Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
9c7fde45
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
9c7fde45
编写于
8月 23, 2018
作者:
L
luotao1
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
enhance test_analyzer to profile ditu inference demo
上级
decda738
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
32 addition
and
28 deletion
+32
-28
paddle/fluid/framework/ir/graph_pattern_detecter_tester.cc
paddle/fluid/framework/ir/graph_pattern_detecter_tester.cc
+2
-2
paddle/fluid/framework/selected_rows.cc
paddle/fluid/framework/selected_rows.cc
+2
-2
paddle/fluid/inference/analysis/analyzer_tester.cc
paddle/fluid/inference/analysis/analyzer_tester.cc
+27
-21
paddle/fluid/operators/sampling_id_op.h
paddle/fluid/operators/sampling_id_op.h
+1
-1
paddle/scripts/paddle_build.sh
paddle/scripts/paddle_build.sh
+0
-2
未找到文件。
paddle/fluid/framework/ir/graph_pattern_detecter_tester.cc
浏览文件 @
9c7fde45
...
@@ -163,8 +163,8 @@ TEST(GraphPatternDetecter, MultiSubgraph) {
...
@@ -163,8 +163,8 @@ TEST(GraphPatternDetecter, MultiSubgraph) {
// 3. Detect op2 -> var2 -> op4
// 3. Detect op2 -> var2 -> op4
// 4. Detect op2 -> var3 -> op5
// 4. Detect op2 -> var3 -> op5
// But 2 and 3 and 4 overlapped, so keep 2, so the final choices are 1 and 2
// But 2 and 3 and 4 overlapped, so keep 2, so the final choices are 1 and 2
ASSERT_GE
(
count
,
1
UL
);
ASSERT_GE
(
count
,
1
);
ASSERT_LE
(
count
,
2
UL
);
ASSERT_LE
(
count
,
2
);
}
}
}
// namespace ir
}
// namespace ir
...
...
paddle/fluid/framework/selected_rows.cc
浏览文件 @
9c7fde45
...
@@ -139,7 +139,7 @@ int64_t SelectedRows::AutoGrownIndex(int64_t key, bool auto_grown) {
...
@@ -139,7 +139,7 @@ int64_t SelectedRows::AutoGrownIndex(int64_t key, bool auto_grown) {
}
}
auto
write_iter
=
id_to_index_
.
find
(
key
);
auto
write_iter
=
id_to_index_
.
find
(
key
);
if
(
write_iter
==
id_to_index_
.
end
())
{
if
(
write_iter
==
id_to_index_
.
end
())
{
size_
t
row_num
=
rows_
.
size
();
in
t
row_num
=
rows_
.
size
();
if
(
row_num
==
value_
->
dims
()[
0
])
{
if
(
row_num
==
value_
->
dims
()[
0
])
{
rwlock_
->
UNLock
();
rwlock_
->
UNLock
();
PADDLE_THROW
(
"selected rows is full, then length exceed %d"
,
row_num
);
PADDLE_THROW
(
"selected rows is full, then length exceed %d"
,
row_num
);
...
@@ -182,7 +182,7 @@ void SelectedRows::Get(const framework::Tensor& ids, framework::Tensor* value,
...
@@ -182,7 +182,7 @@ void SelectedRows::Get(const framework::Tensor& ids, framework::Tensor* value,
PADDLE_ENFORCE_EQ
(
value_width
,
value
->
numel
()
/
value
->
dims
()[
0
],
PADDLE_ENFORCE_EQ
(
value_width
,
value
->
numel
()
/
value
->
dims
()[
0
],
"output tensor should have the same shape with table "
"output tensor should have the same shape with table "
"except the dims[0]."
);
"except the dims[0]."
);
for
(
size_
t
i
=
0
;
i
<
ids
.
numel
();
++
i
)
{
for
(
in
t
i
=
0
;
i
<
ids
.
numel
();
++
i
)
{
int64_t
index
=
AutoGrownIndex
(
ids
.
data
<
int64_t
>
()[
i
],
auto_grown
);
int64_t
index
=
AutoGrownIndex
(
ids
.
data
<
int64_t
>
()[
i
],
auto_grown
);
framework
::
VisitDataType
(
framework
::
VisitDataType
(
framework
::
ToDataType
(
value_
->
type
()),
framework
::
ToDataType
(
value_
->
type
()),
...
...
paddle/fluid/inference/analysis/analyzer_tester.cc
浏览文件 @
9c7fde45
...
@@ -23,6 +23,8 @@
...
@@ -23,6 +23,8 @@
DEFINE_string
(
infer_ditu_rnn_model
,
""
,
"model path for ditu RNN"
);
DEFINE_string
(
infer_ditu_rnn_model
,
""
,
"model path for ditu RNN"
);
DEFINE_string
(
infer_ditu_rnn_data
,
""
,
"data path for ditu RNN"
);
DEFINE_string
(
infer_ditu_rnn_data
,
""
,
"data path for ditu RNN"
);
DEFINE_int32
(
batch_size
,
10
,
"batch size."
);
DEFINE_int32
(
repeat
,
1
,
"Running the inference program repeat times."
);
namespace
paddle
{
namespace
paddle
{
namespace
inference
{
namespace
inference
{
...
@@ -92,7 +94,7 @@ struct DataRecord {
...
@@ -92,7 +94,7 @@ struct DataRecord {
size_t
batch_iter
{
0
};
size_t
batch_iter
{
0
};
size_t
batch_size
{
1
};
size_t
batch_size
{
1
};
DataRecord
()
=
default
;
DataRecord
()
=
default
;
DataRecord
(
const
std
::
string
&
path
,
int
batch_size
=
1
)
explicit
DataRecord
(
const
std
::
string
&
path
,
int
batch_size
=
1
)
:
batch_size
(
batch_size
)
{
:
batch_size
(
batch_size
)
{
Load
(
path
);
Load
(
path
);
}
}
...
@@ -165,7 +167,6 @@ struct DataRecord {
...
@@ -165,7 +167,6 @@ struct DataRecord {
};
};
void
PrepareInputs
(
std
::
vector
<
PaddleTensor
>
*
input_slots
,
DataRecord
*
data
,
void
PrepareInputs
(
std
::
vector
<
PaddleTensor
>
*
input_slots
,
DataRecord
*
data
,
int
batch_size
)
{
int
batch_size
)
{
// DataRecord data(FLAGS_datapath, batch_size);
PaddleTensor
lod_attention_tensor
,
init_zero_tensor
,
lod_tensor_tensor
,
PaddleTensor
lod_attention_tensor
,
init_zero_tensor
,
lod_tensor_tensor
,
week_tensor
,
minute_tensor
;
week_tensor
,
minute_tensor
;
lod_attention_tensor
.
name
=
"data_lod_attention"
;
lod_attention_tensor
.
name
=
"data_lod_attention"
;
...
@@ -174,28 +175,33 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
...
@@ -174,28 +175,33 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
week_tensor
.
name
=
"week"
;
week_tensor
.
name
=
"week"
;
minute_tensor
.
name
=
"minute"
;
minute_tensor
.
name
=
"minute"
;
auto
one_batch
=
data
->
NextBatch
();
auto
one_batch
=
data
->
NextBatch
();
// clang-format off
std
::
vector
<
int
>
rnn_link_data_shape
(
std
::
vector
<
int
>
rnn_link_data_shape
{
static_cast
<
int
>
(
one_batch
.
rnn_link_data
.
size
()),
({
static_cast
<
int
>
(
one_batch
.
rnn_link_data
.
size
()),
static_cast
<
int
>
(
one_batch
.
rnn_link_data
.
front
().
size
())});
static_cast
<
int
>
(
one_batch
.
rnn_link_data
.
front
().
size
())});
lod_attention_tensor
.
shape
.
assign
({
1
,
2
});
lod_attention_tensor
.
shape
.
assign
({
1
,
2
});
lod_attention_tensor
.
lod
.
assign
({
one_batch
.
lod1
,
one_batch
.
lod2
});
lod_attention_tensor
.
lod
.
assign
({
one_batch
.
lod1
,
one_batch
.
lod2
});
init_zero_tensor
.
shape
.
assign
({
batch_size
,
15
});
init_zero_tensor
.
shape
.
assign
({
batch_size
,
15
});
init_zero_tensor
.
lod
.
assign
({
one_batch
.
lod3
});
init_zero_tensor
.
lod
.
assign
({
one_batch
.
lod3
});
lod_tensor_tensor
.
shape
=
rnn_link_data_shape
;
lod_tensor_tensor
.
shape
=
rnn_link_data_shape
;
lod_tensor_tensor
.
lod
.
assign
({
one_batch
.
lod1
});
lod_tensor_tensor
.
lod
.
assign
({
one_batch
.
lod1
});
week_tensor
.
shape
.
assign
({(
int
)
one_batch
.
rnn_week_datas
.
size
(),
(
int
)
one_batch
.
rnn_week_datas
.
front
().
size
()});
// clang-format off
week_tensor
.
shape
.
assign
(
{
static_cast
<
int
>
(
one_batch
.
rnn_week_datas
.
size
()),
static_cast
<
int
>
(
one_batch
.
rnn_week_datas
.
front
().
size
())});
week_tensor
.
lod
.
assign
({
one_batch
.
lod3
});
week_tensor
.
lod
.
assign
({
one_batch
.
lod3
});
minute_tensor
.
shape
.
assign
({(
int
)
one_batch
.
rnn_minute_datas
.
size
(),
minute_tensor
.
shape
.
assign
(
(
int
)
one_batch
.
rnn_minute_datas
.
front
().
size
()});
{
static_cast
<
int
>
(
one_batch
.
rnn_minute_datas
.
size
()),
static_cast
<
int
>
(
one_batch
.
rnn_minute_datas
.
front
().
size
())});
minute_tensor
.
lod
.
assign
({
one_batch
.
lod3
});
minute_tensor
.
lod
.
assign
({
one_batch
.
lod3
});
// clang-format on
// assign data
// assign data
TensorAssignData
(
&
lod_attention_tensor
,
std
::
vector
<
std
::
vector
<
float
>>
({{
0
,
0
}}));
TensorAssignData
(
&
lod_attention_tensor
,
std
::
vector
<
std
::
vector
<
float
>>
({{
0
,
0
}}));
std
::
vector
<
float
>
tmp_zeros
(
batch_size
*
15
,
0.
);
std
::
vector
<
float
>
tmp_zeros
(
batch_size
*
15
,
0.
);
TensorAssignData
(
&
init_zero_tensor
,
{
tmp_zeros
});
TensorAssignData
(
&
init_zero_tensor
,
{
tmp_zeros
});
TensorAssignData
(
&
lod_tensor_tensor
,
one_batch
.
rnn_link_data
);
TensorAssignData
(
&
lod_tensor_tensor
,
one_batch
.
rnn_link_data
);
TensorAssignData
(
&
week_tensor
,
one_batch
.
rnn_week_datas
);
TensorAssignData
(
&
week_tensor
,
one_batch
.
rnn_week_datas
);
TensorAssignData
(
&
minute_tensor
,
one_batch
.
rnn_minute_datas
);
TensorAssignData
(
&
minute_tensor
,
one_batch
.
rnn_minute_datas
);
// clang-format on
// Set inputs.
// Set inputs.
auto
init_zero_tensor1
=
init_zero_tensor
;
auto
init_zero_tensor1
=
init_zero_tensor
;
init_zero_tensor1
.
name
=
"hidden_init"
;
init_zero_tensor1
.
name
=
"hidden_init"
;
...
@@ -231,12 +237,9 @@ std::string DescribeTensor(const PaddleTensor &tensor) {
...
@@ -231,12 +237,9 @@ std::string DescribeTensor(const PaddleTensor &tensor) {
os
<<
"
\n
"
;
os
<<
"
\n
"
;
os
<<
" - data: "
;
os
<<
" - data: "
;
// clang-format off
int
dim
=
std
::
accumulate
(
tensor
.
shape
.
begin
(),
tensor
.
shape
.
end
(),
1
,
int
dim
=
std
::
accumulate
(
tensor
.
shape
.
begin
(),
[](
int
a
,
int
b
)
{
return
a
*
b
;
});
tensor
.
shape
.
end
(),
for
(
int
i
=
0
;
i
<
dim
;
i
++
)
{
1
,
[](
int
a
,
int
b
)
{
return
a
*
b
;
});
// clang-format on
for
(
size_t
i
=
0
;
i
<
dim
;
i
++
)
{
os
<<
static_cast
<
float
*>
(
tensor
.
data
.
data
())[
i
]
<<
" "
;
os
<<
static_cast
<
float
*>
(
tensor
.
data
.
data
())[
i
]
<<
" "
;
}
}
os
<<
'\n'
;
os
<<
'\n'
;
...
@@ -300,13 +303,16 @@ void TestDituRNNPrediction(const std::string &model_path,
...
@@ -300,13 +303,16 @@ void TestDituRNNPrediction(const std::string &model_path,
for
(
int
i
=
0
;
i
<
num_times
;
i
++
)
{
for
(
int
i
=
0
;
i
<
num_times
;
i
++
)
{
predictor
->
Run
(
input_slots
,
&
outputs
);
predictor
->
Run
(
input_slots
,
&
outputs
);
}
}
LOG
(
INFO
)
<<
"time/batch: "
<<
timer
.
toc
()
/
num_times
;
LOG
(
INFO
)
<<
"===========profile result==========="
;
LOG
(
INFO
)
<<
"batch_size: "
<<
batch_size
<<
", repeat: "
<<
num_times
<<
", latency: "
<<
timer
.
toc
()
/
num_times
<<
"ms"
;
LOG
(
INFO
)
<<
"====================================="
;
for
(
auto
&
out
:
outputs
)
{
for
(
auto
&
out
:
outputs
)
{
size_t
size
=
std
::
accumulate
(
out
.
shape
.
begin
(),
out
.
shape
.
end
(),
1
,
size_t
size
=
std
::
accumulate
(
out
.
shape
.
begin
(),
out
.
shape
.
end
(),
1
,
[](
int
a
,
int
b
)
{
return
a
*
b
;
});
[](
int
a
,
int
b
)
{
return
a
*
b
;
});
float
*
data
=
static_cast
<
float
*>
(
out
.
data
.
data
());
float
*
data
=
static_cast
<
float
*>
(
out
.
data
.
data
());
for
(
in
t
i
=
0
;
for
(
size_
t
i
=
0
;
i
<
std
::
min
(
sizeof
(
ditu_rnn_target_data
)
/
sizeof
(
float
),
size
);
i
<
std
::
min
(
sizeof
(
ditu_rnn_target_data
)
/
sizeof
(
float
),
size
);
i
++
)
{
i
++
)
{
EXPECT_NEAR
(
data
[
i
],
ditu_rnn_target_data
[
i
],
1e-3
);
EXPECT_NEAR
(
data
[
i
],
ditu_rnn_target_data
[
i
],
1e-3
);
...
@@ -336,7 +342,7 @@ TEST(Analyzer, SupportIRPass) {
...
@@ -336,7 +342,7 @@ TEST(Analyzer, SupportIRPass) {
// Directly infer with the original model.
// Directly infer with the original model.
TEST
(
Analyzer
,
DituRNN_without_analysis
)
{
TEST
(
Analyzer
,
DituRNN_without_analysis
)
{
TestDituRNNPrediction
(
FLAGS_infer_ditu_rnn_model
,
FLAGS_infer_ditu_rnn_data
,
TestDituRNNPrediction
(
FLAGS_infer_ditu_rnn_model
,
FLAGS_infer_ditu_rnn_data
,
10
,
false
,
false
);
FLAGS_batch_size
,
false
,
false
,
FLAGS_repeat
);
}
}
// Inference with the original model with the analysis turned on, the analysis
// Inference with the original model with the analysis turned on, the analysis
...
@@ -344,14 +350,14 @@ TEST(Analyzer, DituRNN_without_analysis) {
...
@@ -344,14 +350,14 @@ TEST(Analyzer, DituRNN_without_analysis) {
TEST
(
Analyzer
,
DituRNN_with_analysis
)
{
TEST
(
Analyzer
,
DituRNN_with_analysis
)
{
LOG
(
INFO
)
<<
"ditu rnn with analysis"
;
LOG
(
INFO
)
<<
"ditu rnn with analysis"
;
TestDituRNNPrediction
(
FLAGS_infer_ditu_rnn_model
,
FLAGS_infer_ditu_rnn_data
,
TestDituRNNPrediction
(
FLAGS_infer_ditu_rnn_model
,
FLAGS_infer_ditu_rnn_data
,
10
,
true
,
false
,
1
);
FLAGS_batch_size
,
true
,
false
,
FLAGS_repeat
);
}
}
// Inference with analysis and IR. The IR module will fuse some large kernels.
// Inference with analysis and IR. The IR module will fuse some large kernels.
TEST
(
Analyzer
,
DituRNN_with_analysis_with_IR
)
{
TEST
(
Analyzer
,
DituRNN_with_analysis_with_IR
)
{
LOG
(
INFO
)
<<
"ditu rnn with analysis and IR fuse"
;
LOG
(
INFO
)
<<
"ditu rnn with analysis and IR fuse"
;
TestDituRNNPrediction
(
FLAGS_infer_ditu_rnn_model
,
FLAGS_infer_ditu_rnn_data
,
TestDituRNNPrediction
(
FLAGS_infer_ditu_rnn_model
,
FLAGS_infer_ditu_rnn_data
,
10
,
true
,
true
,
1
);
FLAGS_batch_size
,
true
,
true
,
FLAGS_repeat
);
}
}
}
// namespace analysis
}
// namespace analysis
...
...
paddle/fluid/operators/sampling_id_op.h
浏览文件 @
9c7fde45
...
@@ -54,7 +54,7 @@ class SamplingIdKernel : public framework::OpKernel<T> {
...
@@ -54,7 +54,7 @@ class SamplingIdKernel : public framework::OpKernel<T> {
static_cast
<
T
>
(
context
.
Attr
<
float
>
(
"max"
)));
static_cast
<
T
>
(
context
.
Attr
<
float
>
(
"max"
)));
std
::
vector
<
T
>
ids
(
batch_size
);
std
::
vector
<
T
>
ids
(
batch_size
);
for
(
size_
t
i
=
0
;
i
<
batch_size
;
++
i
)
{
for
(
in
t
i
=
0
;
i
<
batch_size
;
++
i
)
{
T
r
=
dist
(
engine
);
T
r
=
dist
(
engine
);
int
idx
=
width
-
1
;
int
idx
=
width
-
1
;
for
(
int
j
=
0
;
j
<
width
;
++
j
)
{
for
(
int
j
=
0
;
j
<
width
;
++
j
)
{
...
...
paddle/scripts/paddle_build.sh
浏览文件 @
9c7fde45
...
@@ -116,7 +116,6 @@ function cmake_gen() {
...
@@ -116,7 +116,6 @@ function cmake_gen() {
-DCMAKE_EXPORT_COMPILE_COMMANDS=ON
-DCMAKE_EXPORT_COMPILE_COMMANDS=ON
-DWITH_CONTRIB=
${
WITH_CONTRIB
:-
ON
}
-DWITH_CONTRIB=
${
WITH_CONTRIB
:-
ON
}
-DWITH_ANAKIN=
${
WITH_ANAKIN
:-
OFF
}
-DWITH_ANAKIN=
${
WITH_ANAKIN
:-
OFF
}
-DWITH_INFERENCE_DEMO=
${
WITH_INFERENCE_DEMO
:-
ON
}
-DPY_VERSION=
${
PY_VERSION
:-
2
.7
}
-DPY_VERSION=
${
PY_VERSION
:-
2
.7
}
========================================
========================================
EOF
EOF
...
@@ -146,7 +145,6 @@ EOF
...
@@ -146,7 +145,6 @@ EOF
-DCMAKE_EXPORT_COMPILE_COMMANDS
=
ON
\
-DCMAKE_EXPORT_COMPILE_COMMANDS
=
ON
\
-DWITH_CONTRIB
=
${
WITH_CONTRIB
:-
ON
}
\
-DWITH_CONTRIB
=
${
WITH_CONTRIB
:-
ON
}
\
-DWITH_ANAKIN
=
${
WITH_ANAKIN
:-
OFF
}
\
-DWITH_ANAKIN
=
${
WITH_ANAKIN
:-
OFF
}
\
-DWITH_INFERENCE_DEMO
=
${
WITH_INFERENCE_DEMO
:-
ON
}
\
-DPY_VERSION
=
${
PY_VERSION
:-
2
.7
}
-DPY_VERSION
=
${
PY_VERSION
:-
2
.7
}
}
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录