Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
9cb8738f
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
9cb8738f
编写于
10月 25, 2018
作者:
T
tensor-tang
提交者:
GitHub
10月 25, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #14018 from tensor-tang/refine/jit/gru
Refine/jit/gru
上级
8c1eea93
032c3a07
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
244 addition
and
154 deletion
+244
-154
paddle/fluid/operators/fusion_gru_op.cc
paddle/fluid/operators/fusion_gru_op.cc
+50
-98
paddle/fluid/operators/math/CMakeLists.txt
paddle/fluid/operators/math/CMakeLists.txt
+1
-1
paddle/fluid/operators/math/jit_kernel.h
paddle/fluid/operators/math/jit_kernel.h
+9
-0
paddle/fluid/operators/math/jit_kernel_rnn.cc
paddle/fluid/operators/math/jit_kernel_rnn.cc
+178
-55
python/paddle/fluid/tests/unittests/test_fusion_gru_op.py
python/paddle/fluid/tests/unittests/test_fusion_gru_op.py
+6
-0
未找到文件。
paddle/fluid/operators/fusion_gru_op.cc
浏览文件 @
9cb8738f
...
...
@@ -16,10 +16,9 @@ limitations under the License. */
#include <cstring> // for memcpy
#include <string>
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/cpu_vec.h"
#include "paddle/fluid/operators/math/fc_compute.h"
#include "paddle/fluid/operators/math/jit_kernel.h"
#include "paddle/fluid/operators/math/sequence2batch.h"
#include "paddle/fluid/platform/cpu_info.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -174,58 +173,44 @@ class FusionGRUKernel : public framework::OpKernel<T> {
}
}
#define INIT_VEC_FUNC \
std::function<void(const int, const T *, T *)> act_gate, act_state; \
std::function<void(const int, const T*, const T*, const T*, T*)> cross; \
auto& act_gate_str = ctx.Attr<std::string>("gate_activation"); \
auto& act_state_str = ctx.Attr<std::string>("activation"); \
if (platform::jit::MayIUse(platform::jit::avx)) { \
math::VecActivations<T, platform::jit::avx> act_functor; \
act_gate = act_functor(act_gate_str); \
act_state = act_functor(act_state_str); \
cross = math::vec_cross<T, platform::jit::avx>; \
} else { \
math::VecActivations<T, platform::jit::isa_any> act_functor; \
act_gate = act_functor(act_gate_str); \
act_state = act_functor(act_state_str); \
cross = math::vec_cross<T, platform::jit::isa_any>; \
}
#define INIT_BASE_INPUT_OUTPUT \
auto* h0 = ctx.Input<Tensor>("H0"); \
auto* wx = ctx.Input<Tensor>("WeightX"); \
#define INIT_BASE_DEFINES \
auto* x = ctx.Input<LoDTensor>("X"); \
auto* wh = ctx.Input<Tensor>("WeightH"); \
auto* bias = ctx.Input<Tensor>("Bias"); \
auto* xx = ctx.Output<LoDTensor>("XX"); \
auto* hidden_out = ctx.Output<LoDTensor>("Hidden"); \
bool is_reverse = ctx.Attr<bool>("is_reverse");
#define INIT_BASE_SIZES \
auto x_lod = x->lod(); \
auto x_dims = x->dims();
/* T x M*/
\
auto wh_dims = wh->dims();
/* D x 3D*/
\
const int total_T = x_dims[0]; \
const int D3 = wh_dims[1]
#define INIT_OTHER_DEFINES \
auto* h0 = ctx.Input<Tensor>("H0"); \
auto* wx = ctx.Input<Tensor>("WeightX"); \
auto* bias = ctx.Input<Tensor>("Bias"); \
auto* hidden_out = ctx.Output<LoDTensor>("Hidden"); \
bool is_reverse = ctx.Attr<bool>("is_reverse"); \
const int M = x_dims[1]; \
const int D = wh_dims[0]; \
const int D3 = wh_dims[1]; \
const int D2 = D * 2;
const int D2 = D * 2; \
const auto& ker = math::jitkernel::KernelPool::Instance() \
.template Get<math::jitkernel::GRUKernel<T>, \
const std::string&, const std::string&>( \
ctx.Attr<std::string>("gate_activation"), \
ctx.Attr<std::string>("activation"), D); \
const T* x_data = x->data<T>(); \
const T* wx_data = wx->data<T>(); \
const T* wh_data = wh->data<T>(); \
auto place = ctx.GetPlace(); \
T* xx_data = xx->mutable_data<T>(place)
void
SeqCompute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
using
DeviceContext
=
paddle
::
platform
::
CPUDeviceContext
;
auto
*
x
=
ctx
.
Input
<
LoDTensor
>
(
"X"
);
INIT_BASE_INPUT_OUTPUT
INIT_BASE_SIZES
INIT_VEC_FUNC
auto
x_lod
=
x
->
lod
();
INIT_BASE_DEFINES
;
INIT_OTHER_DEFINES
;
const
int
N
=
x_lod
[
0
].
size
()
-
1
;
const
T
*
x_data
=
x
->
data
<
T
>
();
const
T
*
h0_data
=
h0
?
h0
->
data
<
T
>
()
:
nullptr
;
const
T
*
wx_data
=
wx
->
data
<
T
>
();
const
T
*
wh_data
=
wh
->
data
<
T
>
();
const
T
*
wh_state_data
=
wh_data
+
D
*
D2
;
T
*
xx_data
=
xx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
hidden_out_data
=
hidden_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
hidden_out_data
=
hidden_out
->
mutable_data
<
T
>
(
place
);
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
T
>
(
ctx
);
math
::
FCCompute
<
DeviceContext
,
T
>
(
blas
,
total_T
,
D3
,
M
,
x_data
,
wx_data
,
xx_data
,
...
...
@@ -252,14 +237,7 @@ class FusionGRUKernel : public framework::OpKernel<T> {
if
(
h0_data
)
{
prev_hidden_data
=
h0_data
+
bid
*
D
;
}
else
{
// W: {W_update, W_reset; W_state}
// update gate
act_gate
(
D
,
xx_data
,
xx_data
);
// state gate
act_state
(
D
,
xx_data
+
D2
,
xx_data
+
D2
);
// out = a*b
blas
.
VMUL
(
D
,
xx_data
,
xx_data
+
D2
,
hidden_out_data
);
// save prev
ker
->
ComputeH1
(
xx_data
,
hidden_out_data
);
prev_hidden_data
=
hidden_out_data
;
tstart
=
1
;
move_step
();
...
...
@@ -269,17 +247,12 @@ class FusionGRUKernel : public framework::OpKernel<T> {
blas
.
GEMM
(
CblasNoTrans
,
CblasNoTrans
,
1
,
D2
,
D
,
static_cast
<
T
>
(
1
),
prev_hidden_data
,
D
,
wh_data
,
D2
,
static_cast
<
T
>
(
1
),
xx_data
,
D3
);
act_gate
(
D2
,
xx_data
,
xx_data
);
// rt = rt*ht_1 inplace result
blas
.
VMUL
(
D
,
prev_hidden_data
,
xx_data
+
D
,
hidden_out_data
);
ker
->
ComputeHtPart1
(
xx_data
,
prev_hidden_data
,
hidden_out_data
);
// gemm rt * Ws
blas
.
GEMM
(
CblasNoTrans
,
CblasNoTrans
,
1
,
D
,
D
,
static_cast
<
T
>
(
1
),
hidden_out_data
,
D
,
wh_state_data
,
D
,
static_cast
<
T
>
(
1
),
xx_data
+
D2
,
D3
);
act_state
(
D
,
xx_data
+
D2
,
xx_data
+
D2
);
// out = zt*ht~ + (1-zt)*ht_1
cross
(
D
,
xx_data
,
xx_data
+
D2
,
prev_hidden_data
,
hidden_out_data
);
ker
->
ComputeHtPart2
(
xx_data
,
prev_hidden_data
,
hidden_out_data
);
// save prev
prev_hidden_data
=
hidden_out_data
;
move_step
();
...
...
@@ -289,28 +262,19 @@ class FusionGRUKernel : public framework::OpKernel<T> {
void
BatchCompute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
using
DeviceContext
=
paddle
::
platform
::
CPUDeviceContext
;
auto
*
x
=
ctx
.
Input
<
LoDTensor
>
(
"X"
);
INIT_BASE_INPUT_OUTPUT
INIT_BASE_SIZES
if
(
x
->
lod
()[
0
].
size
()
==
2
)
{
INIT_BASE_DEFINES
;
if
(
x_lod
[
0
].
size
()
==
2
)
{
xx
->
Resize
({
total_T
,
D3
});
SeqCompute
(
ctx
);
return
;
}
INIT_VEC_FUNC
INIT_OTHER_DEFINES
;
auto
*
reordered_h0
=
ctx
.
Output
<
Tensor
>
(
"ReorderedH0"
);
auto
*
batched_input
=
ctx
.
Output
<
LoDTensor
>
(
"BatchedInput"
);
auto
*
batched_out
=
ctx
.
Output
<
LoDTensor
>
(
"BatchedOut"
);
const
T
*
x_data
=
x
->
data
<
T
>
();
const
T
*
wx_data
=
wx
->
data
<
T
>
();
const
T
*
wh_data
=
wh
->
data
<
T
>
();
T
*
xx_data
=
xx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
batched_input_data
=
batched_input
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
batched_out_data
=
batched_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
hidden_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
batched_input_data
=
batched_input
->
mutable_data
<
T
>
(
place
);
T
*
batched_out_data
=
batched_out
->
mutable_data
<
T
>
(
place
);
hidden_out
->
mutable_data
<
T
>
(
place
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
T
>
(
dev_ctx
);
math
::
LoDTensor2BatchFunctor
<
DeviceContext
,
T
>
to_batch
;
...
...
@@ -336,7 +300,7 @@ class FusionGRUKernel : public framework::OpKernel<T> {
T
*
prev_hidden_data
=
nullptr
;
if
(
h0
)
{
// reorder h0
T
*
reordered_h0_data
=
reordered_h0
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()
);
T
*
reordered_h0_data
=
reordered_h0
->
mutable_data
<
T
>
(
place
);
const
T
*
h0_data
=
h0
->
data
<
T
>
();
prev_hidden_data
=
reordered_h0_data
;
size_t
sz
=
sizeof
(
T
)
*
D
;
...
...
@@ -350,12 +314,7 @@ class FusionGRUKernel : public framework::OpKernel<T> {
T
*
cur_out_data
=
batched_out_data
;
// W: {W_update, W_reset; W_state}
for
(
int
i
=
0
;
i
<
max_bs
;
++
i
)
{
// update gate
act_gate
(
D
,
cur_in_data
,
cur_in_data
);
// state gate
act_state
(
D
,
cur_in_data
+
D2
,
cur_in_data
+
D2
);
// out = a*b
blas
.
VMUL
(
D
,
cur_in_data
,
cur_in_data
+
D2
,
cur_out_data
);
ker
->
ComputeH1
(
cur_in_data
,
cur_out_data
);
// add offset
cur_in_data
+=
D3
;
cur_out_data
+=
D
;
...
...
@@ -380,10 +339,8 @@ class FusionGRUKernel : public framework::OpKernel<T> {
T
*
cur_out_data
=
batched_out_data
;
T
*
cur_prev_hidden_data
=
prev_hidden_data
;
for
(
int
i
=
0
;
i
<
cur_bs
;
++
i
)
{
act_gate
(
D2
,
cur_batched_data
,
cur_batched_data
);
// rt = rt*ht_1 inplace result
blas
.
VMUL
(
D
,
cur_prev_hidden_data
,
cur_batched_data
+
D
,
cur_out_data
);
ker
->
ComputeHtPart1
(
cur_batched_data
,
cur_prev_hidden_data
,
cur_out_data
);
cur_batched_data
+=
D3
;
cur_prev_hidden_data
+=
D
;
cur_out_data
+=
D
;
...
...
@@ -397,12 +354,8 @@ class FusionGRUKernel : public framework::OpKernel<T> {
cur_prev_hidden_data
=
prev_hidden_data
;
for
(
int
i
=
0
;
i
<
cur_bs
;
++
i
)
{
// ht~ = act_state(...)
act_state
(
D
,
cur_batched_data
+
D2
,
cur_batched_data
+
D2
);
// out = zt*ht~ + (1-zt)*ht_1
cross
(
D
,
cur_batched_data
,
cur_batched_data
+
D2
,
cur_prev_hidden_data
,
ker
->
ComputeHtPart2
(
cur_batched_data
,
cur_prev_hidden_data
,
cur_out_data
);
cur_batched_data
+=
D3
;
cur_prev_hidden_data
+=
D
;
cur_out_data
+=
D
;
...
...
@@ -416,9 +369,8 @@ class FusionGRUKernel : public framework::OpKernel<T> {
batched_out
->
set_lod
(
batched_lod
);
to_seq
(
dev_ctx
,
*
batched_out
,
hidden_out
);
}
#undef INIT_VEC_FUNC
#undef INIT_BASE_SIZES
#undef INIT_BASE_INPUT_OUTPUT
#undef INIT_OTHER_DEFINES
#undef INIT_BASE_DEFINES
};
}
// namespace operators
...
...
paddle/fluid/operators/math/CMakeLists.txt
浏览文件 @
9cb8738f
...
...
@@ -75,6 +75,6 @@ endif()
cc_test
(
concat_test SRCS concat_test.cc DEPS concat_and_split
)
cc_test
(
cpu_vec_test SRCS cpu_vec_test.cc DEPS blas cpu_info
)
cc_library
(
jit_kernel
SRCS jit_kernel.cc jit_kernel_blas.cc jit_kernel_exp.cc jit_kernel_
lstm
.cc
SRCS jit_kernel.cc jit_kernel_blas.cc jit_kernel_exp.cc jit_kernel_
rnn
.cc
DEPS cpu_info cblas
)
cc_test
(
jit_kernel_test SRCS jit_kernel_test.cc DEPS jit_kernel
)
paddle/fluid/operators/math/jit_kernel.h
浏览文件 @
9cb8738f
...
...
@@ -142,6 +142,15 @@ class LSTMKernel : public Kernel {
const
T
*
wp_data
=
nullptr
)
const
=
0
;
};
template
<
typename
T
>
class
GRUKernel
:
public
Kernel
{
public:
// compute h1 without h0
virtual
void
ComputeH1
(
T
*
gates
,
T
*
ht
)
const
=
0
;
virtual
void
ComputeHtPart1
(
T
*
gates
,
const
T
*
ht_1
,
T
*
ht
)
const
=
0
;
virtual
void
ComputeHtPart2
(
T
*
gates
,
const
T
*
ht_1
,
T
*
ht
)
const
=
0
;
};
}
// namespace jitkernel
}
// namespace math
}
// namespace operators
...
...
paddle/fluid/operators/math/jit_kernel_
lstm
.cc
→
paddle/fluid/operators/math/jit_kernel_
rnn
.cc
浏览文件 @
9cb8738f
...
...
@@ -136,6 +136,21 @@ static std::shared_ptr<const VActKernel<T>> GetActKernel(
return
nullptr
;
}
template
<
jit
::
cpu_isa_t
isa
>
static
std
::
unique_ptr
<
AVXAct
>
GetAVXAct
(
const
std
::
string
&
type
)
{
if
(
type
==
"sigmoid"
)
{
return
std
::
unique_ptr
<
AVXAct
>
(
new
AVXActImpl
<
kSigmoid
,
isa
>
());
}
else
if
(
type
==
"relu"
)
{
return
std
::
unique_ptr
<
AVXAct
>
(
new
AVXActImpl
<
kRelu
,
isa
>
());
}
else
if
(
type
==
"tanh"
)
{
return
std
::
unique_ptr
<
AVXAct
>
(
new
AVXActImpl
<
kTanh
,
isa
>
());
}
else
if
(
type
==
"identity"
||
type
==
""
)
{
return
std
::
unique_ptr
<
AVXAct
>
(
new
AVXActImpl
<
kIdentity
,
isa
>
());
}
PADDLE_THROW
(
"Not support type: %s"
,
type
);
return
nullptr
;
}
/* LSTM JitKernel */
template
<
typename
T
,
jit
::
cpu_isa_t
isa
,
jit_block
>
class
LSTMKernelImpl
:
public
LSTMKernel
<
T
>
{
...
...
@@ -198,21 +213,9 @@ class LSTMKernelImpl : public LSTMKernel<T> {
const std::string& act_gate, const std::string& act_cand, \
const std::string& act_cell, int d) \
: LSTMKernel<float>() { \
auto GetAVXAct = [&](const std::string& type) -> std::unique_ptr<AVXAct> { \
if (type == "sigmoid") { \
return std::unique_ptr<AVXAct>(new AVXActImpl<kSigmoid, isa>()); \
} else if (type == "relu") { \
return std::unique_ptr<AVXAct>(new AVXActImpl<kRelu, isa>()); \
} else if (type == "tanh") { \
return std::unique_ptr<AVXAct>(new AVXActImpl<kTanh, isa>()); \
} else if (type == "identity" || type == "") { \
return std::unique_ptr<AVXAct>(new AVXActImpl<kIdentity, isa>()); \
} \
PADDLE_THROW("Not support type: %s", type); \
}; \
avx_act_gate_ = GetAVXAct(act_gate); \
avx_act_cand_ = GetAVXAct(act_cand); \
avx_act_cell_ = GetAVXAct(act_cell); \
avx_act_gate_ = GetAVXAct<isa>(act_gate); \
avx_act_cand_ = GetAVXAct<isa>(act_cand); \
avx_act_cell_ = GetAVXAct<isa>(act_cell); \
} \
template <> \
void LSTMKernelImpl<float, isa, kEQ8>::ComputeCtHt( \
...
...
@@ -354,6 +357,126 @@ REGISTER_JITKERNEL_ARGS(lstm, LSTMKernel, JITKERNEL_DECLARE_LSTM,
#undef JITKERNEL_DECLARE_LSTM
#undef JITKERNEL_KEY_LSTM
#undef JITKERNEL_NEW_LSTM_IMPL
/* GRU JitKernel */
template
<
typename
T
,
jit
::
cpu_isa_t
isa
,
jit_block
>
class
GRUKernelImpl
:
public
GRUKernel
<
T
>
{
public:
explicit
GRUKernelImpl
(
const
std
::
string
&
act_gate
,
const
std
::
string
&
act_state
,
int
d
)
:
GRUKernel
<
T
>
()
{
d_
=
d
;
d2_
=
d
*
2
;
act_gate_d2_
=
GetActKernel
<
T
>
(
act_gate
,
d2_
);
act_gate_d_
=
GetActKernel
<
T
>
(
act_gate
,
d
);
act_state_d_
=
GetActKernel
<
T
>
(
act_state
,
d
);
vmul_d_
=
KernelPool
::
Instance
().
template
Get
<
VMulKernel
<
T
>
>
(
d
);
}
void
ComputeH1
(
T
*
gates
,
T
*
ht
)
const
override
{
act_gate_d_
->
Compute
(
gates
,
gates
);
act_state_d_
->
Compute
(
gates
+
d2_
,
gates
+
d2_
);
vmul_d_
->
Compute
(
gates
,
gates
+
d2_
,
ht
);
}
void
ComputeHtPart1
(
T
*
gates
,
const
T
*
ht_1
,
T
*
ht
)
const
override
{
// W: {W_update, W_reset; W_state}
act_gate_d2_
->
Compute
(
gates
,
gates
);
vmul_d_
->
Compute
(
ht_1
,
gates
+
d_
,
ht
);
}
void
ComputeHtPart2
(
T
*
gates
,
const
T
*
ht_1
,
T
*
ht
)
const
override
{
T
*
y
=
gates
+
d2_
;
act_state_d_
->
Compute
(
y
,
y
);
// out = zt*ht~ + (1-zt)*ht_1
for
(
int
i
=
0
;
i
<
d_
;
++
i
)
{
ht
[
i
]
=
gates
[
i
]
*
y
[
i
]
+
(
static_cast
<
T
>
(
1
)
-
gates
[
i
])
*
ht_1
[
i
];
}
}
private:
int
d_
,
d2_
;
std
::
shared_ptr
<
const
VActKernel
<
T
>>
act_gate_d2_
,
act_gate_d_
,
act_state_d_
;
std
::
shared_ptr
<
const
VMulKernel
<
T
>>
vmul_d_
;
#ifdef __AVX__
std
::
unique_ptr
<
const
AVXAct
>
avx_act_gate_
,
avx_act_state_
;
#endif
};
#define INTRI8_FLOAT(isa) \
template <> \
GRUKernelImpl<float, isa, kEQ8>::GRUKernelImpl( \
const std::string& act_gate, const std::string& act_state, int d) \
: GRUKernel<float>() { \
avx_act_gate_ = GetAVXAct<isa>(act_gate); \
avx_act_state_ = GetAVXAct<isa>(act_state); \
} \
template <> \
void GRUKernelImpl<float, isa, kEQ8>::ComputeH1(float* gates, float* ht) \
const { \
__m256 u, s; \
/* W: {W_update, W_reset; W_state} */
\
u = _mm256_loadu_ps(gates); \
s = _mm256_loadu_ps(gates + 16); \
s = _mm256_mul_ps(avx_act_gate_->Compute(u), avx_act_state_->Compute(s)); \
_mm256_storeu_ps(ht, s); \
} \
template <> \
void GRUKernelImpl<float, isa, kEQ8>::ComputeHtPart1( \
float* gates, const float* ht_1, float* ht) const { \
/* not exactly equal the any implementation */
\
__m256 r, ht0; \
r = _mm256_loadu_ps(gates + 8); \
ht0 = _mm256_loadu_ps(ht_1); \
r = _mm256_mul_ps(avx_act_gate_->Compute(r), ht0); \
_mm256_storeu_ps(ht, r); \
} \
template <> \
void GRUKernelImpl<float, isa, kEQ8>::ComputeHtPart2( \
float* gates, const float* ht_1, float* ht) const { \
/* not exactly equal the any implementation */
\
__m256 u, s, ht0; \
u = _mm256_loadu_ps(gates); \
s = _mm256_loadu_ps(gates + 16); \
ht0 = _mm256_loadu_ps(ht_1); \
u = avx_act_gate_->Compute(u); \
s = _mm256_mul_ps(u, avx_act_state_->Compute(s)); \
u = _mm256_sub_ps(_mm256_set1_ps(1.f), u); \
u = _mm256_mul_ps(u, ht0); \
u = _mm256_add_ps(s, u); \
_mm256_storeu_ps(ht, u); \
}
#ifdef __AVX__
INTRI8_FLOAT
(
jit
::
avx
);
#endif
#ifdef __AVX2__
INTRI8_FLOAT
(
jit
::
avx2
);
#endif
#ifdef __AVX512F__
INTRI8_FLOAT
(
jit
::
avx512f
);
#endif
#define JITKERNEL_DECLARE_GRU(ker_class, ker_dtype) \
template <> \
std::shared_ptr<const GRUKernel<ker_dtype>> KernelPool::Get< \
GRUKernel<ker_dtype>, const std::string&, const std::string&, int>( \
const std::string& act_gate, const std::string& act_state, int d)
#define JITKERNEL_KEY_GRU(ker_key, dtype_key) \
#ker_key #dtype_key + std::to_string(d) + act_gate + act_state
#define JITKERNEL_NEW_GRU_IMPL(ker, dtype, isa, k) \
p = std::dynamic_pointer_cast<ker<dtype>>( \
std::make_shared<ker##Impl<dtype, isa, k>>(act_gate, act_state, d));
REGISTER_JITKERNEL_ARGS
(
gru
,
GRUKernel
,
JITKERNEL_DECLARE_GRU
,
JITKERNEL_KEY_GRU
,
JITKERNEL_NEW_GRU_IMPL
);
#undef INTRI8_FLOAT
#undef JITKERNEL_NEW_GRU_IMPL
#undef JITKERNEL_KEY_GRU
#undef JITKERNEL_DECLARE_GRU
}
// namespace jitkernel
}
// namespace math
}
// namespace operators
...
...
python/paddle/fluid/tests/unittests/test_fusion_gru_op.py
浏览文件 @
9cb8738f
...
...
@@ -125,6 +125,12 @@ class TestFusionGRUOpMD2(TestFusionGRUOp):
self
.
D
=
8
class
TestFusionGRUOpMD3
(
TestFusionGRUOp
):
def
set_confs
(
self
):
self
.
M
=
17
self
.
D
=
15
class
TestFusionGRUOpBS1
(
TestFusionGRUOp
):
def
set_confs
(
self
):
self
.
lod
=
[[
3
]]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录