATION_OP_MAKER
(
Square
,
SquareDoc
);
REGISTER_ACTIVATION_OP_MAKER
(
Square
,
SquareDoc
);
REGISTER_ACTIVATION_OP_MAKER
(
Softplus
,
SoftplusDoc
);
REGISTER_ACTIVATION_OP_MAKER
(
Softplus
,
SoftplusDoc
);
REGISTER_ACTIVATION_OP_MAKER
(
Softsign
,
SoftsignDoc
);
REGISTER_ACTIVATION_OP_MAKER
(
Softsign
,
SoftsignDoc
);
REGISTER_ACTIVATION_OP_GRAD_MAKER
(
Sigmoid
,
sigmoid
);
REGISTER_ACTIVATION_OP_GRAD_MAKER
(
Relu
,
relu
);
REGISTER_ACTIVATION_OP_GRAD_MAKER
(
Gelu
,
gelu
);
REGISTER_ACTIVATION_OP_GRAD_MAKER
(
Exp
,
exp
);
REGISTER_ACTIVATION_OP_GRAD_MAKER
(
Tanh
,
tanh
);
REGISTER_ACTIVATION_OP_GRAD_MAKER
(
Ceil
,
ceil
);
REGISTER_ACTIVATION_OP_GRAD_MAKER
(
Floor
,
floor
);
REGISTER_ACTIVATION_OP_GRAD_MAKER
(
Sqrt
,
sqrt
);
REGISTER_ACTIVATION_OP_GRAD_MAKER
(
SoftRelu
,
soft_relu
);
REGISTER_ACTIVATION_OP_GRAD_MAKER
(
Relu6
,
relu6
);
REGISTER_ACTIVATION_OP_GRAD_MAKER
(
Reciprocal
,
reciprocal
);
REGISTER_ACTIVATION_OP_GRAD_MAKER
(
HardSigmoid
,
hard_sigmoid
);
}
// namespace operators
}
// namespace operators
}
// namespace paddle
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
ops
=
paddle
::
operators
;
#define FOR_EACH_INPLACE_OP_FUNCTOR(__macro) \
#define REGISTER_ACTIVATION_OP(KERNEL_TYPE, OP_NAME, functor, grad_functor) \
__macro(Sigmoid, sigmoid); \
REGISTER_OPERATOR( \
__macro(Relu, relu); \
KERNEL_TYPE, ops::ActivationOp, ops::OP_NAME##OpMaker, \
__macro(Exp, exp); \
ops::ActivationOpInferVarType, \
__macro(Tanh, tanh); \
ops::ActivationGradOpDescMaker<ops::grad_functor<float>::FwdDeps()>, \
__macro(Ceil, ceil); \
std::conditional<ops::CanInplaceAct<ops::grad_functor<float>>(), \
__macro(Floor, floor); \
::paddle::framework::SingleOpInplaceInToOut, \
__macro(Sqrt, sqrt); \
void>::type); \
__macro(SoftRelu, soft_relu); \
REGISTER_OPERATOR( \
__macro(Relu6, relu6); \
KERNEL_TYPE##_grad, ops::ActivationOpGrad, \
__macro(Reciprocal, reciprocal); \
std::conditional<ops::CanInplaceAct<ops::grad_functor<float>>(), \
__macro(HardSigmoid, hard_sigmoid);
::paddle::framework::SingleOpInplaceInToOut, \
void>::type)
#define FOR_EACH_OP_FUNCTOR(__macro) \
__macro(LogSigmoid, logsigmoid); \
#define REGISTER_ACTIVATION_CPU_KERNEL(act_type, op_name, functor, \
__macro(SoftShrink, softshrink); \
grad_functor) \
__macro(Abs, abs); \
__macro(Cos, cos); \
__macro(Acos, acos); \
__macro(Sin, sin); \
__macro(Asin, asin); \
__macro(Atan, atan); \
__macro(Round, round); \
__macro(Log, log); \
__macro(Square, square); \
__macro(Gelu, gelu); \
__macro(BRelu, brelu); \
__macro(Pow, pow); \
__macro(STanh, stanh); \
__macro(Softplus, softplus); \
__macro(Softsign, softsign); \
__macro(LeakyRelu, leaky_relu); \
__macro(TanhShrink, tanh_shrink); \
__macro(ELU, elu); \
__macro(HardShrink, hard_shrink); \
__macro(Swish, swish); \
__macro(ThresholdedRelu, thresholded_relu);
#define REGISTER_INPLACE_ACTIVATION_OP(OP_NAME, KERNEL_TYPE) \
REGISTER_OPERATOR(KERNEL_TYPE, ::paddle::operators::ActivationOp, \
::paddle::operators::OP_NAME##OpMaker, \
::paddle::operators::ActivationOpInferVarType, \
::paddle::operators::OP_NAME##GradMaker, \
::paddle::framework::SingleOpInplaceInToOut); \
REGISTER_OPERATOR(KERNEL_TYPE##_grad, ::paddle::operators::ActivationOpGrad, \
::paddle::framework::SingleOpInplaceInToOut)
#define REGISTER_ACTIVATION_OP(OP_NAME, KERNEL_TYPE) \
REGISTER_OPERATOR(KERNEL_TYPE, ::paddle::operators::ActivationOp, \
::paddle::operators::OP_NAME##OpMaker, \
::paddle::operators::ActivationOpInferVarType, \
::paddle::framework::DefaultGradOpDescMaker<true>); \
REGISTER_OPERATOR(KERNEL_TYPE##_grad, ::paddle::operators::ActivationOpGrad)
#define REGISTER_ACTIVATION_CPU_KERNEL(act_type, functor, grad_functor) \
REGISTER_OP_CPU_KERNEL( \
REGISTER_OP_CPU_KERNEL( \
act_type, ops::ActivationKernel<paddle::platform::CPUDeviceContext, \
act_type, ops::ActivationKernel<paddle::platform::CPUDeviceContext, \
ops::functor<float>>, \
ops::functor<float>>, \
...
@@ -643,6 +619,5 @@ namespace ops = paddle::operators;
...
@@ -643,6 +619,5 @@ namespace ops = paddle::operators;
ops::ActivationGradKernel<paddle::platform::CPUDeviceContext, \
ops::ActivationGradKernel<paddle::platform::CPUDeviceContext, \
ops::grad_functor<double>>);
ops::grad_functor<double>>);
FOR_EACH_OP_FUNCTOR
(
REGISTER_ACTIVATION_OP
);
FOR_EACH_ACTIVATION_OP
(
REGISTER_ACTIVATION_OP
);
FOR_EACH_INPLACE_OP_FUNCTOR
(
REGISTER_INPLACE_ACTIVATION_OP
);
FOR_EACH_ACTIVATION_OP
(
REGISTER_ACTIVATION_CPU_KERNEL
);
FOR_EACH_KERNEL_FUNCTOR
(
REGISTER_ACTIVATION_CPU_KERNEL
);
paddle/fluid/operators/activation_op.cu
浏览文件 @
9f7b027d
...
@@ -15,7 +15,8 @@ limitations under the License. */
...
@@ -15,7 +15,8 @@ limitations under the License. */
namespace
ops
=
paddle
::
operators
;
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
namespace
plat
=
paddle
::
platform
;
#define REGISTER_ACTIVATION_CUDA_KERNEL(act_type, functor, grad_functor) \
#define REGISTER_ACTIVATION_CUDA_KERNEL(act_type, op_name, functor, \
grad_functor) \
REGISTER_OP_CUDA_KERNEL( \
REGISTER_OP_CUDA_KERNEL( \
act_type, \
act_type, \
ops::ActivationKernel<plat::CUDADeviceContext, ops::functor<float>>, \
ops::ActivationKernel<plat::CUDADeviceContext, ops::functor<float>>, \
...
@@ -30,4 +31,4 @@ namespace plat = paddle::platform;
...
@@ -30,4 +31,4 @@ namespace plat = paddle::platform;
ops::ActivationGradKernel<plat::CUDADeviceContext, \
ops::ActivationGradKernel<plat::CUDADeviceContext, \
ops::grad_functor<plat::float16>>);
ops::grad_functor<plat::float16>>);
FOR_EACH_
KERNEL_FUNCTOR
(
REGISTER_ACTIVATION_CUDA_KERNEL
);
FOR_EACH_
ACTIVATION_OP
(
REGISTER_ACTIVATION_CUDA_KERNEL
);
paddle/fluid/operators/activation_op.h
浏览文件 @
9f7b027d
...
@@ -12,6 +12,7 @@ limitations under the License. */
...
@@ -12,6 +12,7 @@ limitations under the License. */
#pragma once
#pragma once
#include <glog/logging.h>
#include <glog/logging.h>
#include <algorithm>
#include <algorithm>
#include <memory>
#include <string>
#include <string>
#include <unordered_set>
#include <unordered_set>
#include <utility>
#include <utility>
...
@@ -35,21 +36,29 @@ limitations under the License. */
...
@@ -35,21 +36,29 @@ limitations under the License. */
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
/* Use ugly global variable, for the using in python layer side
enum
ActBwdOpFwdDeps
{
Please refer to the layer_helper.py and get the details.
kNoDeps
=
0x00
,
// Do not need any forward input/output
*/
kDepX
=
0x01
,
// Only need forward input X
static
std
::
unordered_set
<
std
::
string
>
InplaceOpSet
=
{
kDepOut
=
0x02
,
// Only need forward output Out
"sigmoid"
,
"exp"
,
"relu"
,
"tanh"
,
"sqrt"
,
"ceil"
,
"floor"
,
"reciprocal"
,
"relu6"
,
"soft_relu"
,
"hard_sigmoid"
};
// Never add kDepXOut, because Out can be always calculated
// by forward input X in backward part.
// FIXME(zjl): but in MKLDNN abs, X and Out are all needed...
// Developers should not rely on this enum value!
kDepXOut
=
0x03
};
std
::
unique_ptr
<
std
::
unordered_set
<
std
::
string
>>
GetInplaceOpSet
();
static
bool
IsInplace
(
const
std
::
string
&
op
)
{
static
bool
IsInplace
(
const
std
::
string
&
op
)
{
bool
inplace
=
InplaceOpSet
.
count
(
op
);
static
auto
InplaceOpSet
=
GetInplaceOpSet
();
bool
inplace
=
InplaceOpSet
->
count
(
op
);
// for op_grad
// for op_grad
const
int
kGradSuffixLen
=
4
;
const
int
kGradSuffixLen
=
4
;
if
(
op
.
size
()
>
kGradSuffixLen
&&
if
(
op
.
size
()
>
kGradSuffixLen
&&
op
.
compare
(
op
.
size
()
-
kGradSuffixLen
-
1
,
kGradSuffixLen
,
"grad"
))
{
op
.
compare
(
op
.
size
()
-
kGradSuffixLen
-
1
,
kGradSuffixLen
,
"grad"
))
{
inplace
=
inplace
=
InplaceOpSet
.
count
(
op
.
substr
(
0
,
op
.
size
()
-
(
kGradSuffixLen
+
1
)));
InplaceOpSet
->
count
(
op
.
substr
(
0
,
op
.
size
()
-
(
kGradSuffixLen
+
1
)));
}
}
return
inplace
;
return
inplace
;
}
}
...
@@ -85,16 +94,21 @@ inline void ExtractActivationTensor(const framework::ExecutionContext& context,
...
@@ -85,16 +94,21 @@ inline void ExtractActivationTensor(const framework::ExecutionContext& context,
context
.
op
().
Output
(
"Out"
));
context
.
op
().
Output
(
"Out"
));
}
}
template
<
ActBwdOpFwdDeps
kDepValue
>
inline
void
ExtractActivationGradTensor
(
inline
void
ExtractActivationGradTensor
(
const
framework
::
ExecutionContext
&
context
,
const
framework
::
Tensor
**
X
,
const
framework
::
ExecutionContext
&
context
,
const
framework
::
Tensor
**
X
,
const
framework
::
Tensor
**
Out
,
const
framework
::
Tensor
**
dOut
,
const
framework
::
Tensor
**
Out
,
const
framework
::
Tensor
**
dOut
,
framework
::
Tensor
**
dX
)
{
framework
::
Tensor
**
dX
)
{
auto
out_var
=
context
.
InputVar
(
"Out"
);
auto
out_grad_var
=
context
.
InputVar
(
framework
::
GradVarName
(
"Out"
));
auto
out_grad_var
=
context
.
InputVar
(
framework
::
GradVarName
(
"Out"
));
auto
x_grad_var
=
context
.
OutputVar
(
framework
::
GradVarName
(
"X"
));
auto
x_grad_var
=
context
.
OutputVar
(
framework
::
GradVarName
(
"X"
));
PADDLE_ENFORCE
(
out_var
!=
nullptr
,
const
framework
::
Variable
*
out_var
=
nullptr
;
"Cannot get input Variable Out, variable name = %s"
,
context
.
op
().
Input
(
"Out"
));
if
(
static_cast
<
int
>
(
kDepValue
)
&
static_cast
<
int
>
(
kDepOut
))
{
out_var
=
context
.
InputVar
(
"Out"
);
PADDLE_ENFORCE
(
out_var
!=
nullptr
,
"Cannot get input Variable Out, variable name = %s"
,
context
.
op
().
Input
(
"Out"
));
}
PADDLE_ENFORCE
(
out_grad_var
!=
nullptr
,
PADDLE_ENFORCE
(
out_grad_var
!=
nullptr
,
"Cannot get input Variable %s, variable name = %s"
,
"Cannot get input Variable %s, variable name = %s"
,
framework
::
GradVarName
(
"Out"
),
framework
::
GradVarName
(
"Out"
),
...
@@ -105,23 +119,36 @@ inline void ExtractActivationGradTensor(
...
@@ -105,23 +119,36 @@ inline void ExtractActivationGradTensor(
context
.
op
().
Output
(
framework
::
GradVarName
(
"X"
)));
context
.
op
().
Output
(
framework
::
GradVarName
(
"X"
)));
if
(
CanBeUsedBySelectedRows
.
count
(
context
.
op
().
Type
()))
{
if
(
CanBeUsedBySelectedRows
.
count
(
context
.
op
().
Type
()))
{
*
Out
=
paddle
::
framework
::
GetLoDTensorOrSelectedRowsValueFromVar
(
*
out_var
);
*
dOut
=
paddle
::
framework
::
GetLoDTensorOrSelectedRowsValueFromVar
(
*
dOut
=
paddle
::
framework
::
GetLoDTensorOrSelectedRowsValueFromVar
(
*
out_grad_var
);
*
out_grad_var
);
*
dX
=
paddle
::
framework
::
GetMutableLoDTensorOrSelectedRowsValueFromVar
(
*
dX
=
paddle
::
framework
::
GetMutableLoDTensorOrSelectedRowsValueFromVar
(
x_grad_var
);
x_grad_var
);
if
(
out_var
)
{
*
Out
=
paddle
::
framework
::
GetLoDTensorOrSelectedRowsValueFromVar
(
*
out_var
);
}
else
{
*
Out
=
*
dOut
;
// fake out
}
}
else
{
}
else
{
*
Out
=
context
.
Input
<
framework
::
Tensor
>
(
"Out"
);
*
Out
=
context
.
Input
<
framework
::
Tensor
>
(
"Out"
);
*
dOut
=
context
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
*
dOut
=
context
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
*
dX
=
context
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
*
dX
=
context
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
if
(
out_var
)
{
*
Out
=
&
(
out_var
->
Get
<
framework
::
LoDTensor
>
());
}
else
{
*
Out
=
*
dOut
;
// fake out
}
}
}
PADDLE_ENFORCE
(
*
dX
!=
nullptr
,
PADDLE_ENFORCE
(
*
dX
!=
nullptr
,
"Cannot get output tensor %s, variable name = %s"
,
"Cannot get output tensor %s, variable name = %s"
,
framework
::
GradVarName
(
"X"
),
framework
::
GradVarName
(
"X"
),
context
.
op
().
Output
(
framework
::
GradVarName
(
"X"
)));
context
.
op
().
Output
(
framework
::
GradVarName
(
"X"
)));
bool
inplace
=
IsInplace
(
context
.
op
().
Type
());
if
(
static_cast
<
int
>
(
kDepValue
)
&
static_cast
<
int
>
(
kDepX
))
{
if
(
!
inplace
)
{
auto
x_var
=
context
.
InputVar
(
"X"
);
auto
x_var
=
context
.
InputVar
(
"X"
);
PADDLE_ENFORCE
(
x_var
!=
nullptr
,
PADDLE_ENFORCE
(
x_var
!=
nullptr
,
"Cannot get input tensor X, variable name = %s"
,
"Cannot get input tensor X, variable name = %s"
,
...
@@ -172,7 +199,8 @@ class ActivationGradKernel
...
@@ -172,7 +199,8 @@ class ActivationGradKernel
const
framework
::
Tensor
*
X
,
*
Out
,
*
dOut
;
const
framework
::
Tensor
*
X
,
*
Out
,
*
dOut
;
framework
::
Tensor
*
dX
=
nullptr
;
framework
::
Tensor
*
dX
=
nullptr
;
X
=
Out
=
dOut
=
nullptr
;
X
=
Out
=
dOut
=
nullptr
;
ExtractActivationGradTensor
(
context
,
&
X
,
&
Out
,
&
dOut
,
&
dX
);
ExtractActivationGradTensor
<
Functor
::
FwdDeps
()
>
(
context
,
&
X
,
&
Out
,
&
dOut
,
&
dX
);
dX
->
mutable_data
<
T
>
(
context
.
GetPlace
());
dX
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
dout
=
framework
::
EigenVector
<
T
>::
Flatten
(
detail
::
Ref
(
dOut
));
auto
dout
=
framework
::
EigenVector
<
T
>::
Flatten
(
detail
::
Ref
(
dOut
));
auto
out
=
framework
::
EigenVector
<
T
>::
Flatten
(
detail
::
Ref
(
Out
));
auto
out
=
framework
::
EigenVector
<
T
>::
Flatten
(
detail
::
Ref
(
Out
));
...
@@ -222,6 +250,8 @@ struct SigmoidGradFunctor : public BaseActivationFunctor<T> {
...
@@ -222,6 +250,8 @@ struct SigmoidGradFunctor : public BaseActivationFunctor<T> {
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dout
*
out
*
(
static_cast
<
T
>
(
1
)
-
out
);
dx
.
device
(
d
)
=
dout
*
out
*
(
static_cast
<
T
>
(
1
)
-
out
);
}
}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
kDepOut
;
}
};
};
// Originally: logsigmoid(x) = -log (1 + exp(-x))
// Originally: logsigmoid(x) = -log (1 + exp(-x))
...
@@ -258,6 +288,8 @@ struct LogSigmoidGradFunctor : public BaseActivationFunctor<T> {
...
@@ -258,6 +288,8 @@ struct LogSigmoidGradFunctor : public BaseActivationFunctor<T> {
dx
.
device
(
d
)
=
dx
.
device
(
d
)
=
dout
*
((
-
x
-
temp
).
exp
()
/
((
-
temp
).
exp
()
+
(
-
x
-
temp
).
exp
()));
dout
*
((
-
x
-
temp
).
exp
()
/
((
-
temp
).
exp
()
+
(
-
x
-
temp
).
exp
()));
}
}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
kDepX
;
}
};
};
// exp(x) = e^x
// exp(x) = e^x
...
@@ -276,6 +308,8 @@ struct ExpGradFunctor : public BaseActivationFunctor<T> {
...
@@ -276,6 +308,8 @@ struct ExpGradFunctor : public BaseActivationFunctor<T> {
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dout
*
out
;
dx
.
device
(
d
)
=
dout
*
out
;
}
}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
kDepOut
;
}
};
};
// relu(x) = max(x, 0)
// relu(x) = max(x, 0)
...
@@ -294,6 +328,8 @@ struct ReluGradFunctor : public BaseActivationFunctor<T> {
...
@@ -294,6 +328,8 @@ struct ReluGradFunctor : public BaseActivationFunctor<T> {
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dout
*
(
out
>
static_cast
<
T
>
(
0
)).
template
cast
<
T
>();
dx
.
device
(
d
)
=
dout
*
(
out
>
static_cast
<
T
>
(
0
)).
template
cast
<
T
>();
}
}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
kDepOut
;
}
};
};
// gelu(x) = 0.5 * x * (1 + erf(x / sqrt(2)))
// gelu(x) = 0.5 * x * (1 + erf(x / sqrt(2)))
...
@@ -338,6 +374,8 @@ struct GeluGradFunctor : BaseActivationFunctor<T> {
...
@@ -338,6 +374,8 @@ struct GeluGradFunctor : BaseActivationFunctor<T> {
(
-
static_cast
<
T
>
(
0.5
)
*
x
.
square
()).
exp
();
(
-
static_cast
<
T
>
(
0.5
)
*
x
.
square
()).
exp
();
dx
.
device
(
d
)
=
dout
*
(
first
+
second
);
dx
.
device
(
d
)
=
dout
*
(
first
+
second
);
}
}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
kDepX
;
}
};
};
// tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
// tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
...
@@ -356,6 +394,8 @@ struct TanhGradFunctor : public BaseActivationFunctor<T> {
...
@@ -356,6 +394,8 @@ struct TanhGradFunctor : public BaseActivationFunctor<T> {
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dout
*
(
static_cast
<
T
>
(
1
)
-
out
*
out
);
dx
.
device
(
d
)
=
dout
*
(
static_cast
<
T
>
(
1
)
-
out
*
out
);
}
}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
kDepOut
;
}
};
};
// tanhshrink(x) = x - tanh(x)
// tanhshrink(x) = x - tanh(x)
...
@@ -375,6 +415,8 @@ struct TanhShrinkGradFunctor : public BaseActivationFunctor<T> {
...
@@ -375,6 +415,8 @@ struct TanhShrinkGradFunctor : public BaseActivationFunctor<T> {
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dout
*
(
x
.
tanh
()
*
x
.
tanh
());
dx
.
device
(
d
)
=
dout
*
(
x
.
tanh
()
*
x
.
tanh
());
}
}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
kDepX
;
}
};
};
// tanhshrink(x) = x - tanh(x)
// tanhshrink(x) = x - tanh(x)
...
@@ -409,6 +451,8 @@ struct HardShrinkGradFunctor : public BaseActivationFunctor<T> {
...
@@ -409,6 +451,8 @@ struct HardShrinkGradFunctor : public BaseActivationFunctor<T> {
auto
temp2
=
(
x
>
static_cast
<
T
>
(
threshold
)).
template
cast
<
T
>().
eval
();
auto
temp2
=
(
x
>
static_cast
<
T
>
(
threshold
)).
template
cast
<
T
>().
eval
();
dx
.
device
(
d
)
=
dout
*
(
temp1
+
temp2
).
template
cast
<
T
>();
dx
.
device
(
d
)
=
dout
*
(
temp1
+
temp2
).
template
cast
<
T
>();
}
}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
kDepX
;
}
};
};
// softshrink(x) = x - lambda, if x > lambda; x + lambda, if x < -lambda; 0
// softshrink(x) = x - lambda, if x > lambda; x + lambda, if x < -lambda; 0
...
@@ -443,6 +487,8 @@ struct SoftShrinkGradFunctor : public BaseActivationFunctor<T> {
...
@@ -443,6 +487,8 @@ struct SoftShrinkGradFunctor : public BaseActivationFunctor<T> {
auto
temp2
=
(
x
<
-
lambdaT
).
template
cast
<
T
>().
eval
();
auto
temp2
=
(
x
<
-
lambdaT
).
template
cast
<
T
>().
eval
();
dx
.
device
(
d
)
=
dout
*
(
temp1
+
temp2
).
template
cast
<
T
>();
dx
.
device
(
d
)
=
dout
*
(
temp1
+
temp2
).
template
cast
<
T
>();
}
}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
kDepX
;
}
};
};
// sqrt(x) = x^(1/2)
// sqrt(x) = x^(1/2)
...
@@ -461,6 +507,8 @@ struct SqrtGradFunctor : public BaseActivationFunctor<T> {
...
@@ -461,6 +507,8 @@ struct SqrtGradFunctor : public BaseActivationFunctor<T> {
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
static_cast
<
T
>
(
0.5
)
*
dout
/
out
;
dx
.
device
(
d
)
=
static_cast
<
T
>
(
0.5
)
*
dout
/
out
;
}
}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
kDepOut
;
}
};
};
// ceil(x) = ceiling(x)
// ceil(x) = ceiling(x)
...
@@ -479,6 +527,8 @@ struct ZeroGradFunctor : public BaseActivationFunctor<T> {
...
@@ -479,6 +527,8 @@ struct ZeroGradFunctor : public BaseActivationFunctor<T> {
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
static_cast
<
T
>
(
0
)
/
out
;
dx
.
device
(
d
)
=
static_cast
<
T
>
(
0
)
/
out
;
}
}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
kNoDeps
;
}
};
};
// floor(x) = flooring(x)
// floor(x) = flooring(x)
...
@@ -522,6 +572,8 @@ struct CosGradFunctor : public BaseActivationFunctor<T> {
...
@@ -522,6 +572,8 @@ struct CosGradFunctor : public BaseActivationFunctor<T> {
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
-
dout
*
x
.
unaryExpr
(
Sine
<
T
>
());
dx
.
device
(
d
)
=
-
dout
*
x
.
unaryExpr
(
Sine
<
T
>
());
}
}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
kDepX
;
}
};
};
// cosine(x) = cos(x)
// cosine(x) = cos(x)
...
@@ -541,6 +593,8 @@ struct SinGradFunctor : public BaseActivationFunctor<T> {
...
@@ -541,6 +593,8 @@ struct SinGradFunctor : public BaseActivationFunctor<T> {
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dout
*
x
.
unaryExpr
(
Cosine
<
T
>
());
dx
.
device
(
d
)
=
dout
*
x
.
unaryExpr
(
Cosine
<
T
>
());
}
}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
kDepX
;
}
};
};
// sine(x) = sin(x)
// sine(x) = sin(x)
...
@@ -582,6 +636,8 @@ struct AcosGradFunctor : public BaseActivationFunctor<T> {
...
@@ -582,6 +636,8 @@ struct AcosGradFunctor : public BaseActivationFunctor<T> {
dx
.
device
(
d
)
=
dx
.
device
(
d
)
=
-
dout
*
static_cast
<
T
>
(
1
)
/
(
static_cast
<
T
>
(
1
)
-
x
.
square
()).
sqrt
();
-
dout
*
static_cast
<
T
>
(
1
)
/
(
static_cast
<
T
>
(
1
)
-
x
.
square
()).
sqrt
();
}
}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
kDepX
;
}
};
};
template
<
typename
T
>
template
<
typename
T
>
...
@@ -614,6 +670,8 @@ struct AsinGradFunctor : public BaseActivationFunctor<T> {
...
@@ -614,6 +670,8 @@ struct AsinGradFunctor : public BaseActivationFunctor<T> {
dx
.
device
(
d
)
=
dx
.
device
(
d
)
=
dout
*
static_cast
<
T
>
(
1
)
/
(
static_cast
<
T
>
(
1
)
-
x
.
square
()).
sqrt
();
dout
*
static_cast
<
T
>
(
1
)
/
(
static_cast
<
T
>
(
1
)
-
x
.
square
()).
sqrt
();
}
}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
kDepX
;
}
};
};
template
<
typename
T
>
template
<
typename
T
>
...
@@ -645,6 +703,8 @@ struct AtanGradFunctor : public BaseActivationFunctor<T> {
...
@@ -645,6 +703,8 @@ struct AtanGradFunctor : public BaseActivationFunctor<T> {
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dout
*
static_cast
<
T
>
(
1
)
/
(
static_cast
<
T
>
(
1
)
+
x
.
square
());
dx
.
device
(
d
)
=
dout
*
static_cast
<
T
>
(
1
)
/
(
static_cast
<
T
>
(
1
)
+
x
.
square
());
}
}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
kDepX
;
}
};
};
// round(x) = [x]
// round(x) = [x]
...
@@ -672,6 +732,8 @@ struct AbsGradFunctor : public BaseActivationFunctor<T> {
...
@@ -672,6 +732,8 @@ struct AbsGradFunctor : public BaseActivationFunctor<T> {
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dout
*
x
.
sign
();
dx
.
device
(
d
)
=
dout
*
x
.
sign
();
}
}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
kDepXOut
;
}
};
};
// reciprocal(x) = 1 / x
// reciprocal(x) = 1 / x
...
@@ -690,6 +752,8 @@ struct ReciprocalGradFunctor : public BaseActivationFunctor<T> {
...
@@ -690,6 +752,8 @@ struct ReciprocalGradFunctor : public BaseActivationFunctor<T> {
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dout
*
static_cast
<
T
>
(
-
1
)
*
out
*
out
;
dx
.
device
(
d
)
=
dout
*
static_cast
<
T
>
(
-
1
)
*
out
*
out
;
}
}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
kDepOut
;
}
};
};
// log(x) = natural logarithm of x
// log(x) = natural logarithm of x
...
@@ -708,6 +772,8 @@ struct LogGradFunctor : public BaseActivationFunctor<T> {
...
@@ -708,6 +772,8 @@ struct LogGradFunctor : public BaseActivationFunctor<T> {
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dout
*
(
static_cast
<
T
>
(
1
)
/
x
);
dx
.
device
(
d
)
=
dout
*
(
static_cast
<
T
>
(
1
)
/
x
);
}
}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
kDepX
;
}
};
};
// square(x) = x^2
// square(x) = x^2
...
@@ -726,6 +792,8 @@ struct SquareGradFunctor : public BaseActivationFunctor<T> {
...
@@ -726,6 +792,8 @@ struct SquareGradFunctor : public BaseActivationFunctor<T> {
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dout
*
static_cast
<
T
>
(
2
)
*
x
;
dx
.
device
(
d
)
=
dout
*
static_cast
<
T
>
(
2
)
*
x
;
}
}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
kDepX
;
}
};
};
template
<
typename
T
>
template
<
typename
T
>
...
@@ -760,6 +828,8 @@ struct BReluGradFunctor : public BaseActivationFunctor<T> {
...
@@ -760,6 +828,8 @@ struct BReluGradFunctor : public BaseActivationFunctor<T> {
((
x
>
static_cast
<
T
>
(
t_min
))
*
(
x
<
static_cast
<
T
>
(
t_max
)))
((
x
>
static_cast
<
T
>
(
t_min
))
*
(
x
<
static_cast
<
T
>
(
t_max
)))
.
template
cast
<
T
>();
.
template
cast
<
T
>();
}
}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
kDepX
;
}
};
};
// relu6(x) = min(max(0, x), 6)
// relu6(x) = min(max(0, x), 6)
...
@@ -792,6 +862,8 @@ struct Relu6GradFunctor : public BaseActivationFunctor<T> {
...
@@ -792,6 +862,8 @@ struct Relu6GradFunctor : public BaseActivationFunctor<T> {
((
out
>
static_cast
<
T
>
(
0
))
*
(
out
<
static_cast
<
T
>
(
threshold
)))
((
out
>
static_cast
<
T
>
(
0
))
*
(
out
<
static_cast
<
T
>
(
threshold
)))
.
template
cast
<
T
>();
.
template
cast
<
T
>();
}
}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
kDepOut
;
}
};
};
// softplus(x) = log(1 + exp(x))
// softplus(x) = log(1 + exp(x))
...
@@ -821,6 +893,8 @@ struct SoftplusGradFunctor : public BaseActivationFunctor<T> {
...
@@ -821,6 +893,8 @@ struct SoftplusGradFunctor : public BaseActivationFunctor<T> {
dx
.
device
(
d
)
=
dx
.
device
(
d
)
=
dout
*
((
x
-
temp
).
exp
()
/
((
-
temp
).
exp
()
+
(
x
-
temp
).
exp
()));
dout
*
((
x
-
temp
).
exp
()
/
((
-
temp
).
exp
()
+
(
x
-
temp
).
exp
()));
}
}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
kDepX
;
}
};
};
// softsign(x) = x / (1 + |x|)
// softsign(x) = x / (1 + |x|)
...
@@ -842,6 +916,8 @@ struct SoftsignGradFunctor : public BaseActivationFunctor<T> {
...
@@ -842,6 +916,8 @@ struct SoftsignGradFunctor : public BaseActivationFunctor<T> {
dx
.
device
(
d
)
=
dx
.
device
(
d
)
=
dout
*
(
static_cast
<
T
>
(
1
)
/
(
static_cast
<
T
>
(
1
)
+
x
.
abs
()).
square
());
dout
*
(
static_cast
<
T
>
(
1
)
/
(
static_cast
<
T
>
(
1
)
+
x
.
abs
()).
square
());
}
}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
kDepX
;
}
};
};
template
<
typename
T
>
template
<
typename
T
>
...
@@ -872,6 +948,8 @@ struct SoftReluGradFunctor : public BaseActivationFunctor<T> {
...
@@ -872,6 +948,8 @@ struct SoftReluGradFunctor : public BaseActivationFunctor<T> {
auto
temp
=
((
out
>
-
tmp
)
*
(
out
<
tmp
)).
template
cast
<
T
>().
eval
();
auto
temp
=
((
out
>
-
tmp
)
*
(
out
<
tmp
)).
template
cast
<
T
>().
eval
();
dx
.
device
(
d
)
=
dout
*
(
static_cast
<
T
>
(
1
)
-
(
-
out
).
exp
())
*
temp
;
dx
.
device
(
d
)
=
dout
*
(
static_cast
<
T
>
(
1
)
-
(
-
out
).
exp
())
*
temp
;
}
}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
kDepOut
;
}
};
};
template
<
typename
T
>
template
<
typename
T
>
...
@@ -901,6 +979,8 @@ struct LeakyReluGradFunctor : public BaseActivationFunctor<T> {
...
@@ -901,6 +979,8 @@ struct LeakyReluGradFunctor : public BaseActivationFunctor<T> {
auto
temp2
=
(
x
>=
static_cast
<
T
>
(
0
)).
template
cast
<
T
>().
eval
();
auto
temp2
=
(
x
>=
static_cast
<
T
>
(
0
)).
template
cast
<
T
>().
eval
();
dx
.
device
(
d
)
=
dout
*
(
temp1
+
temp2
).
template
cast
<
T
>();
dx
.
device
(
d
)
=
dout
*
(
temp1
+
temp2
).
template
cast
<
T
>();
}
}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
kDepX
;
}
};
};
template
<
typename
T
>
template
<
typename
T
>
...
@@ -928,9 +1008,11 @@ struct ELUGradFunctor : public BaseActivationFunctor<T> {
...
@@ -928,9 +1008,11 @@ struct ELUGradFunctor : public BaseActivationFunctor<T> {
typename
dX
>
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dout
*
(
x
>
static_cast
<
T
>
(
0
)).
template
cast
<
T
>()
+
dx
.
device
(
d
)
=
dout
*
(
x
>
static_cast
<
T
>
(
0
)).
template
cast
<
T
>()
+
dout
*
(
out
+
static_cast
<
T
>
(
alpha
)
)
*
dout
*
static_cast
<
T
>
(
alpha
)
*
x
.
exp
(
)
*
(
x
<
static_cast
<
T
>
(
0
)).
template
cast
<
T
>();
(
x
<
static_cast
<
T
>
(
0
)).
template
cast
<
T
>();
}
}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
kDepX
;
}
};
};
// FIXME(qijun) https://github.com/PaddlePaddle/Paddle/issues/5198
// FIXME(qijun) https://github.com/PaddlePaddle/Paddle/issues/5198
...
@@ -958,6 +1040,8 @@ struct PowGradFunctor : public BaseActivationFunctor<T> {
...
@@ -958,6 +1040,8 @@ struct PowGradFunctor : public BaseActivationFunctor<T> {
dx
.
device
(
d
)
=
dout
*
static_cast
<
T
>
(
factor
)
*
dx
.
device
(
d
)
=
dout
*
static_cast
<
T
>
(
factor
)
*
x
.
pow
(
static_cast
<
T
>
(
factor
)
-
static_cast
<
T
>
(
1
));
x
.
pow
(
static_cast
<
T
>
(
factor
)
-
static_cast
<
T
>
(
1
));
}
}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
kDepX
;
}
};
};
template
<
typename
T
>
template
<
typename
T
>
...
@@ -991,6 +1075,8 @@ struct STanhGradFunctor : public BaseActivationFunctor<T> {
...
@@ -991,6 +1075,8 @@ struct STanhGradFunctor : public BaseActivationFunctor<T> {
auto
temp
=
(
a
*
x
).
tanh
()
*
(
a
*
x
).
tanh
();
auto
temp
=
(
a
*
x
).
tanh
()
*
(
a
*
x
).
tanh
();
dx
.
device
(
d
)
=
dout
*
a
*
b
*
(
static_cast
<
T
>
(
1
)
-
temp
);
dx
.
device
(
d
)
=
dout
*
a
*
b
*
(
static_cast
<
T
>
(
1
)
-
temp
);
}
}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
kDepX
;
}
};
};
template
<
typename
T
>
template
<
typename
T
>
...
@@ -1020,6 +1106,8 @@ struct ThresholdedReluGradFunctor : public BaseActivationFunctor<T> {
...
@@ -1020,6 +1106,8 @@ struct ThresholdedReluGradFunctor : public BaseActivationFunctor<T> {
auto
th
=
static_cast
<
T
>
(
threshold
);
auto
th
=
static_cast
<
T
>
(
threshold
);
dx
.
device
(
d
)
=
dout
*
(
x
>
th
).
template
cast
<
T
>();
dx
.
device
(
d
)
=
dout
*
(
x
>
th
).
template
cast
<
T
>();
}
}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
kDepX
;
}
};
};
template
<
typename
T
>
template
<
typename
T
>
...
@@ -1053,6 +1141,8 @@ struct HardSigmoidGradFunctor : public BaseActivationFunctor<T> {
...
@@ -1053,6 +1141,8 @@ struct HardSigmoidGradFunctor : public BaseActivationFunctor<T> {
.
template
cast
<
T
>()
*
.
template
cast
<
T
>()
*
static_cast
<
T
>
(
slope
);
static_cast
<
T
>
(
slope
);
}
}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
kDepOut
;
}
};
};
template
<
typename
T
>
template
<
typename
T
>
...
@@ -1077,49 +1167,54 @@ struct SwishGradFunctor : public BaseActivationFunctor<T> {
...
@@ -1077,49 +1167,54 @@ struct SwishGradFunctor : public BaseActivationFunctor<T> {
template
<
typename
Device
,
typename
X
,
typename
Out
,
typename
dOut
,
template
<
typename
Device
,
typename
X
,
typename
Out
,
typename
dOut
,
typename
dX
>
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
void
operator
()(
Device
d
,
X
x
,
Out
fake_
out
,
dOut
dout
,
dX
dx
)
const
{
auto
temp1
=
static_cast
<
T
>
(
1
)
/
auto
temp1
=
static_cast
<
T
>
(
1
)
/
(
static_cast
<
T
>
(
1
)
+
(
static_cast
<
T
>
(
-
beta
)
*
x
).
exp
());
(
static_cast
<
T
>
(
1
)
+
(
static_cast
<
T
>
(
-
beta
)
*
x
).
exp
());
auto
out
=
x
*
temp1
;
auto
temp2
=
temp1
*
(
static_cast
<
T
>
(
1
)
-
(
static_cast
<
T
>
(
beta
)
*
out
));
auto
temp2
=
temp1
*
(
static_cast
<
T
>
(
1
)
-
(
static_cast
<
T
>
(
beta
)
*
out
));
dx
.
device
(
d
)
=
dout
*
((
static_cast
<
T
>
(
beta
)
*
out
)
+
temp2
);
dx
.
device
(
d
)
=
dout
*
((
static_cast
<
T
>
(
beta
)
*
out
)
+
temp2
);
}
}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
kDepX
;
}
};
};
}
// namespace operators
}
// namespace operators
}
// namespace paddle
}
// namespace paddle
#define FOR_EACH_KERNEL_FUNCTOR(__macro) \
#define FOR_EACH_ACTIVATION_OP(__macro) \
__macro(sigmoid, SigmoidFunctor, SigmoidGradFunctor); \
__macro(sigmoid, Sigmoid, SigmoidFunctor, SigmoidGradFunctor); \
__macro(logsigmoid, LogSigmoidFunctor, LogSigmoidGradFunctor); \
__macro(logsigmoid, LogSigmoid, LogSigmoidFunctor, LogSigmoidGradFunctor); \
__macro(exp, ExpFunctor, ExpGradFunctor); \
__macro(exp, Exp, ExpFunctor, ExpGradFunctor); \
__macro(relu, ReluFunctor, ReluGradFunctor); \
__macro(relu, Relu, ReluFunctor, ReluGradFunctor); \
__macro(gelu, GeluFunctor, GeluGradFunctor); \
__macro(gelu, Gelu, GeluFunctor, GeluGradFunctor); \
__macro(tanh, TanhFunctor, TanhGradFunctor); \
__macro(tanh, Tanh, TanhFunctor, TanhGradFunctor); \
__macro(atan, AtanFunctor, AtanGradFunctor); \
__macro(atan, Atan, AtanFunctor, AtanGradFunctor); \
__macro(softshrink, SoftShrinkFunctor, SoftShrinkGradFunctor); \
__macro(softshrink, SoftShrink, SoftShrinkFunctor, SoftShrinkGradFunctor); \
__macro(sqrt, SqrtFunctor, SqrtGradFunctor); \
__macro(sqrt, Sqrt, SqrtFunctor, SqrtGradFunctor); \
__macro(abs, AbsFunctor, AbsGradFunctor); \
__macro(abs, Abs, AbsFunctor, AbsGradFunctor); \
__macro(ceil, CeilFunctor, ZeroGradFunctor); \
__macro(ceil, Ceil, CeilFunctor, ZeroGradFunctor); \
__macro(floor, FloorFunctor, ZeroGradFunctor); \
__macro(floor, Floor, FloorFunctor, ZeroGradFunctor); \
__macro(cos, CosFunctor, CosGradFunctor); \
__macro(cos, Cos, CosFunctor, CosGradFunctor); \
__macro(acos, AcosFunctor, AcosGradFunctor); \
__macro(acos, Acos, AcosFunctor, AcosGradFunctor); \
__macro(sin, SinFunctor, SinGradFunctor); \
__macro(sin, Sin, SinFunctor, SinGradFunctor); \
__macro(asin, AsinFunctor, AsinGradFunctor); \
__macro(asin, Asin, AsinFunctor, AsinGradFunctor); \
__macro(round, RoundFunctor, ZeroGradFunctor); \
__macro(round, Round, RoundFunctor, ZeroGradFunctor); \
__macro(reciprocal, ReciprocalFunctor, ReciprocalGradFunctor); \
__macro(reciprocal, Reciprocal, ReciprocalFunctor, ReciprocalGradFunctor); \
__macro(log, LogFunctor, LogGradFunctor); \
__macro(log, Log, LogFunctor, LogGradFunctor); \
__macro(square, SquareFunctor, SquareGradFunctor); \
__macro(square, Square, SquareFunctor, SquareGradFunctor); \
__macro(brelu, BReluFunctor, BReluGradFunctor); \
__macro(brelu, BRelu, BReluFunctor, BReluGradFunctor); \
__macro(soft_relu, SoftReluFunctor, SoftReluGradFunctor); \
__macro(soft_relu, SoftRelu, SoftReluFunctor, SoftReluGradFunctor); \
__macro(pow, PowFunctor, PowGradFunctor); \
__macro(pow, Pow, PowFunctor, PowGradFunctor); \
__macro(stanh, STanhFunctor, STanhGradFunctor); \
__macro(stanh, STanh, STanhFunctor, STanhGradFunctor); \
__macro(softplus, SoftplusFunctor, SoftplusGradFunctor); \
__macro(softplus, Softplus, SoftplusFunctor, SoftplusGradFunctor); \
__macro(softsign, SoftsignFunctor, SoftsignGradFunctor); \
__macro(softsign, Softsign, SoftsignFunctor, SoftsignGradFunctor); \
__macro(relu6, Relu6Functor, Relu6GradFunctor); \
__macro(relu6, Relu6, Relu6Functor, Relu6GradFunctor); \
__macro(leaky_relu, LeakyReluFunctor, LeakyReluGradFunctor); \
__macro(leaky_relu, LeakyRelu, LeakyReluFunctor, LeakyReluGradFunctor); \
__macro(tanh_shrink, TanhShrinkFunctor, TanhShrinkGradFunctor); \
__macro(tanh_shrink, TanhShrink, TanhShrinkFunctor, TanhShrinkGradFunctor); \
__macro(elu, ELUFunctor, ELUGradFunctor); \
__macro(elu, ELU, ELUFunctor, ELUGradFunctor); \
__macro(hard_shrink, HardShrinkFunctor, HardShrinkGradFunctor); \
__macro(hard_shrink, HardShrink, HardShrinkFunctor, HardShrinkGradFunctor); \
__macro(hard_sigmoid, HardSigmoidFunctor, HardSigmoidGradFunctor); \
__macro(hard_sigmoid, HardSigmoid, HardSigmoidFunctor, \
__macro(swish, SwishFunctor, SwishGradFunctor); \
HardSigmoidGradFunctor); \
__macro(thresholded_relu, ThresholdedReluFunctor, ThresholdedReluGradFunctor);
__macro(swish, Swish, SwishFunctor, SwishGradFunctor); \
__macro(thresholded_relu, ThresholdedRelu, ThresholdedReluFunctor, \
ThresholdedReluGradFunctor);
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录