Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
9f5d141b
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
9f5d141b
编写于
9月 06, 2022
作者:
F
Feng Ni
提交者:
GitHub
9月 06, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[cherry-pick] add yoloseries doc (#6874)
* add yoloseries doc, test=document_fix * update yoloseries doc, test=document_fix
上级
662fcc92
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
298 addition
and
9 deletion
+298
-9
README_cn.md
README_cn.md
+12
-9
docs/feature_models/YOLOSERIES_MODEL.md
docs/feature_models/YOLOSERIES_MODEL.md
+286
-0
未找到文件。
README_cn.md
浏览文件 @
9f5d141b
...
...
@@ -33,7 +33,7 @@
-
发布行人分析工具
[
PP-Human v2
](
./deploy/pipeline
)
,新增打架、打电话、抽烟、闯入四大行为识别,底层算法性能升级,覆盖行人检测、跟踪、属性三类核心算法能力,提供保姆级全流程开发及模型优化策略,支持在线视频流输入
-
首次发布
[
PP-Vehicle
](
./deploy/pipeline
)
,提供车牌识别、车辆属性分析(颜色、车型)、车流量统计以及违章检测四大功能,兼容图片、在线视频流、视频输入,提供完善的二次开发文档教程
-
💡 前沿算法:
-
全面覆盖的
[
YOLO家族
](
https://github.com/nemonameless/PaddleDetection_YOLOSeries
)
经典与最新模型: 包括YOLOv3,百度飞桨自研的实时高精度目标检测
检测模型PP-YOLOE,以及前沿检测算法YOLOv4、YOLOv5、YOLOX,MT-YOLOv6及YOLOv7
-
全面覆盖的
[
YOLO家族
](
docs/feature_models/YOLOSERIES_MODEL.md
)
经典与最新模型代码库
[
PaddleDetection_YOLOSeries
](
https://github.com/nemonameless/PaddleDetection_YOLOSeries
)
: 包括YOLOv3,百度飞桨自研的实时高精度目标
检测模型PP-YOLOE,以及前沿检测算法YOLOv4、YOLOv5、YOLOX,MT-YOLOv6及YOLOv7
-
新增基于
[
ViT
](
configs/vitdet
)
骨干网络高精度检测模型,COCO数据集精度达到55.7% mAP;新增
[
OC-SORT
](
configs/mot/ocsort
)
多目标跟踪模型;新增
[
ConvNeXt
](
configs/convnext
)
骨干网络
-
📋 产业范例:新增
[
智能健身
](
https://aistudio.baidu.com/aistudio/projectdetail/4385813
)
、
[
打架识别
](
https://aistudio.baidu.com/aistudio/projectdetail/4086987?channelType=0&channel=0
)
、
[
来客分析
](
https://aistudio.baidu.com/aistudio/projectdetail/4230123?channelType=0&channel=0
)
、车辆结构化范例
...
...
@@ -77,12 +77,13 @@
-
**高性能**
: 基于飞桨的高性能内核,模型训练速度及显存占用优势明显。支持FP16训练, 支持多机训练。
<div
align=
"center"
>
<img
src=
"https://user-images.githubusercontent.com/22989727/186
703085-8740e135-d61f-41df-9a29-30273285baa7
.png"
width=
"800"
/>
<img
src=
"https://user-images.githubusercontent.com/22989727/186
810676-29078214-27ab-45eb-9adb-5dea2b0d035b
.png"
width=
"800"
/>
</div>
## <img title="" src="https://user-images.githubusercontent.com/48054808/157800467-2a9946ad-30d1-49a9-b9db-ba33413d9c90.png" alt="" width="20"> 技术交流
-
如果你发现任何PaddleDetection存在的问题或者是建议, 欢迎通过
[
GitHub Issues
](
https://github.com/PaddlePaddle/PaddleDetection/issues
)
给我们提issues。
-
**欢迎加入PaddleDetection 微信用户群(扫码填写问卷即可入群)**
-
**入群福利 💎:获取PaddleDetection团队整理的重磅学习大礼包🎁**
-
📊 福利一:获取飞桨联合业界企业整理的开源数据集
...
...
@@ -279,12 +280,11 @@
**说明:**
-
`
CBResNet`
为
`Cascade-Faster-RCNN-CBResNet200vd-FPN`
模型,COCO数据集mAP高达53.3
%
-
`
ViT`
为
`ViT-Cascade-Faster-RCNN`
模型,COCO数据集mAP高达55.7
%
-
`Cascade-Faster-RCNN`
为
`Cascade-Faster-RCNN-ResNet50vd-DCN`
,PaddleDetection将其优化到COCO数据mAP为47.8%时推理速度为20FPS
-
`PP-YOLO`
在COCO数据集精度45.9%,Tesla V100预测速度72.9FPS,精度速度均优于
[
YOLOv4
](
https://arxiv.org/abs/2004.10934
)
-
`PP-YOLO v2`
是对
`PP-YOLO`
模型的进一步优化,在COCO数据集精度49.5%,Tesla V100预测速度68.9FPS
-
`PP-YOLOE`
是对
`PP-YOLO v2`
模型的进一步优化,在COCO数据集精度51.6%,Tesla V100预测速度78.1FPS
-
[
`YOLOX`
](
configs/yolox
)
和
[
`YOLOv5`
](
https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov5
)
均为基于PaddleDetection复现算法
-
`PP-YOLOE`
是对
`PP-YOLO v2`
模型的进一步优化,L版本在COCO数据集mAP为51.6%,Tesla V100预测速度78.1FPS
-
`PP-YOLOE+`
是对
`PPOLOE`
模型的进一步优化,L版本在COCO数据集mAP为53.3%,Tesla V100预测速度78.1FPS
-
[
`YOLOX`
](
configs/yolox
)
和
[
`YOLOv5`
](
https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov5
)
均为基于PaddleDetection复现算法,
`YOLOv5`
代码在
[
`PaddleDetection_YOLOSeries`
](
https://github.com/nemonameless/PaddleDetection_YOLOSeries
)
中,参照
[
YOLOSERIES_MODEL
](
docs/feature_models/YOLOSERIES_MODEL.md
)
-
图中模型均可在
[
模型库
](
#模型库
)
中获取
</details>
...
...
@@ -336,6 +336,9 @@
|
[
YOLOv5-l
](
https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov5
)
| 48.6 | 136.0 |
[
链接
](
https://github.com/nemonameless/PaddleDetection_YOLOSeries/blob/develop/configs/yolov5/yolov5_l_300e_coco.yml
)
|
[
下载地址
](
https://paddledet.bj.bcebos.com/models/yolov5_l_300e_coco.pdparams
)
|
|
[
YOLOv7-l
](
https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov7
)
| 51.0 | 135.0 |
[
链接
](
https://github.com/nemonameless/PaddleDetection_YOLOSeries/blob/develop/configs/yolov7/yolov7_l_300e_coco.yml
)
|
[
下载地址
](
https://paddledet.bj.bcebos.com/models/yolov7_l_300e_coco.pdparams
)
|
**注意:**
-
`YOLOv5`
和
`YOLOv7`
代码在
[
`PaddleDetection_YOLOSeries`
](
https://github.com/nemonameless/PaddleDetection_YOLOSeries
)
中,为基于
`PaddleDetection`
复现的算法,可参照
[
YOLOSERIES_MODEL
](
docs/feature_models/YOLOSERIES_MODEL.md
)
。
#### 其他通用检测模型 [文档链接](docs/MODEL_ZOO_cn.md)
</details>
...
...
@@ -370,9 +373,9 @@
| 模型名称 | 模型简介 | 推荐场景 | 精度 | 配置文件 | 模型下载 |
|:--------- |:------------------------ |:---------------------------------- |:----------------------:|:---------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------:|
| ByteTrack | SDE多目标跟踪算法 仅包含检测模型 | 云边端 | MOT-17
half val: 77.3 |
[
链接
](
configs/mot/bytetrack/detector/yolox_x_24e_800x1440_mix_det.yml
)
|
[
下载地址
](
https://paddledet.bj.bcebos.com/models/mot/deepsor
t/yolox_x_24e_800x1440_mix_det.pdparams
)
|
| ByteTrack | SDE多目标跟踪算法 仅包含检测模型 | 云边端 | MOT-17
test: 78.4 |
[
链接
](
configs/mot/bytetrack/bytetrack_yolox.yml
)
|
[
下载地址
](
https://bj.bcebos.com/v1/paddledet/models/mo
t/yolox_x_24e_800x1440_mix_det.pdparams
)
|
| FairMOT | JDE多目标跟踪算法 多任务联合学习方法 | 云边端 | MOT-16 test: 75.0 |
[
链接
](
configs/mot/fairmot/fairmot_dla34_30e_1088x608.yml
)
|
[
下载地址
](
https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608.pdparams
)
|
| OC-SORT | SDE多目标跟踪算法 仅包含检测模型 | 云边端 | MOT-17 half val: 75.5 |
[
链接
](
configs/mot/ocsort/ocsort_yolox.yml
)
|
-
|
| OC-SORT | SDE多目标跟踪算法 仅包含检测模型 | 云边端 | MOT-17 half val: 75.5 |
[
链接
](
configs/mot/ocsort/ocsort_yolox.yml
)
|
[
下载地址
](
https://bj.bcebos.com/v1/paddledet/models/mot/yolox_x_24e_800x1440_mix_mot_ch.pdparams
)
|
#### 其他多目标跟踪模型 [文档链接](configs/mot)
...
...
docs/feature_models/YOLOSERIES_MODEL.md
0 → 100644
浏览文件 @
9f5d141b
简体中文 |
[
English
](
YOLOSERIES_MODEL_en.md
)
# YOLOSeries
## 内容
-
[
简介
](
#简介
)
-
[
模型库
](
#模型库
)
-
[
PP-YOLOE
](
#PP-YOLOE
)
-
[
YOLOX
](
#YOLOX
)
-
[
YOLOv5
](
#YOLOv5
)
-
[
MT-YOLOv6
](
#MT-YOLOv6
)
-
[
YOLOv7
](
#YOLOv7
)
-
[
使用指南
](
#使用指南
)
-
[
一键运行全流程
](
#一键运行全流程
)
-
[
自定义数据集
](
#自定义数据集
)
## 简介
[
**YOLOSeries**
](
https://github.com/nemonameless/PaddleDetection_YOLOSeries
)
是基于
[
PaddleDetection
](
https://github.com/PaddlePaddle/PaddleDetection
)
的YOLO系列模型库,
**由PaddleDetection团队成员建设和维护**
,支持
`YOLOv3`
,
`PP-YOLOE`
,
`PP-YOLOE+`
,
`YOLOX`
,
`YOLOv5`
,
`MT-YOLOv6`
,
`YOLOv7`
等模型,其upstream为PaddleDetection的
[
develop
](
https://github.com/PaddlePaddle/PaddleDetection/tree/develop
)
分支,并与PaddleDetection主代码库分支保持同步更新,包括github和gitee的代码,欢迎一起使用和建设!
**注意:**
-
github链接为:https://github.com/nemonameless/PaddleDetection_YOLOSeries
-
gitee链接为:https://gitee.com/nemonameless/PaddleDetection_YOLOSeries
-
提issue可以在此代码库的
[
issues
](
https://github.com/nemonameless/PaddleDetection_YOLOSeries/issues
)
页面中,也可以在
[
PaddleDetection issues
](
https://github.com/PaddlePaddle/PaddleDetection/issues
)
中,也欢迎提
[
PR
](
https://github.com/nemonameless/PaddleDetection_YOLOSeries/pulls
)
共同建设和维护。
-
[
PP-YOLOE
](
../../configs/ppyoloe
)
,
[
PP-YOLOE+
](
../../configs/ppyoloe
)
,
[
PP-YOLO
](
../../configs/ppyolo
)
,
[
PP-YOLOv2
](
../../configs/ppyolo
)
,
[
YOLOv3
](
../../configs/yolov3
)
和
[
YOLOX
](
../../configs/yolox
)
等模型推荐在
[
PaddleDetection
](
https://github.com/PaddlePaddle/PaddleDetection
)
中使用,
**会最先发布PP-YOLO系列特色检测模型的最新进展**
。
-
[
YOLOv5
](
https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov5
)
,
[
YOLOv7
](
https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov7
)
和
[
MT-YOLOv6
](
https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov6mt
)
模型推荐在此代码库中使用,
**由于GPL开源协议而不合入[PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection)主代码库**
。
-
`YOLOSeries`
代码库
**推荐使用paddlepaddle-2.3.0及以上的版本**
,请参考
[
官网
](
https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/install/pip/linux-pip.html
)
下载对应适合版本。
## 模型库
### [PP-YOLOE](../../configs/ppyoloe)
| 网络模型 | 输入尺寸 | 图片数/GPU | 学习率策略 | 推理耗时(ms) | mAP
<sup>
val
<br>
0.5:0.95 | mAP
<sup>
val
<br>
0.5 | Params(M) | FLOPs(G) | 下载链接 | 配置文件 |
| :------------- | :------- | :-------: | :------: | :------------: | :---------------------: | :----------------: |:---------: | :------: |:---------------: |:-----: |
| PP-YOLOE-s | 640 | 32 | 400e | 2.9 | 43.4 | 60.0 | 7.93 | 17.36 |
[
model
](
https://paddledet.bj.bcebos.com/models/ppyoloe_crn_s_400e_coco.pdparams
)
|
[
config
](
../../configs/ppyoloe/ppyoloe_crn_s_400e_coco.yml
)
|
| PP-YOLOE-s | 640 | 32 | 300e | 2.9 | 43.0 | 59.6 | 7.93 | 17.36 |
[
model
](
https://paddledet.bj.bcebos.com/models/ppyoloe_crn_s_300e_coco.pdparams
)
|
[
config
](
../../configs/ppyoloe/ppyoloe_crn_s_300e_coco.yml
)
|
| PP-YOLOE-m | 640 | 28 | 300e | 6.0 | 49.0 | 65.9 | 23.43 | 49.91 |
[
model
](
https://paddledet.bj.bcebos.com/models/ppyoloe_crn_m_300e_coco.pdparams
)
|
[
config
](
../../configs/ppyoloe/ppyoloe_crn_m_300e_coco.yml
)
|
| PP-YOLOE-l | 640 | 20 | 300e | 8.7 | 51.4 | 68.6 | 52.20 | 110.07 |
[
model
](
https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_300e_coco.pdparams
)
|
[
config
](
../../configs/ppyoloe/ppyoloe_crn_l_300e_coco.yml
)
|
| PP-YOLOE-x | 640 | 16 | 300e | 14.9 | 52.3 | 69.5 | 98.42 | 206.59 |
[
model
](
https://paddledet.bj.bcebos.com/models/ppyoloe_crn_x_300e_coco.pdparams
)
|
[
config
](
../../configs/ppyoloe/ppyoloe_crn_x_300e_coco.yml
)
|
| PP-YOLOE-tiny ConvNeXt| 640 | 16 | 36e | - | 44.6 | 63.3 | 33.04 | 13.87 |
[
model
](
https://paddledet.bj.bcebos.com/models/ppyoloe_convnext_tiny_36e_coco.pdparams
)
|
[
config
](
../../configs/convnext/ppyoloe_convnext_tiny_36e_coco.yml
)
|
|
**PP-YOLOE+_s**
| 640 | 8 | 80e | 2.9 |
**43.7**
|
**60.6**
| 7.93 | 17.36 |
[
model
](
https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_s_80e_coco.pdparams
)
|
[
config
](
../../configs/ppyoloe/ppyoloe_plus_crn_s_80e_coco.yml
)
|
|
**PP-YOLOE+_m**
| 640 | 8 | 80e | 6.0 |
**49.8**
|
**67.1**
| 23.43 | 49.91 |
[
model
](
https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_m_80e_coco.pdparams
)
|
[
config
](
../../configs/ppyoloe/ppyoloe_plus_crn_m_80e_coco.yml
)
|
|
**PP-YOLOE+_l**
| 640 | 8 | 80e | 8.7 |
**52.9**
|
**70.1**
| 52.20 | 110.07 |
[
model
](
https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_l_80e_coco.pdparams
)
|
[
config
](
../../configs/ppyoloe/ppyoloe_plus_crn_l_80e_coco.yml
)
|
|
**PP-YOLOE+_x**
| 640 | 8 | 80e | 14.9 |
**54.7**
|
**72.0**
| 98.42 | 206.59 |
[
model
](
https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_x_80e_coco.pdparams
)
|
[
config
](
../../configs/ppyoloe/ppyoloe_plus_crn_x_80e_coco.yml
)
|
#### 部署模型
| 网络模型 | 输入尺寸 | 导出后的权重(w/o NMS) | ONNX(w/o NMS) |
| :-------- | :--------: | :---------------------: | :----------------: |
| PP-YOLOE-s(400epoch) | 640 |
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_s_400e_coco_w_nms.zip
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_s_400e_coco_wo_nms.zip
)
|
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_s_400e_coco_w_nms.onnx
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_s_400e_coco_wo_nms.onnx
)
|
| PP-YOLOE-s | 640 |
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_s_300e_coco_w_nms.zip
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_s_300e_coco_wo_nms.zip
)
|
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_s_300e_coco_w_nms.onnx
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_s_300e_coco_wo_nms.onnx
)
|
| PP-YOLOE-m | 640 |
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_m_300e_coco_w_nms.zip
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_m_300e_coco_wo_nms.zip
)
|
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_m_300e_coco_w_nms.onnx
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_m_300e_coco_wo_nms.onnx
)
|
| PP-YOLOE-l | 640 |
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_l_300e_coco_w_nms.zip
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_l_300e_coco_wo_nms.zip
)
|
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_l_300e_coco_w_nms.onnx
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_l_300e_coco_wo_nms.onnx
)
|
| PP-YOLOE-x | 640 |
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_x_300e_coco_w_nms.zip
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_x_300e_coco_wo_nms.zip
)
|
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_x_300e_coco_w_nms.onnx
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_x_300e_coco_wo_nms.onnx
)
|
|
**PP-YOLOE+_s**
| 640 |
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_plus_crn_s_80e_coco_w_nms.zip
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_plus_crn_s_80e_coco_wo_nms.zip
)
|
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_plus_crn_s_80e_coco_w_nms.onnx
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_plus_crn_s_80e_coco_wo_nms.onnx
)
|
|
**PP-YOLOE+_m**
| 640 |
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_plus_crn_m_80e_coco_w_nms.zip
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_plus_crn_m_80e_coco_wo_nms.zip
)
|
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_plus_crn_m_80e_coco_w_nms.onnx
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_plus_crn_m_80e_coco_wo_nms.onnx
)
|
|
**PP-YOLOE+_l**
| 640 |
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_plus_crn_l_80e_coco_w_nms.zip
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_plus_crn_l_80e_coco_wo_nms.zip
)
|
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_plus_crn_l_80e_coco_w_nms.onnx
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_plus_crn_l_80e_coco_wo_nms.onnx
)
|
|
**PP-YOLOE+_x**
| 640 |
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_plus_crn_x_80e_coco_w_nms.zip
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_plus_crn_x_80e_coco_wo_nms.zip
)
|
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_plus_crn_x_80e_coco_w_nms.onnx
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_plus_crn_x_80e_coco_wo_nms.onnx
)
|
### [YOLOX](../../configs/yolox)
| 网络模型 | 输入尺寸 | 图片数/GPU | 学习率策略 | 推理耗时(ms) | mAP
<sup>
val
<br>
0.5:0.95 | mAP
<sup>
val
<br>
0.5 | Params(M) | FLOPs(G) | 下载链接 | 配置文件 |
| :------------- | :------- | :-------: | :------: | :------------: | :---------------------: | :----------------: |:---------: | :------: |:---------------: |:-----: |
| YOLOX-nano | 416 | 8 | 300e | 2.3 | 26.1 | 42.0 | 0.91 | 1.08 |
[
model
](
https://paddledet.bj.bcebos.com/models/yolox_nano_300e_coco.pdparams
)
|
[
config
](
../../configs/yolox/yolox_nano_300e_coco.yml
)
|
| YOLOX-tiny | 416 | 8 | 300e | 2.8 | 32.9 | 50.4 | 5.06 | 6.45 |
[
model
](
https://paddledet.bj.bcebos.com/models/yolox_tiny_300e_coco.pdparams
)
|
[
config
](
../../configs/yolox/yolox_tiny_300e_coco.yml
)
|
| YOLOX-s | 640 | 8 | 300e | 3.0 | 40.4 | 59.6 | 9.0 | 26.8 |
[
model
](
https://paddledet.bj.bcebos.com/models/yolox_s_300e_coco.pdparams
)
|
[
config
](
../../configs/yolox/yolox_s_300e_coco.yml
)
|
| YOLOX-m | 640 | 8 | 300e | 5.8 | 46.9 | 65.7 | 25.3 | 73.8 |
[
model
](
https://paddledet.bj.bcebos.com/models/yolox_m_300e_coco.pdparams
)
|
[
config
](
../../configs/yolox/yolox_m_300e_coco.yml
)
|
| YOLOX-l | 640 | 8 | 300e | 9.3 | 50.1 | 68.8 | 54.2 | 155.6 |
[
model
](
https://paddledet.bj.bcebos.com/models/yolox_l_300e_coco.pdparams
)
|
[
config
](
../../configs/yolox/yolox_l_300e_coco.yml
)
|
| YOLOX-x | 640 | 8 | 300e | 16.6 |
**51.8**
|
**70.6**
| 99.1 | 281.9 |
[
model
](
https://paddledet.bj.bcebos.com/models/yolox_x_300e_coco.pdparams
)
|
[
config
](
../../configs/yolox/yolox_x_300e_coco.yml
)
|
YOLOX-cdn-tiny | 416 | 8 | 300e | 1.9 | 32.4 | 50.2 | 5.03 | 6.33 |
[
model
](
https://paddledet.bj.bcebos.com/models/yolox_cdn_tiny_300e_coco.pdparams
)
|
[
config
](
c../../onfigs/yolox/yolox_cdn_tiny_300e_coco.yml
)
|
| YOLOX-crn-s | 640 | 8 | 300e | 3.0 | 40.4 | 59.6 | 7.7 | 24.69 |
[
model
](
https://paddledet.bj.bcebos.com/models/yolox_crn_s_300e_coco.pdparams
)
|
[
config
](
../../configs/yolox/yolox_crn_s_300e_coco.yml
)
|
| YOLOX-s ConvNeXt| 640 | 8 | 36e | - | 44.6 | 65.3 | 36.2 | 27.52 |
[
model
](
https://paddledet.bj.bcebos.com/models/yolox_convnext_s_36e_coco.pdparams
)
|
[
config
](
../../configs/convnext/yolox_convnext_s_36e_coco.yml
)
|
#### 部署模型
| 网络模型 | 输入尺寸 | 导出后的权重(w/o NMS) | ONNX(w/o NMS) |
| :-------- | :--------: | :---------------------: | :----------------: |
| YOLOx-nano | 416 |
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_nano_300e_coco_w_nms.zip
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_nano_300e_coco_wo_nms.zip
)
|
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_nano_300e_coco_w_nms.onnx
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_nano_300e_coco_wo_nms.onnx
)
|
| YOLOx-tiny | 416 |
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_tiny_300e_coco_w_nms.zip
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_tiny_300e_coco_wo_nms.zip
)
|
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_tiny_300e_coco_w_nms.onnx
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_tiny_300e_coco_wo_nms.onnx
)
|
| YOLOx-s | 640 |
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_s_300e_coco_w_nms.zip
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_s_300e_coco_wo_nms.zip
)
|
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_s_300e_coco_w_nms.onnx
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_s_300e_coco_wo_nms.onnx
)
|
| YOLOx-m | 640 |
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_m_300e_coco_w_nms.zip
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_m_300e_coco_wo_nms.zip
)
|
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_m_300e_coco_w_nms.onnx
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_m_300e_coco_wo_nms.onnx
)
|
| YOLOx-l | 640 |
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_l_300e_coco_w_nms.zip
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_l_300e_coco_wo_nms.zip
)
|
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_l_300e_coco_w_nms.onnx
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_l_300e_coco_wo_nms.onnx
)
|
| YOLOx-x | 640 |
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_x_300e_coco_w_nms.zip
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_x_300e_coco_wo_nms.zip
)
|
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_x_300e_coco_w_nms.onnx
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_x_300e_coco_wo_nms.onnx
)
|
### [YOLOv5](https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov5)
| 网络模型 | 输入尺寸 | 图片数/GPU | 学习率策略 | 推理耗时(ms) | mAP
<sup>
val
<br>
0.5:0.95 | mAP
<sup>
val
<br>
0.5 | Params(M) | FLOPs(G) | 下载链接 | 配置文件 |
| :------------- | :------- | :-------: | :------: | :------------: | :---------------------: | :----------------: |:---------: | :------: |:---------------: |:-----: |
| YOLOv5-n | 640 | 16 | 300e | 2.6 | 28.0 | 45.7 | 1.87 | 4.52 |
[
model
](
https://paddledet.bj.bcebos.com/models/yolov5_n_300e_coco.pdparams
)
|
[
config
](
https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov5/yolov5_n_300e_coco.yml
)
|
| YOLOv5-s | 640 | 8 | 300e | 3.2 | 37.0 | 55.9 | 7.24 | 16.54 |
[
model
](
https://paddledet.bj.bcebos.com/models/yolov5_s_300e_coco.pdparams
)
|
[
config
](
https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov5/yolov5_s_300e_coco.yml
)
|
| YOLOv5-m | 640 | 5 | 300e | 5.2 | 45.3 | 63.8 | 21.19 | 49.08 |
[
model
](
https://paddledet.bj.bcebos.com/models/yolov5_m_300e_coco.pdparams
)
|
[
config
](
https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov5/yolov5_m_300e_coco.yml
)
|
| YOLOv5-l | 640 | 3 | 300e | 7.9 | 48.6 | 66.9 | 46.56 | 109.32 |
[
model
](
https://paddledet.bj.bcebos.com/models/yolov5_l_300e_coco.pdparams
)
|
[
config
](
https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov5/yolov5_l_300e_coco.yml
)
|
| YOLOv5-x | 640 | 2 | 300e | 13.7 |
**50.6**
|
**68.7**
| 86.75 | 205.92 |
[
model
](
https://paddledet.bj.bcebos.com/models/yolov5_x_300e_coco.pdparams
)
|
[
config
](
https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov5/yolov5_x_300e_coco.yml
)
|
| YOLOv5-s ConvNeXt| 640 | 8 | 36e | - | 42.4 | 65.3 | 34.54 | 17.96 |
[
model
](
https://paddledet.bj.bcebos.com/models/yolov5_convnext_s_36e_coco.pdparams
)
|
[
config
](
https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov5/yolov5_convnext_s_36e_coco.yml
)
|
#### 部署模型
| 网络模型 | 输入尺寸 | 导出后的权重(w/o NMS) | ONNX(w/o NMS) |
| :-------- | :--------: | :---------------------: | :----------------: |
| YOLOv5-n | 640 |
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_n_300e_coco_w_nms.zip
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_n_300e_coco_wo_nms.zip
)
|
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_n_300e_coco_w_nms.onnx
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_n_300e_coco_wo_nms.onnx
)
|
| YOLOv5-s | 640 |
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_s_300e_coco_w_nms.zip
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_s_300e_coco_wo_nms.zip
)
|
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_s_300e_coco_w_nms.onnx
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_s_300e_coco_wo_nms.onnx
)
|
| YOLOv5-m | 640 |
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_m_300e_coco_w_nms.zip
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_m_300e_coco_wo_nms.zip
)
|
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_m_300e_coco_w_nms.onnx
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_m_300e_coco_wo_nms.onnx
)
|
| YOLOv5-l | 640 |
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_l_300e_coco_w_nms.zip
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_l_300e_coco_wo_nms.zip
)
|
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_l_300e_coco_w_nms.onnx
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_l_300e_coco_wo_nms.onnx
)
|
| YOLOv5-x | 640 |
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_x_300e_coco_w_nms.zip
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_x_300e_coco_wo_nms.zip
)
|
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_x_300e_coco_w_nms.onnx
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_x_300e_coco_wo_nms.onnx
)
|
### [MT-YOLOv6](https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov6mt)
| 网络模型 | 输入尺寸 | 图片数/GPU | 学习率策略 | 推理耗时(ms) | mAP
<sup>
val
<br>
0.5:0.95 | mAP
<sup>
val
<br>
0.5 | Params(M) | FLOPs(G) | 下载链接 | 配置文件 |
| :------------- | :------- | :-------: | :------: | :---------: | :-----: |:-----: | :-----: |:-----: | :-------------: | :-----: |
|
*
YOLOv6mt-n | 416 | 32 | 400e | 2.5 | 30.5 | 46.8 | 4.74 | 5.16 |
[
model
](
https://paddledet.bj.bcebos.com/models/yolov6mt_n_416_400e_coco.pdparams
)
|
[
config
](
https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov6mt/yolov6mt_n_416_400e_coco.yml
)
|
|
*
YOLOv6mt-n | 640 | 32 | 400e | 2.8 | 34.7 | 52.7 | 4.74 | 12.2 |
[
model
](
https://paddledet.bj.bcebos.com/models/yolov6mt_n_400e_coco.pdparams
)
|
[
config
](
https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov6mt/yolov6mt_n_400e_coco.yml
)
|
|
*
YOLOv6mt-t | 640 | 32 | 400e | 2.9 | 40.8 | 60.4 | 16.36 | 39.94 |
[
model
](
https://paddledet.bj.bcebos.com/models/yolov6mt_t_400e_coco.pdparams
)
|
[
config
](
https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov6mt/yolov6mt_t_400e_coco.yml
)
|
|
*
YOLOv6mt-s | 640 | 32 | 400e | 3.0 | 42.5 | 61.7 | 18.87 | 48.36 |
[
model
](
https://paddledet.bj.bcebos.com/models/yolov6mt_s_400e_coco.pdparams
)
|
[
config
](
https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov6mt/yolov6mt_s_400e_coco.yml
)
|
#### 部署模型
| 网络模型 | 输入尺寸 | 导出后的权重(w/o NMS) | ONNX(w/o NMS) |
| :-------- | :--------: | :---------------------: | :----------------: |
| YOLOv6mt-n | 416 |
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6mt/yolov6mt_n_416_400e_coco_w_nms.zip
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6mt/yolov6mt_n_416_400e_coco_wo_nms.zip
)
|
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6mt/yolov6mt_n_416_400e_coco_w_nms.onnx
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6mt/yolov6mt_n_416_400e_coco_wo_nms.onnx
)
|
| YOLOv6mt-n | 640 |
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6mt/yolov6mt_n_400e_coco_w_nms.zip
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6mt/yolov6mt_n_400e_coco_wo_nms.zip
)
|
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6mt/yolov6mt_n_400e_coco_w_nms.onnx
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6mt/yolov6mt_n_400e_coco_wo_nms.onnx
)
|
| YOLOv6mt-t | 640 |
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6mt/yolov6mt_t_400e_coco_w_nms.zip
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6mt/yolov6mt_t_400e_coco_wo_nms.zip
)
|
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6mt/yolov6mt_t_400e_coco_w_nms.onnx
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6mt/yolov6mt_t_400e_coco_wo_nms.onnx
)
|
| YOLOv6mt-s | 640 |
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6mt/yolov6mt_s_400e_coco_w_nms.zip
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6mt/yolov6mt_s_400e_coco_wo_nms.zip
)
|
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6mt/yolov6mt_s_400e_coco_w_nms.onnx
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6mt/yolov6mt_s_400e_coco_wo_nms.onnx
)
|
### [YOLOv7](https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov7)
| 网络模型 | 输入尺寸 | 图片数/GPU | 学习率策略 | 推理耗时(ms) | mAP
<sup>
val
<br>
0.5:0.95 | mAP
<sup>
val
<br>
0.5 | Params(M) | FLOPs(G) | 下载链接 | 配置文件 |
| :------------- | :------- | :-------: | :------: | :------------: | :---------------------: | :----------------: |:---------: | :------: |:---------------: |:-----: |
| YOLOv7-L | 640 | 32 | 300e | 7.4 | 51.0 | 70.2 | 37.62 | 106.08 |
[
model
](
https://paddledet.bj.bcebos.com/models/yolov7_l_300e_coco.pdparams
)
|
[
config
](
https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov7/yolov7_l_300e_coco.yml
)
|
|
*
YOLOv7-X | 640 | 32 | 300e | 12.2 | 53.0 | 70.8 | 71.34 | 190.08 |
[
model
](
https://paddledet.bj.bcebos.com/models/yolov7_x_300e_coco.pdparams
)
|
[
config
](
https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov7/yolov7_x_300e_coco.yml
)
|
|
*
YOLOv7P6-W6 | 1280 | 16 | 300e | 25.5 | 54.4 | 71.8 | 70.43 | 360.26 |
[
model
](
https://paddledet.bj.bcebos.com/models/yolov7p6_w6_300e_coco.pdparams
)
|
[
config
](
https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov7/yolov7p6_w6_300e_coco.yml
)
|
|
*
YOLOv7P6-E6 | 1280 | 10 | 300e | 31.1 | 55.7 | 73.0 | 97.25 | 515.4 |
[
model
](
https://paddledet.bj.bcebos.com/models/yolov7p6_e6_300e_coco.pdparams
)
|
[
config
](
https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov7/yolov7p6_e6_300e_coco.yml
)
|
|
*
YOLOv7P6-D6 | 1280 | 8 | 300e | 37.4 | 56.1 | 73.3 | 133.81 | 702.92 |
[
model
](
https://paddledet.bj.bcebos.com/models/yolov7p6_d6_300e_coco.pdparams
)
|
[
config
](
https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov7/yolov7p6_d6_300e_coco.yml
)
|
|
*
YOLOv7P6-E6E | 1280 | 6 | 300e | 48.7 | 56.5 | 73.7 | 151.76 | 843.52 |
[
model
](
https://paddledet.bj.bcebos.com/models/yolov7p6_e6e_300e_coco.pdparams
)
|
[
config
](
https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov7/yolov7p6_e6e_300e_coco.yml
)
|
| YOLOv7-tiny | 640 | 32 | 300e | - | 37.3 | 54.5 | 6.23 | 6.90 |
[
model
](
https://paddledet.bj.bcebos.com/models/yolov7_tiny_300e_coco.pdparams
)
|
[
config
](
https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov7/yolov7_tiny_300e_coco.yml
)
|
| YOLOv7-tiny | 416 | 32 | 300e | - | 33.3 | 49.5 | 6.23 | 2.91 |
[
model
](
https://paddledet.bj.bcebos.com/models/yolov7_tiny_416_300e_coco.pdparams
)
|
[
config
](
https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov7/yolov7_tiny_416_300e_coco.yml
)
|
| YOLOv7-tiny | 320 | 32 | 300e | - | 29.1 | 43.8 | 6.23 | 1.73 |
[
model
](
https://paddledet.bj.bcebos.com/models/yolov7_tiny_320_300e_coco.pdparams
)
|
[
config
](
https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov7/yolov7_tiny_320_300e_coco.yml
)
|
#### 部署模型
| 网络模型 | 输入尺寸 | 导出后的权重(w/o NMS) | ONNX(w/o NMS) |
| :-------- | :--------: | :---------------------: | :----------------: |
| YOLOv7-l | 640 |
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_l_300e_coco_w_nms.zip
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_l_300e_coco_wo_nms.zip
)
|
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_l_300e_coco_w_nms.onnx
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_l_300e_coco_wo_nms.onnx
)
|
| YOLOv7-x | 640 |
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_x_300e_coco_w_nms.zip
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_x_300e_coco_wo_nms.zip
)
|
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_x_300e_coco_w_nms.onnx
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_x_300e_coco_wo_nms.onnx
)
|
| YOLOv7P6-W6 | 1280 |
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7p6_w6_300e_coco_w_nms.zip
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7p6_w6_300e_coco_wo_nms.zip
)
|
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7p6_w6_300e_coco_w_nms.onnx
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7p6_w6_300e_coco_wo_nms.onnx
)
|
| YOLOv7P6-E6 | 1280 |
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7p6_e6_300e_coco_w_nms.zip
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7p6_e6_300e_coco_wo_nms.zip
)
|
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7p6_e6_300e_coco_w_nms.onnx
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7p6_e6_300e_coco_wo_nms.onnx
)
|
| YOLOv7P6-D6 | 1280 |
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7p6_d6_300e_coco_w_nms.zip
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7p6_d6_300e_coco_wo_nms.zip
)
|
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7p6_d6_300e_coco_w_nms.onnx
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7p6_d6_300e_coco_wo_nms.onnx
)
|
| YOLOv7P6-E6E | 1280 |
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7p6_e6e_300e_coco_w_nms.zip
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7p6_e6e_300e_coco_wo_nms.zip
)
|
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7p6_e6e_300e_coco_w_nms.onnx
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7p6_e6e_300e_coco_wo_nms.onnx
)
|
| YOLOv7-tiny | 640 |
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_tiny_300e_coco_w_nms.zip
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_tiny_300e_coco_wo_nms.zip
)
|
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_tiny_300e_coco_w_nms.onnx
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_tiny_300e_coco_wo_nms.onnx
)
|
| YOLOv7-tiny | 416 |
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_tiny_416_300e_coco_w_nms.zip
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_tiny_416_300e_coco_wo_nms.zip
)
|
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_tiny_416_300e_coco_w_nms.onnx
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_tiny_416_300e_coco_wo_nms.onnx
)
|
| YOLOv7-tiny | 320 |
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_tiny_320_300e_coco_w_nms.zip
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_tiny_320_300e_coco_wo_nms.zip
)
|
[
( w/ nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_tiny_320_300e_coco_w_nms.onnx
)
|
[
( w/o nms)
](
https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_tiny_320_300e_coco_wo_nms.onnx
)
|
### **注意:**
-
所有模型均使用COCO train2017作为训练集,在COCO val2017上验证精度,模型前带
*
表示训练更新中。
-
具体精度和速度细节请查看
[
PP-YOLOE
](
../../configs/ppyoloe
)
,
[
YOLOX
](
../../configs/yolox
)
,
[
YOLOv5
](
https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov5
)
,
[
MT-YOLOv6
](
https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov6mt
)
,
[
YOLOv7
](
https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov7
)
。
-
模型推理耗时(ms)为TensorRT-FP16下测试的耗时,不包含数据预处理和模型输出后处理(NMS)的耗时。测试采用单卡V100,batch size=1,测试环境为
**paddlepaddle-2.3.0**
,
**CUDA 11.2**
,
**CUDNN 8.2**
,
**GCC-8.2**
,
**TensorRT 8.0.3.4**
,具体请参考各自模型主页。
-
**统计参数量Params(M)**
,可以将以下代码插入
[
trainer.py
](
https://github.com/nemonameless/PaddleDetection_YOLOSeries/blob/develop/ppdet/engine/trainer.py#L150
)
。
```
python
params
=
sum
([
p
.
numel
()
for
n
,
p
in
self
.
model
.
named_parameters
()
if
all
([
x
not
in
n
for
x
in
[
'_mean'
,
'_variance'
]])
])
# exclude BatchNorm running status
print
(
'Params: '
,
params
/
1e6
)
```
-
**统计FLOPs(G)**
,首先安装
[
PaddleSlim
](
https://github.com/PaddlePaddle/PaddleSlim
)
,
`pip install paddleslim`
,然后设置
[
runtime.yml
](
../../configs/runtime.yml
)
里
`print_flops: True`
,并且注意确保是
**单尺度**
下如640x640,
**打印的是MACs,FLOPs=2*MACs**
。
-
各模型导出后的权重以及ONNX,分为
**带(w)**
和
**不带(wo)**
后处理NMS,都提供了下载链接,请参考各自模型主页下载。
`w_nms`
表示
**带NMS后处理**
,可以直接使用预测出最终检测框结果如
```python deploy/python/infer.py --model_dir=ppyoloe_crn_l_300e_coco_w_nms/ --image_file=demo/000000014439.jpg --device=GPU```
;
`wo_nms`
表示
**不带NMS后处理**
,是
**测速**
时使用,如需预测出检测框结果需要找到
**对应head中的后处理相关代码**
并修改为如下:
```
if self.exclude_nms:
# `exclude_nms=True` just use in benchmark for speed test
# return pred_bboxes.sum(), pred_scores.sum() # 原先是这行,现在注释
return pred_bboxes, pred_scores # 新加这行,表示保留进NMS前的原始结果
else:
bbox_pred, bbox_num, _ = self.nms(pred_bboxes, pred_scores)
return bbox_pred, bbox_num
```
并重新导出,使用时再
**另接自己写的NMS后处理**
。
-
基于
[
PaddleSlim
](
https://github.com/PaddlePaddle/PaddleSlim
)
对YOLO系列模型进行量化训练,可以实现精度基本无损,速度普遍提升30%以上,具体请参照
[
模型自动化压缩工具ACT
](
https://github.com/PaddlePaddle/PaddleSlim/tree/develop/example/auto_compression
)
。
-
[
PP-YOLOE
](
../../configs/ppyoloe
)
,
[
PP-YOLOE+
](
../../configs/ppyoloe
)
,
[
YOLOv3
](
../../configs/yolov3
)
和
[
YOLOX
](
../../configs/yolox
)
推荐在
[
PaddleDetection
](
https://github.com/PaddlePaddle/PaddleDetection
)
里使用,会最先发布
**PP-YOLO系列特色检测模型的最新进展**
。
-
[
YOLOv5
](
https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov5
)
,
[
YOLOv7
](
https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov7
)
和
[
MT-YOLOv6
](
https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov6mt
)
由于GPL协议而不合入
[
PaddleDetection
](
https://github.com/PaddlePaddle/PaddleDetection
)
主代码库。
-
**paddlepaddle版本推荐使用2.3.0版本以上**
。
## 使用指南
下载MS-COCO数据集,
[
官网
](
https://cocodataset.org
)
下载地址为:
[
annotations
](
http://images.cocodataset.org/annotations/annotations_trainval2017.zip
)
,
[
train2017
](
http://images.cocodataset.org/zips/train2017.zip
)
,
[
val2017
](
http://images.cocodataset.org/zips/val2017.zip
)
,
[
test2017
](
http://images.cocodataset.org/zips/test2017.zip
)
。
PaddleDetection团队提供的下载链接为:
[
coco
](
https://bj.bcebos.com/v1/paddledet/data/coco.tar
)(
共约22G
)
和
[
test2017
](
https://bj.bcebos.com/v1/paddledet/data/cocotest2017.zip
)
,注意test2017可不下载,评估是使用的val2017。
### **一键运行全流程**
```
model_type=ppyoloe # 可修改,如 yolov7
job_name=ppyoloe_crn_l_300e_coco # 可修改,如 yolov7_l_300e_coco
config=configs/${model_type}/${job_name}.yml
log_dir=log_dir/${job_name}
# weights=https://bj.bcebos.com/v1/paddledet/models/${job_name}.pdparams
weights=output/${job_name}/model_final.pdparams
# 1.训练(单卡/多卡)
# CUDA_VISIBLE_DEVICES=0 python3.7 tools/train.py -c ${config} --eval --amp
python3.7 -m paddle.distributed.launch --log_dir=${log_dir} --gpus 0,1,2,3,4,5,6,7 tools/train.py -c ${config} --eval --amp
# 2.评估
CUDA_VISIBLE_DEVICES=0 python3.7 tools/eval.py -c ${config} -o weights=${weights} --classwise
# 3.直接预测
CUDA_VISIBLE_DEVICES=0 python3.7 tools/infer.py -c ${config} -o weights=${weights} --infer_img=demo/000000014439_640x640.jpg --draw_threshold=0.5
# 4.导出模型
CUDA_VISIBLE_DEVICES=0 python3.7 tools/export_model.py -c ${config} -o weights=${weights} # exclude_nms=True trt=True
# 5.部署预测
CUDA_VISIBLE_DEVICES=0 python3.7 deploy/python/infer.py --model_dir=output_inference/${job_name} --image_file=demo/000000014439_640x640.jpg --device=GPU
# 6.部署测速
CUDA_VISIBLE_DEVICES=0 python3.7 deploy/python/infer.py --model_dir=output_inference/${job_name} --image_file=demo/000000014439_640x640.jpg --device=GPU --run_benchmark=True # --run_mode=trt_fp16
# 7.onnx导出
paddle2onnx --model_dir output_inference/${job_name} --model_filename model.pdmodel --params_filename model.pdiparams --opset_version 12 --save_file ${job_name}.onnx
# 8.onnx测速
/usr/local/TensorRT-8.0.3.4/bin/trtexec --onnx=${job_name}.onnx --workspace=4096 --avgRuns=10 --shapes=input:1x3x640x640 --fp16
```
**注意:**
-
将以上命令写在一个脚本文件里如
```run.sh```
,一键运行命令为:
```sh run.sh```
,也可命令行一句句去运行。
-
如果想切换模型,只要修改开头两行即可,如:
```
model_type=yolov7
job_name=yolov7_l_300e_coco
```
-
**统计参数量Params(M)**
,可以将以下代码插入
[
trainer.py
](
https://github.com/nemonameless/PaddleDetection_YOLOSeries/blob/develop/ppdet/engine/trainer.py#L150
)
。
```
python
params
=
sum
([
p
.
numel
()
for
n
,
p
in
self
.
model
.
named_parameters
()
if
all
([
x
not
in
n
for
x
in
[
'_mean'
,
'_variance'
]])
])
# exclude BatchNorm running status
print
(
'Params: '
,
params
/
1e6
)
```
-
**统计FLOPs(G)**
,首先安装
[
PaddleSlim
](
https://github.com/PaddlePaddle/PaddleSlim
)
,
`pip install paddleslim`
,然后设置
[
runtime.yml
](
../../configs/runtime.yml
)
里
`print_flops: True`
,并且注意确保是
**单尺度**
下如640x640,
**打印的是MACs,FLOPs=2*MACs**
。
### 自定义数据集
#### 数据集准备:
1.
自定义数据集的标注制作,请参考
[
DetAnnoTools
](
../tutorials/data/DetAnnoTools.md
)
;
2.
自定义数据集的训练准备,请参考
[
PrepareDataSet
](
../tutorials/PrepareDataSet.md
)
。
#### fintune训练:
除了更改数据集的路径外,训练一般推荐加载
**对应模型的COCO预训练权重**
去fintune,会更快收敛和达到更高精度,如:
```
base
# 单卡fintune训练:
# CUDA_VISIBLE_DEVICES=0 python3.7 tools/train.py -c ${config} --eval --amp -o pretrain_weights=https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_300e_coco.pdparams
# 多卡fintune训练:
python3.7 -m paddle.distributed.launch --log_dir=./log_dir --gpus 0,1,2,3,4,5,6,7 tools/train.py -c ${config} --eval --amp -o pretrain_weights=https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_300e_coco.pdparams
```
**注意:**
-
fintune训练一般会提示head分类分支最后一层卷积的通道数没对应上,属于正常情况,是由于自定义数据集一般和COCO数据集种类数不一致;
-
fintune训练一般epoch数可以设置更少,lr设置也更小点如1/10,最高精度可能出现在中间某个epoch;
#### 预测和导出:
使用自定义数据集预测和导出模型时,如果TestDataset数据集路径设置不正确会默认使用COCO 80类。
除了TestDataset数据集路径设置正确外,也可以自行修改和添加对应的label_list.txt文件(一行记录一个对应种类),TestDataset中的anno_path也可设置为绝对路径,如:
```
TestDataset:
!ImageFolder
anno_path: label_list.txt # 如不使用dataset_dir,则anno_path即为相对于PaddleDetection主目录的相对路径
# dataset_dir: dataset/my_coco # 如使用dataset_dir,则dataset_dir/anno_path作为新的anno_path
```
label_list.txt里的一行记录一个对应种类,如下所示:
```
person
vehicle
```
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录