diff --git a/configs/pedestrian/README.md b/configs/pedestrian/README.md
index f140360ffd00e12f66542ca6cc676954d34ff9cc..f9ba42a1985cb3dcad00d6a3b621d24f37e338ac 100644
--- a/configs/pedestrian/README.md
+++ b/configs/pedestrian/README.md
@@ -45,6 +45,6 @@ python -u tools/infer.py -c configs/pedestrian/pedestrian_yolov3_darknet.yml \
Some inference results are visualized below:
-![](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/static/docs/images/PedestrianDetection_001.png)
+![](../../docs/images/PedestrianDetection_001.png)
-![](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/static/docs/images/PedestrianDetection_004.png)
+![](../../docs/images/PedestrianDetection_004.png)
diff --git a/configs/pedestrian/README_cn.md b/configs/pedestrian/README_cn.md
index 6439e1f1d9ae70167e8d50158bae305f1c9cc6d3..a1d8b86dbf941427ec4a56e2b99b6fb7cc6a2004 100644
--- a/configs/pedestrian/README_cn.md
+++ b/configs/pedestrian/README_cn.md
@@ -46,6 +46,6 @@ python -u tools/infer.py -c configs/pedestrian/pedestrian_yolov3_darknet.yml \
预测结果示例:
-![](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/static/docs/images/PedestrianDetection_001.png)
+![](../../docs/images/PedestrianDetection_001.png)
-![](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/static/docs/images/PedestrianDetection_004.png)
+![](../../docs/images/PedestrianDetection_004.png)
diff --git a/configs/ppyolo/README.md b/configs/ppyolo/README.md
index 1dec65f93dd768e91f433d8233526495079defa8..fe811c009ec5463adfe29aebf8909b643a153a26 100644
--- a/configs/ppyolo/README.md
+++ b/configs/ppyolo/README.md
@@ -11,12 +11,12 @@ English | [简体中文](README_cn.md)
## Introduction
-[PP-YOLO](https://arxiv.org/abs/2007.12099) is a optimized model based on YOLOv3 in PaddleDetection,whose performance(mAP on COCO) and inference spped are better than [YOLOv4](https://arxiv.org/abs/2004.10934),PaddlePaddle 2.0.0rc1(available on pip now) or [Daily Version](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/install/Tables.html#whl-release) is required to run this PP-YOLO。
+[PP-YOLO](https://arxiv.org/abs/2007.12099) is a optimized model based on YOLOv3 in PaddleDetection,whose performance(mAP on COCO) and inference spped are better than [YOLOv4](https://arxiv.org/abs/2004.10934),PaddlePaddle 2.0.2(available on pip now) or [Daily Version](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/install/Tables.html#whl-develop) is required to run this PP-YOLO。
PP-YOLO reached mmAP(IoU=0.5:0.95) as 45.9% on COCO test-dev2017 dataset, and inference speed of FP32 on single V100 is 72.9 FPS, inference speed of FP16 with TensorRT on single V100 is 155.6 FPS.
-
+
PP-YOLO improved performance and speed of YOLOv3 with following methods:
@@ -213,7 +213,7 @@ Optimizing method and ablation experiments of PP-YOLO compared with YOLOv3.
- Performance and inference spedd are measure with input shape as 608
- All models are trained on COCO train2017 datast and evaluated on val2017 & test-dev2017 dataset,`Box AP` is evaluation results as `mAP(IoU=0.5:0.95)`.
- Inference speed is tested on single Tesla V100 with batch size as 1 following test method and environment configuration in benchmark above.
-- [YOLOv3-DarkNet53](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_darknet53_270e_coco.yml) with mAP as 39.0 is optimized YOLOv3 model in PaddleDetection,see [Model Zoo](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/MODEL_ZOO.md) for details.
+- [YOLOv3-DarkNet53](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_darknet53_270e_coco.yml) with mAP as 39.0 is optimized YOLOv3 model in PaddleDetection,see [YOLOv3](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/configs/yolov3/README.md) for details.
## Citation
diff --git a/configs/ppyolo/README_cn.md b/configs/ppyolo/README_cn.md
index 704b45a77d34dc709eca6f639e3db2832bafb16e..4a17db7a20bf3b0d27dbc9f41cda282fadae6fcc 100644
--- a/configs/ppyolo/README_cn.md
+++ b/configs/ppyolo/README_cn.md
@@ -11,12 +11,12 @@
## 简介
-[PP-YOLO](https://arxiv.org/abs/2007.12099)是PaddleDetection优化和改进的YOLOv3的模型,其精度(COCO数据集mAP)和推理速度均优于[YOLOv4](https://arxiv.org/abs/2004.10934)模型,要求使用PaddlePaddle 2.0.0rc1(可使用pip安装) 或适当的[develop版本](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/install/Tables.html#whl-release)。
+[PP-YOLO](https://arxiv.org/abs/2007.12099)是PaddleDetection优化和改进的YOLOv3的模型,其精度(COCO数据集mAP)和推理速度均优于[YOLOv4](https://arxiv.org/abs/2004.10934)模型,要求使用PaddlePaddle 2.0.2(可使用pip安装) 或适当的[develop版本](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/install/Tables.html#whl-develop)。
PP-YOLO在[COCO](http://cocodataset.org) test-dev2017数据集上精度达到45.9%,在单卡V100上FP32推理速度为72.9 FPS, V100上开启TensorRT下FP16推理速度为155.6 FPS。
-
+
PP-YOLO从如下方面优化和提升YOLOv3模型的精度和速度:
@@ -207,7 +207,7 @@ PP-YOLO模型相对于YOLOv3模型优化项消融实验数据如下表所示。
- 精度与推理速度数据均为使用输入图像尺寸为608的测试结果
- Box AP为在COCO train2017数据集训练,val2017和test-dev2017数据集上评估`mAP(IoU=0.5:0.95)`数据
- 推理速度为单卡V100上,batch size=1, 使用上述benchmark测试方法的测试结果,测试环境配置为CUDA 10.2,CUDNN 7.5.1
-- [YOLOv3-DarkNet53](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_darknet53_270e_coco.yml)精度38.9为PaddleDetection优化后的YOLOv3模型,可参见[模型库](https://github.com/PaddlePaddle/PaddleDetection/blob/master/docs/MODEL_ZOO.md)
+- [YOLOv3-DarkNet53](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_darknet53_270e_coco.yml)精度38.9为PaddleDetection优化后的YOLOv3模型,可参见[YOLOv3](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/configs/yolov3/README.md)
## 引用
diff --git a/configs/vehicle/README.md b/configs/vehicle/README.md
index 28a524eb17b9a416641d709c99016667bf3cf6e0..5e20c6ffa86dcbc6e7d9fa8fbf57a9ae98eccb74 100644
--- a/configs/vehicle/README.md
+++ b/configs/vehicle/README.md
@@ -48,6 +48,6 @@ python -u tools/infer.py -c configs/vehicle/vehicle_yolov3_darknet.yml \
Some inference results are visualized below:
-![](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/static/docs/images/VehicleDetection_001.jpeg)
+![](../../docs/images/VehicleDetection_001.jpeg)
-![](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/static/docs/images/VehicleDetection_005.png)
+![](../../docs/images/VehicleDetection_005.png)
diff --git a/configs/vehicle/README_cn.md b/configs/vehicle/README_cn.md
index 275075d69fe9787eff57643e269c707aa1a844aa..2bd09bb10bb4ab6e56f15fb4411ecd012249b677 100644
--- a/configs/vehicle/README_cn.md
+++ b/configs/vehicle/README_cn.md
@@ -49,6 +49,6 @@ python -u tools/infer.py -c configs/vehicle/vehicle_yolov3_darknet.yml \
预测结果示例:
-![](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/static/docs/images/VehicleDetection_001.jpeg)
+![](../../docs/images/VehicleDetection_001.jpeg)
-![](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/static/docs/images/VehicleDetection_005.png)
+![](../../docs/images/VehicleDetection_005.png)
diff --git a/docs/advanced_tutorials/MODEL_TECHNICAL.md b/docs/advanced_tutorials/MODEL_TECHNICAL.md
index 614f0985e11ecce1e4cb187818a0534c76a7a7eb..1d3e58d909c9e5ae48028c4bc0beb71ad08bf363 100644
--- a/docs/advanced_tutorials/MODEL_TECHNICAL.md
+++ b/docs/advanced_tutorials/MODEL_TECHNICAL.md
@@ -398,7 +398,7 @@ OptimizerBuilder:
type: L2
```
**几点说明:**
-- 可以通过OptimizerBuilder.optimizer指定优化器的类型及参数,目前支持的优化可以参考[PaddlePaddle官方文档](https://www.paddlepaddle.org.cn/documentation/docs/zh/api/paddle/optimizer/Overview_cn.html)
+- 可以通过OptimizerBuilder.optimizer指定优化器的类型及参数,目前支持的优化器可以参考[PaddlePaddle官方文档](https://www.paddlepaddle.org.cn/documentation/docs/zh/api/paddle/optimizer/Overview_cn.html)
- 可以设置LearningRate.schedulers设置不同学习率调整策略的组合,PaddlePaddle目前支持多种学习率调整策略,具体也可参考[PaddlePaddle官方文档](https://www.paddlepaddle.org.cn/documentation/docs/zh/api/paddle/optimizer/Overview_cn.html)。需要注意的是,你需要对于PaddlePaddle中的学习率调整策略进行简单的封装,具体可参考源码`ppdet/optimizer.py`。
##### 2.2.3Reader配置文件
diff --git a/docs/advanced_tutorials/READER.md b/docs/advanced_tutorials/READER.md
index 32df651c77dea9c8becc787fc3896c4947238b1d..bc087f8959f008b8a9ac6b5613c1aca710f239a1 100644
--- a/docs/advanced_tutorials/READER.md
+++ b/docs/advanced_tutorials/READER.md
@@ -65,7 +65,7 @@ PaddleDetection的数据处理模块的所有代码逻辑在`ppdet/data/`中,
}
```
-xxx_rec中的内容也可以通过`DetDataSet`的data_fields参数来控制,即可以过滤掉一些不需要的字段,但大多数情况下不需要修改,按照`configs/dataset`中的默认配置即可。
+xxx_rec中的内容也可以通过`DetDataSet`的data_fields参数来控制,即可以过滤掉一些不需要的字段,但大多数情况下不需要修改,按照`configs/datasets`中的默认配置即可。
此外,在parse_dataset函数中,保存了类别名到id的映射的一个字典`cname2cid`。在coco数据集中,会利用[COCO API](https://github.com/cocodataset/cocoapi)从标注文件中加载数据集的类别名,并设置此字典。在voc数据集中,如果设置`use_default_label=False`,将从`label_list.txt`中读取类别列表,反之将使用voc默认的类别列表。
@@ -153,7 +153,7 @@ COCO数据集目前分为COCO2014和COCO2017,主要由json文件和image文件
from . import xxx
from .xxx import *
```
-完成以上两步就将新的数据源`XXXDataSet`添加好了,你可以参考[配置及运行](#配置及运行)实现自定义数据集的使用。
+完成以上两步就将新的数据源`XXXDataSet`添加好了,你可以参考[配置及运行](#5.配置及运行)实现自定义数据集的使用。
### 3.数据预处理
diff --git a/docs/images/PedestrianDetection_001.png b/docs/images/PedestrianDetection_001.png
new file mode 100644
index 0000000000000000000000000000000000000000..5194d6ff891b9507fedfc53f36de4f00219c7f30
Binary files /dev/null and b/docs/images/PedestrianDetection_001.png differ
diff --git a/docs/images/PedestrianDetection_004.png b/docs/images/PedestrianDetection_004.png
new file mode 100644
index 0000000000000000000000000000000000000000..7c62be5051f9a47c5f5e98ccd9f45c3fa5f30257
Binary files /dev/null and b/docs/images/PedestrianDetection_004.png differ
diff --git a/docs/images/VehicleDetection_001.jpeg b/docs/images/VehicleDetection_001.jpeg
new file mode 100644
index 0000000000000000000000000000000000000000..aa2b679d4d2a73487edd5f9c67323ab18df93893
Binary files /dev/null and b/docs/images/VehicleDetection_001.jpeg differ
diff --git a/docs/images/VehicleDetection_005.png b/docs/images/VehicleDetection_005.png
new file mode 100644
index 0000000000000000000000000000000000000000..57f918a30fcc5bf7bda284c1a1a0304e8822d325
Binary files /dev/null and b/docs/images/VehicleDetection_005.png differ
diff --git a/docs/images/ppyolo_map_fps.png b/docs/images/ppyolo_map_fps.png
new file mode 100644
index 0000000000000000000000000000000000000000..c66ad2fb490d661fa9a773aa382ea5911957994e
Binary files /dev/null and b/docs/images/ppyolo_map_fps.png differ